TEST

DATABASES Time: 60 min.

- 1. Which of the following are used in DBMS files?
 - (i) Data dictionary
- (ii) DML
- (iii) Query language
- (iv) Transaction log
- (A) (i) and (ii)
- (B) (ii) and (iii)
- (C) (iii) and (iv)
- (D) (i) and (iv)
- **2.** Which among the following is not a problem of file management system?
 - (A) Data redundancy
 - (B) Lack of data independence
 - (C) Program independence
 - (D) None of these
- 3. A transparent DBMS
 - (A) cannot hide sensitive information from users
 - (B) keeps its logical structure hidden from users
 - (C) keeps its physical structure hidden from users
 - (D) All of the above
- 4. If the field size is too small, for the longest piece of data to be entered.
 - (A) database program will be freezed
 - (B) field will automatically expand
 - (C) part of the data will be cut off
 - (D) All of the above
- **5.** Which of the following functional dependencies are satisfied by the instance from the below relation?

Α	В	С
1	7	3
1	9	5
1	11	5
5	3	3

- (A) $AB \rightarrow C$ and $C \rightarrow B$
- (B) $BC \rightarrow A$ and $B \rightarrow C$
- (C) $BC \rightarrow A$ and $A \rightarrow C$
- (D) $AC \rightarrow B$ and $B \rightarrow A$
- **6.** Let E_1 and E_2 be two entities in an E/R diagram with single-valued attributes, R_1 and R_2 are two relationships between E_1 and E_2 , R_1 is one to many R_2 is many-to-one. R_1 and R_2 do not have any attributes of their own. What is the minimum number of tables required to represent this situation in the relation model?
 - (A) 2

(B) 3

(C) 4

- (D) 5
- 7. Which of the following is true about DBMS?
 - (i) Low-level DMLs are record-at-a time
 - (ii) High-level DMLs are set oriented or set-at-a time
 - (iii) Query in high-level DML specify which data to retrieve rather than how.
 - (iv) When used as standalone, DML is called 'host language'

- (A) (i) only
- (B) (i) and (iii)
- (C) (i), (ii) and (iii)
- (D) (iii) and (iv)
- **8.** In which of the following, the structure of data files is stored?
 - (A) Metadata
- (B) Database catalog
- (C) Database schema
- (D) Data model
- 9. A schedule is a collection of
 - (A) Data models
- (B) Transactions
- (C) Schemas
- (D) Tables
- **10.** Select from the following which matches the term 'Impedance mismatch problem':
 - (A) In compatibility of storage and data structure
 - (B) Mismatch in user authentication
 - (C) File structure mismatching
 - (D) None of these
- 11. Which of the following is not a/an integrity constraint?
 - (A) Entity integrity
 - (B) Candidate key constraint
 - (C) Business rules
 - (D) None of the above
- **12.** Select from the following which is concerned with 'Query Optimizer':
 - (A) Extracts DML commands from an application program in a high-level language
 - (B) Parsing and analyzing interactive query
 - (C) Rearrangement and reordering of operations and elimination of redundancies
 - (D) Performance monitoring
- **13.** Which of the following does not belong to database model?
 - (A) Relational Model
- (B) Distributed Model
- (C) Hierarchical Model
- (D) Network Model
- **14.** What is the correct sequence of database design process?
 - (i) Create conceptual schema
 - (ii) Data model mapping
 - (iii) Requirement collection and analysis
 - (iv) Physical design
 - (A) $iii \rightarrow i \rightarrow ii \rightarrow iv$
 - (B) $iii \rightarrow ii \rightarrow i \rightarrow iv$
 - (C) $i \rightarrow ii \rightarrow iii \rightarrow iv$
 - (D) $i \rightarrow iii \rightarrow ii \rightarrow iv$
- **15.** Consider the following schema definitions Employee {Name, SSN, Address, DNo}

Department {DName, DNumber, Manager, SSN}

Which among the following expressions represent the query $\Pi_{\text{name, address}}(\sigma_{\text{Dname = 'Res'}}, \land_{\text{DNumber = DNo}}$ (Department $\triangleright \triangleleft$ Employee)?

- (A) Retrieve the name and address of employees who work for the project no 'Dno'
- (B) Retrieve the name and address of all employees who control the 'Res' department.
- (C) Retrieve the name and address of all employees who work for the 'Res' department.
- (D) None of these
- **16.** Select from the following which closely resembles the concept 'Degree of a relationship':
 - (A) Number of entities participating in a relation
 - (B) Number of entity types participating in a relation
 - (C) Number of strong entity types in a relation
 - (D) Number of weak entity types in a relation
- 17. Consider the following statements in a database:
 - (i) No primary key value can be NULL
 - (ii) A tuple in one relation which refers to another relation must refer to an existing tuple in that relation
 - (iii) The value of x determines the value of y in all states of a relation, where x and y are two attributes of the relation Which of the following combinations matches the given statements in order?
 - (A) Referential integrity, functional dependency, entity integrity.
 - (B) Functional dependency, entity integrity, referential integrity
 - (C) Entity integrity, functional dependency, referential integrity.
 - (D) Entity integrity, referential integrity, functional dependency
- **18.** Consider the following relation schemas:

Works (emp_name, comp_name, salary)

Livesin (emp_name, street, city)

Location (comp_name, city)

Manager (manager_name)

What is returned by the following relational algebra expression

$$\pi_{\text{emp_name}}(\sigma_{\text{comp-name}=\text{Time}\land\text{Works.emp_name}=\text{live}\,\text{sin.emp_name}})$$

(Works ⋈ Livesin)

- (A) Names of all employees who work for TIME
- (B) Names of all employees of TIME who lives in the same city
- (C) Names of people who live in the same city
- (D) None of these
- 19. Consider the following SQL query:

Select distinct $a_1, a_2, ..., a_n$ from $r_1, r_2...r_m$ where P This query is equivalent to one of the following relational algebra expression:

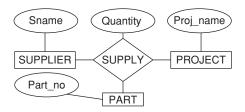
(A)
$$\pi_{a_1, a_2 \dots a_n} \sigma_P(r_1 \times r_2 \times \dots \times r_m)$$

(B)
$$\pi_{a_1,a_2,...a_n} \sigma_P(r_1 r_2 \times \cdots \times r_m)$$

(C)
$$\pi_{a_1, a_2 \dots a_n} \sigma_P(r_1 \cup r_2 \cup \times \dots \times \cup r_m)$$

(D)
$$\pi_{q_1,q_2,q} \sigma_p(r_1r_2 \times ... \times r_m)$$

- **20.** Let $R_1(A, B, C)$ and $R_2(D, E)$ be two relation schemas with primary keys A and D and C be a foreign key in R_1 referring to R_2 . Suppose there is no violation of the above referential integrity constraint in the instances r_1 and r_2 , which of the following relational algebra expression would necessarily produce an empty relation?
 - (A) $\pi_D(r_2) \pi_C(r_1)$
 - (B) $\pi_{C}(r_{1}) \pi_{E}(r_{2})$
 - (C) $\pi_D(r_1) \bowtie (r_2) \pi_B(r_1)$
 - (D) $\pi_{C}(r_1 \bowtie_{C=E} r_2)$
- **21.** Let r be an instance for the schema R = (A, B, C, D). Let $r_1 = \pi_{A, B, C}(r)r_2 = \pi_{A, D}(r)$ and $S = r_1 \bowtie r_2$. Also given that the decomposition of r into r_1 and r_2 is lossy, which of the following is true?
 - (A) $S \subset r$
- (B) $r \cup s = r$
- (C) $r \subset s$
- (D) $r \bowtie s = s$
- **22.** Which of the following is/are logical database structures?
 - (A) Network
- (B) Tree
- (C) Chain
- (D) All of the above
- **23.** A relational database management system manages data in more than one file at a time by using which of the following combinations?
 - (A) Tables and tuples
 - (B) Relations and tuples
 - (C) Tables and Relations
 - (D) Attributes and tuples
- **24.** Let Emp = (Name, ID, ADDRESS, PHONE, SPOUSE, LIVINGAT) be a relation scheme with following FDs, which one of the following is a key


 $ADDRESS \rightarrow Phone$

 $SPOUSE \rightarrow NAME$

SPOUSE, ADDRESS \rightarrow PHONE

 $NAME \rightarrow ID$

- (A) ADDRESS, PHONE
- (B) SPOUSE, ADDRESS
- (C) NAME, SPOUSE
- (D) NAME, ADDRESS
- **25.** Consider the following E-R diagram

Select the most appropriate statement from the following for the above ER diagram:

4.98 | Unit 4 • Databases

- (A) Represents a ternary relationship
- (B) Represents a binary relationship
- (C) Represents a ternary relationship with instances of the form (s, j, p)
- (D) Represents 1 to many relationships
- **26.** If two relations R_1 and R_2 are such that they are of the same degree and domain of the corresponding fields are also the same, then which one of the following is true about R_1 and R_2 ?
 - (A) $R_1 \subset R_2$
 - (B) $R_1 \cup R_2 = R_2 \cup R_1$
 - (C) R_1 and R_2 are union compatible
 - (D) None of these

Common data questions for 27 and 28: Let Employee and Guests be two relations with attributes (id, mobl_no, name, address) and (id, mob_no, comps_working, shifts) Relations respectively {id, mob_no} is the key for both.

- 27. Which of the following queries are equivalent?
 - (i) π_{id} (Employee \bowtie Guests)
 - (ii) π_{id} (Employee) $\bowtie \pi_{id}$ (Guests)
 - (iii) π_{id} {(Employee–Guest) \cap Guest–Employee)}
 - (iv) $\pi_{id} \{ \pi_{id \text{ mob}} (\text{Employee}) \cap \pi_{id \text{ mob}} (\text{Guest}) \}$
 - (A) (ii) and (iii)
- (B) (ii), (iii) and (iv)
- (C) (i), (ii) and (iv)
- (D) (ii) and (iv) only

- **28.** What does the following relational algebra expression represent?
 - $\pi_{_{\rm id}} \, (\, \, \pi_{_{\rm id}, \, \, {\rm mob_no}}({\rm Employee\text{--}Guests}))$
 - (A) Id of all employees working with the company
 - (B) Id of all permanent employees
 - (C) Id of part time employees
 - (D) None of these

Common data for questions 29 and 30:

29. Let R_1 and R_2 be two relations with attributes a_1 and a_2 . P_1 and P_2 be two predicates.

Select the expression from the following which is wrong:

- (A) $\sigma_{R_1}(\sigma_{R_1}(R_1)) \rightarrow \sigma_{R_2}(\sigma_{R_2}(R_1))$
- (B) $\sigma_{P_1}(\pi_{a_1}(R_1)) \rightarrow \pi(\sigma_{a_1}(\sigma_{P_1}(R_1)))$
- (C) $\sigma_{R_1}(R_1 \cup R_2) \rightarrow \sigma_{R_1}(R_1) \cup \sigma_{R_2}(R_2)$
- (D) $\pi_{a_2}(\sigma_{a_1}(R_1)) \to \sigma_{R_1}(\pi_{a_2}(R_1))$
- **30.** Select from the following corresponding TRC for the wrong expression in the above question:
 - (A) $\{t/\exists u, R_1(t[P_1]) = R_2(u[P_1])\}$
 - (B) $\{t/ \forall u, R_1(t[P_1]) = R_1(u[P_1])\}$
 - (C) $\{t/\exists u, R_1(t[P_1]) \neq R_2(u([P_1]))\}$
 - (D) $\{t/\square(t\in R_1)\}$

Answer Keys										
11. B	12. C	13. B	14. A	15. C	16. A	17. D	18. C	19. A	20. A	
21. C	22. D	23. C	24. B	25. C	26. C	27. C	28. B	29. A	30. B	