

MAGNETIC FIELD

Magnetic field is the region surrounding a moving charge in which its magnetic effects are perceptible on another moving charge (electric current).

BIOT-SAVART LAW

Biot-Savart law gives the magnetic induction due to an infinitesimal current element. According to 'Biot-Savart Law', the magnetic field induction dB at P due to the current element dI is given by,

$$\overrightarrow{dB} = k \frac{i(\overrightarrow{dl} \times \overrightarrow{r})}{r^3}$$

FIELD DUE TO A STRAIGHT CURRENT CARRYING WIRE

1 When the wire is of finite length

At any point P

P is on perpendicular Bi-sector

When the point lies along the length of wire (but not on it)

$$\overrightarrow{B} = \int_{A}^{B} d\overrightarrow{B} = 0$$

2 When the wire is of infinite length

MAGNETIC FIELD AT AN AXIAL POINT OF A CIRCULAR COIL

FIELD AT THE CENTRE OF A CURRENT ARC

MAGNETIC FORCE DUE TO CHARGE PARTICLES

Charge q moving with velocity \vec{v} , in a magnetic field has magnetic force $\vec{F} = \vec{q} \cdot (\vec{v} \times \vec{B})$

CHARGED PARTICLE GIVEN VELOCITY PERPENDICULAR TO THE FIELD

The particle will move on a circular path.

$$\frac{mv^2}{r} = qvB \Rightarrow r = \frac{mv}{qB}$$

Time period

$$T = \frac{2\pi r}{v} = \frac{2\pi m}{qB}$$

Frequency

$$v = \frac{1}{T} = \frac{qB}{2\pi m}$$

CHARGED PARTICLE IS MOVING AT AN ANGLE TO THE FIELD

 $v_{II} = v \cos \theta$ and $v_{I} = v \sin \theta$

The radius of path is,
$$r = \frac{mv_1}{qB} = \frac{mv \sin \theta}{qB}$$
, Time periods

Time period (T) =
$$\frac{2\pi r}{v_L} = \frac{2\pi m}{qB}$$

Frquency (f) =
$$\frac{qB}{2\pi m}$$

MOTION OF CHARGED PARTICLE IN COMBINED ELECTRIC & MAGNETIC FIELD

When the moving charged particle is subjected simultaneously to both electric field \vec{E} and magnetic field \vec{B} , the moving charged particle will experience electric force $\vec{F}_e = \vec{q}\vec{E}$ and magnetic force $\vec{F}_m = \vec{q}(\vec{v} \times \vec{B})$

$$\vec{F} = \vec{qE} + \vec{q(v \times B)}$$

which is 'Lorentz force equation'.