
Consider the following charged object 
of irregular shape as shown in Figure 
A1.1. The entire charged object is divided 
into a large number of charge elements
∆ ∆ ∆ ∆q q q qn1 2 3, , ......  and each charge element 
∆q  is taken as a point charge.

�q1

�q3

�q2 r1

r2

r3r2 r3
r1

p

�E2
��E3

�

�E1
�

Figure A1.1 Continuous charge 
distributions

The electric field at a point P due to a 
charged object is approximately given by the 
sum of the fields at P due to all such charge 
elements.
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 (A1.1)

Here ∆qi  is the ith charge element, riP is 
the distance of the point P from the ith charge 
element and riP  is the unit vector from ith 

charge element to the point P. 
However the equation (A1.1) is only 
an approximation. To incorporate the 
continuous distribution of charge, we take 
the limit ∆q dq→ =( )0 .  In this limit, the 
summation in the equation (A1.1) becomes 
an integration and takes the following form



E dq
r

r= ∫
1

4 0
2πe
 (A1.2)

Here r is the distance of the point P from 
the infinitesimal charge dq and r  is the 
unit vector from dq to point P. Even though 
the electric field for a continuous charge 
distribution is difficult to evaluate, the force 
experienced by some test charge q in this 
electric field is still given by 

 

F qE= .

(a) If the charge Q is uniformly distributed 
along the wire of length L, then linear 
charge density (charge per unit length)
is λ =

Q
L

.  Its unit is coulomb per meter 

(Cm–1).
 The charge present in the infinitesimal 

length dl is dq = λdl. This is shown in 
Figure A1.2 (a). 
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ELECTRIC FIELD DUE 
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CHARGE DISTRIBUTION
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 The electric field due to a volume of total 
charge Q is given by

      
�

� �

E dV
r

r dV
r

r= =∫ ∫
1

4
1

42 2π
ρ

π
ρ

e e


.

A3.1
EXPRESSION FOR TORQUE 
ON A CURRENT LOOP 
PLACED IN A UNIFORM  
MAGNETIC FIELD

Consider a single rectangular loop 
(this means the number of turns is one) 
PQRS kept in a uniform magnetic field 



B .  
Let a and b be the length and breadth of 
the rectangular loop respectively. Let n̂ be 
the unit vector normal to the plane of the 
current loop which completely describes 
the orientation of the loop. The direction of 
magnetic field 



B  is shown in Figure A3.1.

B

N

FPQ

FQR
  FRS

  FSP

Q R

A

S

I

IP

B

a

Sb

n̂
B

Figure A3.1 Rectangular coil placed in a 
magnetic field

When a steady current I passes through 
the loop PQRS, the net force acting on the 
loop is zero where as the net torque is not 
zero. For calculation purpose, we shall divide 
the rectangular loop into four sections PQ, 
QR, RS and SP. Now we shall consider how 

dq=λdl
r

r
r

P

P

P

dq=σda

dq=qdV

dq=�dA

r r
r

(a) (b) (c)

Figure A1.2 Line, surface and volume 
charge distribution

 The electric field due to the line of total 
charge Q is given by

      


E dl
r

r dl
r

r= =∫ ∫
1

4 40
2

0
2π

λ λ
πe e

 

(b) If the charge Q is uniformly distributed 
on a surface of area A, then surface 
charge density (charge per unit area)  

is σ =
Q
A

. Its unit is coulomb per square 

meter (C m–2).

 The charge present in the infinitesimal 
area dA is dq = σ dA. This is shown in 
the Figure A1.2 (b).  

 The electric field due to a of total charge 
Q is given by

      
�

� �

E dA
r

r dA
r

r= =∫ ∫
1

4
1

42 2π
σ

π
σ

e e




 This is shown in Figure A1.2 (b).

(c) If the charge Q is uniformly distributed 
in a volume V, then volume charge 

density (charge per unit volume) is given 

by ρ=
Q
V

. Its unit is coulomb per cubic 

meter (C m–3). 
 The charge present in the infinitesimal 

volume element dV is dq = ρdV. This is 
shown in Figure A1.2 (c).
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î

k̂

Q
R

�
�

�
�

F
Ib

i
Bi

Q
R
=

×
=

0
�

�
��

�
t Q

R
Q

R
a

j
F

=
−
×

=
2

0
(

)

RS
�

�
�

�
�

�

F
Ia

j
Bi

Ia
B

j
i

Ia
Bk

RS
=

×

=
×

=
−(

) (
)

S

F RS
R

Iaj

Bi^

^

ĵ
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Special Cases:

(i)  θ τ= = =90� � �, maxnet NABI j imum

        




p andBm  are perpendicular to each 
other

(ii)  θ τ= =0 0� � �
, net

       




p and Bm  are parallel

(iii)  θ τ= =180 0� � �
, net

         




p and Bm  are anti-parallel

EXAMPLE A3.1

Show the time period of oscillation when a 
bar magnet is kept in a uniform magnetic 

field is T I
p Bm

= 2p in second, where I 

represents moment of inertia of the bar 
magnet, pm is the magnetic moment and B 
is the magnetic field.

Solution
The magnitude of deflecting torque (the 
torque which makes the object rotate) 
acting on the bar magnet which will tend 
to align the bar magnet parallel to the 
direction of the uniform magnetic field 


B is 

� �� p Bm sin

The magnitude of restoring torque acting 
on the bar magnet can be written as 

�
�

� I d
dt

2

2

Under equilibrium conditions, both 
magnitude of deflecting torque and 
restoring torque will be equal but act in the 
opposite directions, which means

to calculate torque when the plane of the 
loop is parallel to the direction of magnetic 
field 



B , i.e., n B� �
^

n B� �
^  (unit normal vector is perpendicular 

to magnetic field)

Since the current carrying wire 
experiences a force in a magnetic field, we 
shall tabulate the force experienced by each 
section of the loop and also the torque about 
an axis passing through the centre (see Table 
(A3.1))

\  Net force 
     

F F F F Fnet PQ QR RS SP= + + + = 0

And net torque 

� � � � � �t t t t tnet PQ QR RS SP IabB j= + + + =

Thus, the net force on the rectangular 
loop is zero but net torque on the rectangular 
loop is not zero. Let A be the area of the 
rectangular loop (A = ab)

Then � �tnet ABI j=

If N be the number of turns of rectangular 
loop then 

� �tnet NABI j=

Due to this torque, loop will start to 
rotate (here clockwise) and hence magnetic 
field 



B  is no longer in the plane of the loop. 
Therefore, the above equation is a special 
case.

Note: When the plane of the loop is inclined 
to the direction of the magnetic field 
(i.e., n B� �

/⊥ ), then the torque is given by 
� �τ θnet NABI j= sin . In terms of magnetic 

dipole moment, 




tnet mp B= × . 
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1. The current in circuit 
can be calculated from 
I = K tan θ, where K is 

called reduction factor of tangent 
Galvanometer, where

K
RB

N
H�

2
�


2. Sensitivity measures the change 
in the deflection produced by a unit 
current, mathematically

d
dI

K I
K

�
�

�
�

�
�

�

�
�

1

1
2

2

3. The tangent Galvanometer is most 
sensitive at a deflection of 45o. Generally 
the deflection is taken between 30o  
and 60o.

Note

EXAMPLE A3.2

Calculate the magnetic field at a point P 
which is perpendicular bisector to current 
carrying straight wire as shown in figure. 

dl

N

O P

M

y 2

I
l

A

a

���

�

r

ϕ2

�

ϕ1

I d
dt

p Bm

2

2

�
�� � sin

The negative sign implies that both are in 
opposite directions. The above equation 
can be written as 

d
dt

p B
I
m

2

2

�
�� � sin

This is non-linear second order 
homogeneous differential equation. In 
order to make it linear, we use small angle 
approximation as we did in XI volume 
II (Unit 10 – oscillations, Refer section 
10.4.4) i.e., sin� �� , we get

d
dt

p B
I
m

2

2

�
�� �

This linear second order homogeneous 
differential equation is a Simple Harmonic 
differential equation.  

Comparing this equation with Simple 
Harmonic Motion (SHM) differential 
equation 

d x
dt

x
2

2
2� ��

where ω is the angular frequency of the 
oscillation. Therefore, 

� �2 � � �
p B

I
p B

I
m m

  T I
p Bm

� 2�

  T I
p Bm H

� 2�  in second

where BH is the horizontal component of 
Earth’s magnetic field. 
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dl

N

O P

M

y 2

I
l

A

a

���
θ2

θ1

�

r

ϕ2

ϕ1

�

Solution:
In a right angle triangle OPN, let the angle 

∠ =OPN θ1 which implies, ϕ π θ1 12
= −

and also in a right angle triangle OPM, 

∠ =OPM θ2 which implies, ϕ π θ2 22
= +

Hence, 

�
�B I
a

= −








− +





















µ
π

π θ π θ
4 2 21 2cos cos nn

I
a

n = +( )µ
π

θ θ�

4 1 2sin sin

   
�

�B I
a

= −








− +





















µ
π

π θ π θ
4 2 21 2cos cos nn

I
a

n = +( )µ
π

θ θ�

4 1 2sin sin

EXAMPLE A3.4

Consider a circular wire loop of radius R, 
mass m kept at rest on a rough surface. Let 
I be the current flowing through the loop 
and 



B be the magnetic field acting along 
horizontal as shown in Figure. Estimate 
the current I that should be applied so 
that one edge of the loop is lifted off the 
surface?

Solution

Let the length MN = y and the point P is 
on its perpendicular bisector. Let O be the 
point on the conductor as shown in figure. 

Therefore, OM ON y= =
2

, then 

cosϕ1 2
2

2 2
2

4
4

= = =

+

=
+

adjacent length
hypotenuselength

ON
PN

y

y a

y

y a

          cosϕ1 2
2

2 2
2

4
4

= = =

+

=
+

adjacent length
hypotenuselength

ON
PN

y

y a

y

y a

cos( ) cosπ ϕ ϕ− = = =−2 2

adjacent length
hypotenuselength

OM
PM

OM    
PPM

cos( ) cosπ ϕ ϕ− = = =−2 2

adjacent length
hypotenuselength

OM
PM

OM    
PPM

Using the equation, 

�
�B
I
a

n= −
µ
π

ϕ ϕ
4 1 2(cos cos )

We get 
�

�B
I
a

y

y a
n=

+

µ
π4

2

42 2


For long straight wire, y → ∞,

�
�B I
a

n=
µ
π2
 

The result obtained is same as we obtained 
in equation (3.39). 

EXAMPLE A3.3

Show that for a straight conductor, the 
magnetic field 

�
� �B
I
a

n
I
a

n= −( ) = +( )µ
π

ϕ ϕ µ
π

θ θ
4 41 2 1 2cos cos sin sin 

    
�

� �B I
a

n I
a

n= −( ) = +( )µ
π

ϕ ϕ µ
π

θ θ
4 41 2 1 2cos cos sin sin 
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and is directed inwards. A part of the loop is in 
the magnetic field while the remaining part is 
outside the field as shown in Figure A4.1. 

When the loop is pulled with a constant 
velocity v



 to the right, the area of the portion of 
the loop within the magnetic field will decrease. 
Thus, the flux linked with the loop will also 
decrease. According to Faraday’s law, an electric 
current is induced in the loop which flows in a 
direction so as to oppose the pull of the loop.

Let x be the length of the loop which is still 
within the magnetic field, then its area is lx . 
The magnetic flux linked with the loop is

ΦB = ⋅ =∫
� ��
B dA BA

A

cosθ   = BA

 Here θ= 0  and cos0 1 =
ΦB = Blx  (A4.1)

As this magnetic flux decreases due to 
the movement of the loop, the magnitude of 
the induced emf is given by

ε = =
d
dt

d
dt

BlxBΦ ( )

Here, both B and l are constants. 
Therefore, 

ε = Bl dx
dt

 ε = Blv  (A4.2)

R

B

I

Solution

BI

When the current is passed through the 
loop, the torque is produced. If the torque 
acting on the loop is increased then the loop 
will start to rotate. The loop will start to lift 
if and only if the magnitude of magnetic 
torque due to current applied equals to the 
gravitational torque as shown in Figure 

τ τmagnetic gravitational=

IAB mgR=

But p IA I Rm = = ( )π 2

πIR B mgR2 =

⇒ =I mg
RBπ

The current estimated using this equation 
should be applied so that one edge of loop 
is lifted of the surface.

A4.1
MOTIONAL EMF FROM 
FARADAY’S LAW

Let us consider a rectangular conducting 
loop of width l  in a uniform magnetic field B

��
 

which is perpendicular to the plane of the loop 

��(�r, Inwards)
�

�l

i

F1

�

�
F3

�
F

�
F2

x

v

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × ×

Figure A4.1 Motional emf from Faraday’s law
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where Xm  is the maximum value of x t( ),  
ω the angular frequency and ϕ the phase 
constant.

Similarly, the electromagnetic energy of 
the LC system is given by

U Li
C
q= + 





1

2

1

2

12 2  = constant (A4.7)

Differentiating U with respect to time, we get

dU
dt

L i di
dt C

q dq
dt

= 





+ 





=1

2
2

1

2
2 0

or L d q
dt C

q
2

2

1
0+ =  (A4.8)

since i dq
dt
and di

dt
d q
dt

= =
2

2

The general solution of equation (A4.8) 
is of the form

q t Q tm( )= +( )cos ω f  (A4.9)

where Qm  is the maximum value of q t( ),  
ω the angular frequency and ϕ the phase 
constant.

A5.1
PROPERTIES OF 
ELECTROMAGNETIC WAVES

 •  The energy density (energy per 
unit volume) associated with an 
electromagnetic wave propagating in 
vacuum or free space is 

   u E B= +
1
2

1
2

2 2ε
µ



 

where v dx
dt

=  is the velocity of the loop. 

This emf is known as motional emf since 
it is produced due to the movement of the 
loop in the magnetic field.

From Lenz’s law, it is found that the 
induced current flows in clockwise direction. 
If R is the resistance of the loop, then the 
induced current is given by

i
R

=
ε  i Bl

R
=

v  (A4.3)

A4.2
ANALOGIES BETWEEN 
LC OSCILLATIONS AND 
SIMPLE HARMONIC 
OSCILLATIONS

Quantitative treatment

The mechanical energy of the spring-
mass system is given by 

E mv k x= +
1
2

1
2

2 2  (A4.4)

The energy E remains constant for 
varying values of x and v. Differentiating E 
with respect to time, we get

dE
dt

m v dv
dt

k x dx
dt

= 





+ 





=1

2
2

1

2
2 0

or m d x
dt

kx
2

2
0+ =  (A4.5)

since dx
dt

v and dv
dt

d x
dt

= =
2

2

This is the differential equation of the 
oscillations of the spring-mass system. The 
general solution of equation (4.68) is of the form

x t X tm( ) cos= +( )ω f  (A4.6)
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   where, 1
2

2ε


E uE=  is the energy density 

in an electric field  and 1
2 0

2

µ
B uB=  is 

the energy density in a magnetic field.

 Since,  E = Bc ⇒ uB = uE.

 •  The energy density of the 
electromagnetic wave is 

 u E B= =ε
µ0

2

0

21

 •  The average energy density 
for electromagnetic wave, 

u E B= =
1
2

1
2

12 2ε
µ



. 

 •  The energy crossing per unit area 
per unit time and perpendicular 
to the direction of propagation of 
electromagnetic wave is called the 
intensity. 

             Intensity,  = =
Energy
speed

U
c

. or

             

I =
×

total electromagneticenergy (U)
Surfacearea(A) time(t)

=
Powerr(P)

Surfacearea(A)
   

For a point source,   

For a line source, 

For a plane source, I is independent of r

Note

  •  Like other waves, electromagnetic 
waves also carry energy and 
momentum. For the electromagnetic 
wave of energy U propagating with 
speed c has linear momentum which 
is given by p = =

Energy
speed

U
c

. The force 

exerted by an electromagnetic wave 

on unit area of a surface is called 
radiation pressure.

 •  If the electromagnetic wave incident 
on a material surface is completely 
absorbed, then the energy delivered 
is U and momentum imparted on the 

surface is p U
c

= . 

 •  If the incident electromagnetic wave 
of energy U is totally reflected from 
the surface, then the momentum 

delivered to the surface is 

∆p U
c

U
c

U
c

= − −








= 2 .  

 •  The rate of flow of energy crossing a 
unit area is known as Poynting vector 
for electromagnetic waves, which is 
� � � � �

�
�S E B c E B= ×( )= ×( )1 2

µ
ε . The unit 

for Poynting vector is W m–2. The 

Poynting vector at any point gives the 
direction of energy transport from 
that point. 
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