## **CGPET 2011**

## **Solved Paper**

## **Question 1**

If in expression  $X = 3Y^2$ , the dimensions of X and Z are same as the dimensions of capacity and magnetic field respectively, the dimensional formula of Y is

**Options:** 

- A.  $[M^{-3}L^{-2}T^{-4}A^{-1}]$
- B. [ML<sup>-2</sup>T<sup>4</sup>]
- C. [M<sup>-3</sup>L<sup>-2</sup>T<sup>4</sup>A<sup>4</sup>]
- D.  $[M^{-3}L^{-2}T^8A^4]$

#### Answer: D

### Solution:

### Solution: Given, X = 3YZ<sup>2</sup> ∴ Dimensions of Y = $\frac{[X]}{[3Z^2]}$ = $\frac{[M^{-1}L^{-2}T^4A^2]}{[M^{-2}A^{-1}]^2}$ \_ $[M^{-1}L^{-2}T^4A^2]$

 $= \frac{[M^{2}T^{-4}A^{-2}]}{[M^{-3}L^{-2}T^{8}A^{4}]}$ 

\_\_\_\_\_

## **Question 2**

If *L*, *C*, *R* are respectively the inductance, capacitance and resistance, the quantities of dimensions same as of frequency are

#### **Options:**

A.  $\frac{1}{\sqrt{LC}}$ ,  $\frac{R}{L}$  and  $\frac{1}{RC}$ B.  $\sqrt{LC}$ ,  $\frac{L}{R}$  and RC C.  $\sqrt{\frac{L}{C}}$ , LR and  $\frac{C}{R}$ 

D. 
$$\sqrt{\frac{C}{L}}$$
,  $\frac{1}{LR}$  and  $\frac{R}{C}$ 

#### Answer: A

### Solution:

Solution: Dimension of  $\frac{1}{\sqrt{LC}}$ =  $\frac{1}{[ML^2T^{-2}A^{-2}]^{1/2}[M^{-1}L^{-2}T^4A^2]^{1/2}}$ =  $\frac{1}{[T]} = [T^{-1}]$ Dimension of  $\frac{R}{L} = \frac{[ML^2T^{-3}A^{-2}]}{[ML^2T^{-2}A^{-2}]} = [T^{-1}]$ Dimension of  $\frac{1}{RC}$ =  $\frac{1}{[ML^2T^{-3}A^{-2}][M^{-1}L^{-2}T^4A^2]} = [T^{-1}]$ Dimension of frequency =  $[T^{-1}]$ Hence  $\frac{1}{\sqrt{LC}}$ ,  $\frac{R}{L}$  and  $\frac{1}{RC}$  have the same dimension as frequency.

## **Question 3**

### The SI unit of thermal capacity is

#### **Options:**

A. Joule

B. Joule/kilogramme

C. Joule/kelvin

D. Joule/kelvin kilogramme

Answer: C

Solution:

**Solution:** The SI unit of thermal capacity is joule/kelvin.

\_\_\_\_\_

## **Question 4**

An object travels in a straight line one-third of the total distance with velocity  $\vee_1$ , second one-third distance with velocity  $\vee_2$  and the rest one-third distance with velocity  $\vee_3$ . The average velocity of object will be

A. 
$$\frac{v_{1} + v_{2} + v_{3}}{3}$$
  
B. 
$$\frac{v_{1}v_{2} + v_{2}v_{3} + v_{3}v_{1}}{3v_{1}v_{2}v_{3}}$$
  
C. 
$$\sqrt{v_{1}v_{2}v_{3}}$$
  
D. 
$$\frac{3v_{1}v_{2}v_{3}}{v_{1}v_{2} + v_{2}v_{3} + v_{3}v_{1}}$$

#### Answer: D

#### **Solution**:

Solution:

An object travels in a straight line one-third of the total distance with velocity  $v_1$ . Second one third distance with velocity  $v_2$  and the rest one third distance with velocity  $v_3$ . The average velocity  $3v_1v_2v_3$ 

 $v_{av} = \frac{v_1 v_2 v_3}{v_1 v_2 + v_2 v_3 + v_3 v_1}$ 

## **Question** 5

# A ball is projected at an angle $\theta$ upwards from horizontal. The true statement is

A. at each point of flight vertical component of momentum remains constant

B. at each point of flight horizontal component of momentum remains constant

C. at the highest point of flight, potential energy is minimum

D. at the highest point of flight, kinetic energy is zero

\_\_\_\_\_

Answer: B

### Solution:

#### Solution:

A ball is projected at an angle theta upward from horizontal, then at each point of flight horizontal component of momentum remain constant.

\_\_\_\_\_

## **Question 6**

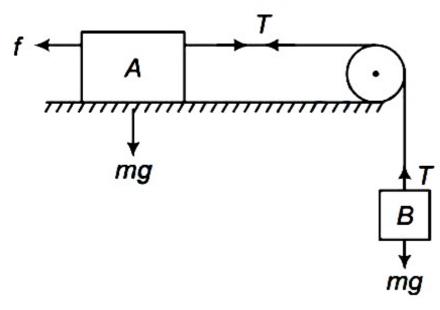
A packet of mass m is dropped from an aeroplane moving at a height h above the ground with a horizontal velocity u. If g is the acceleration due to gravity, the kinetic energy possessed by the packet on reaching the ground will be

#### **Options:**

A. mgh

- B.  $\frac{1}{2}$ mu<sup>2</sup> + mgh
- C.  $\frac{1}{2}mu^2 mgh$
- D.  $mgh \frac{1}{2}mu^2$

Answer: A


### Solution:

Solution:

\_\_\_\_\_

## **Question** 7

In the diagram below, a block A of mass 10 kg rests on a horizontal table. A massless string attached with it passes over a frictionless pulley attached at the end of table with another block B at its free end. If coefficient of friction between the block A and table surface is 0.2, the minimum mass of block B needed to start motion in block A is



**Options:** 

- A. 2 kg
- B. 0.2 kg
- C. 5 kg
- D. 10 kg
- Answer: A

### Solution:

#### Solution:

Coefficient of friction  $\mu_s = \frac{m_B}{m_A}$   $0.2 = \frac{m_B}{10}$   $m_B = 0.2 \times 10$   $m_B = 2.0 \text{ kg}$ Therefore the minimum mass of block B needed to start motion in block A is 2.0 kg.

\_\_\_\_\_

## **Question 8**

## The fundamental Newton's law of motion is

#### **Options:**

A. 
$$F = ma$$

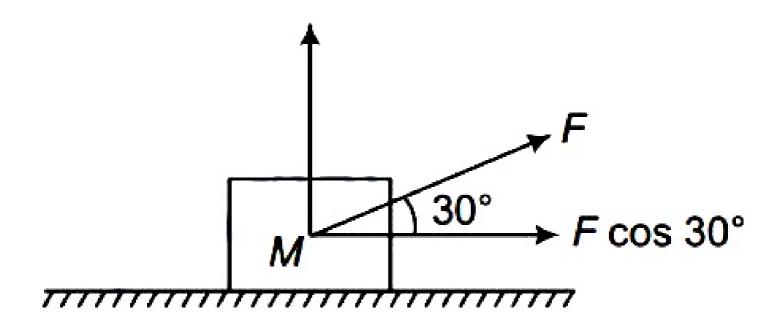
B. F = 0 if a = 0

C. 
$$F_{12} = -F_{21}$$

D.  $F = \frac{d}{dt}(mv)$ 

#### Answer: D

### Solution:


#### Solution:

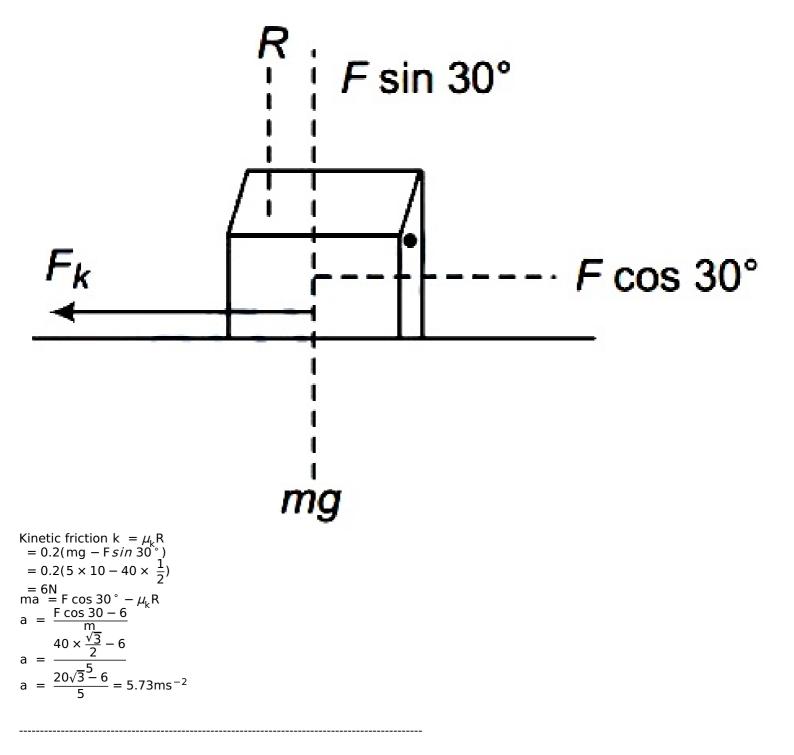
Newton's second law  $F = \frac{d}{dt}(m \nu)$ This is called fundamental Newton's law of motion because Newton's first and third law can be generated by this.

\_\_\_\_\_

## **Question 9**

In the diagram below, a body of mass M = 5 kg placed on a horizontal surface is pulled by a force F = 40 N in a direction making an angle 30 ° with the horizontal. If  $g = 10 \text{ms}^{-2}$  and coefficient of friction between the body and surface is 0.2, the acceleration acquired by the body will be




### **Options:**

- A. 5.75ms<sup>-2</sup>
- B. 8.0ms<sup>-2</sup>
- C. 3.17ms<sup>-2</sup>
- D. 10.0ms<sup>-2</sup>

### Answer: A

## Solution:

Solution:

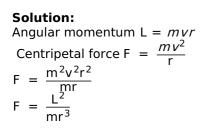


A particle of mass m is moving in a circular path of radius r with angular momentum L. The centripetal force acting on the particle is

### **Options:**

A. L / mr<sup>2</sup>

B.  $L^2/mr^2$ 


C.  $L^{2}/mr^{3}$ 

D.  $L^2 / m^2 r^2$ 

### Answer: C

U

## Solution:



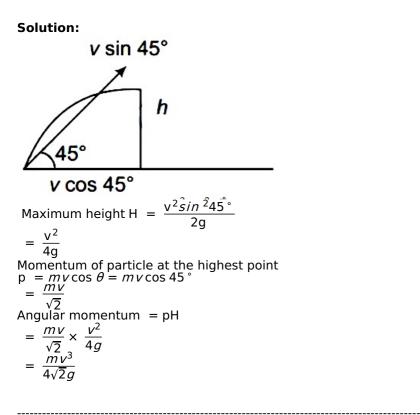
#### \_\_\_\_\_

## **Question 11**

A particle of mass m is projected with velocity  $\lor$  at an angle 45 ° with the horizontal. The magnitude of angular momentum of the particle about the point of projection, at highest point of flight is

#### **Options:**

A.  $mv^2/2g$ 


B.  $mv^3/2\sqrt{g}$ 

C.  $mv^3/4\sqrt{2}g$ 

D. Zero

**Answer: C** 

#### **Solution:**



On removing the concentric circular part of radius r from a disc of radius R, an annular disc of mass M is obtained. The moment of inertia of this annular disc about an axis normal to its plane and passing through its centre of gravity is

- A.  $\frac{1}{2}M(R^2 + r^2)$
- B.  $\frac{1}{2}M(R^2 r^2)$
- C.  $\frac{1}{2}M(R^4 + r^4)$
- D.  $\frac{1}{2}M(R^4 r^4)$

Answer: A

## Solution:

### Solution:

The moment of inertia of annular disc about an axis normal to its plane and passing through its centre of gravity is  $\frac{1}{2}m(R^2 + r^2)$ .

\_\_\_\_\_

## **Question 13**

A body is moved from rest in a straight line by means of a machine supplying constant power. The distance *S* moved by the body in time t is proportional to

| Options:                   |  |  |
|----------------------------|--|--|
| A. t <sup>1/4</sup>        |  |  |
| B. <i>t</i> <sup>3/4</sup> |  |  |
| C. t <sup>3/2</sup>        |  |  |
| D. t <sup>2</sup>          |  |  |
| Answer: C                  |  |  |
| Solution:                  |  |  |
|                            |  |  |
| Solution:                  |  |  |

Power = Fv = P = constant

or  $m \frac{dv}{dt}v = P$  $\Rightarrow \int v dv = \int \frac{P}{m} dt$   $\Rightarrow \frac{v^2}{2} = \frac{P}{m}t + A$   $\Rightarrow v = 0 \text{ at } t = 0, \text{ so } A = 0$   $\therefore v = \left(\frac{2Pt}{m}\right)^{1/2}$   $\Rightarrow S = \left(\frac{2P}{m}\right)^{1/2} \cdot \frac{2}{3}t^{3/2} + B$   $\therefore t = 0, s = 0, so, B = 0$   $S = \left(\frac{8P}{9m}\right)^{1/2}t^{3/2}$   $S \propto t^{3/2}$ 

## **Question 14**

A body of mass 5.0 kg is moving with linear momentum  $10 \text{ kg} - \text{ms}^{-1}$ . A force of 0.2N is applied on the body for 10 s in the direction of motion of body. The increase in kinetic energy of body will be

#### **Options:**

A. 2.8J

B. 3.2J

C. 3.6J

D. 4.4J

Answer: D

### **Solution:**

```
Solution:

Mass of body m = 5.0 kg

P = 10 kg - ms<sup>-1</sup>

F = 0.2N

and t = 10 s

\therefore P = mu

\therefore u = \frac{P}{m} = \frac{10}{5} = 2m / s

v = u + at

v = u + \frac{F}{m}t (\because a = \frac{F}{m})

v = 2 + \frac{0.2}{5} \times 10 = 2.4

The increase in kinetic energy

= \frac{1}{2}m(v^2 - u^2)

= \frac{1}{2} \times 5[(2.4)^2 - (2)^2]

= \frac{1}{2} \times 5[5.76 - 4] = 4.4]
```

-----

## **Question 15**

Work needed to move a particle of mass m from the surface of a solid sphere of mass M and radius R to its centre will be

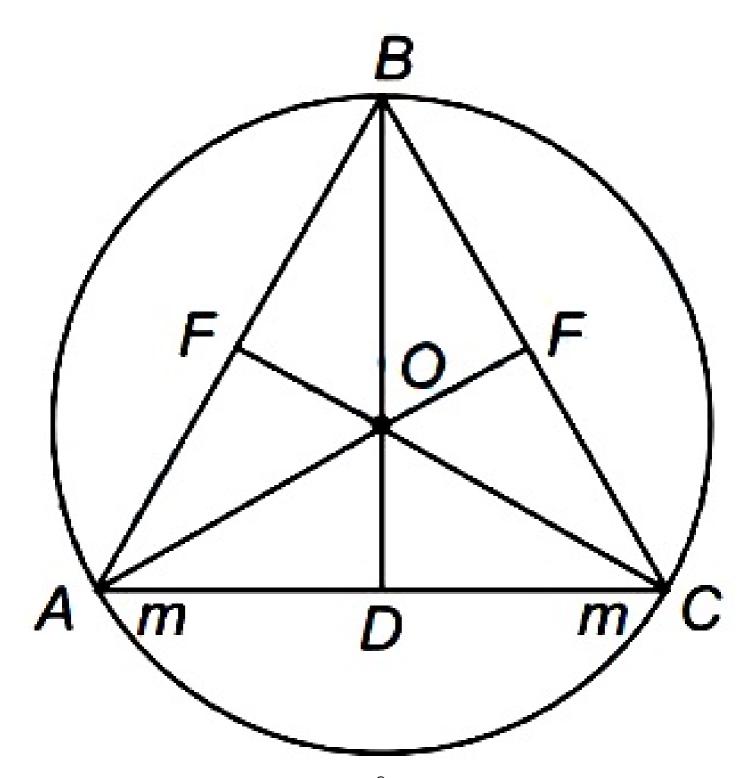
#### **Options:**

- A.  $\frac{GMm}{R}$
- B.  $\frac{2 \text{ GMm}}{\text{R}}$
- C.  $\frac{GMm}{3R}$
- D.  $\frac{GMm}{2R}$

#### **Answer:** A

### Solution:

#### Solution:


Work done against the gravitational force by particle of mass *m* is  $\frac{\text{GMm}}{R}$  where *M* is the mass of sphere and *R* is the radius of sphere.

\_\_\_\_\_

## **Question 16**

A particle of mass *m* is placed at each of the three corners of an equilateral triangle of side a. The particles revolve in circular orbits under the influence of mutual gravitational force such that they always lie at the vertices of the triangle. The velocity of each particle is





As the gravitational force between any two particles is  $F = \frac{Gmm}{a^2}$ , the resultant force on each.

Particle due to the other two  

$$F_R = \sqrt{F^2 + F^2} + 2F^2 \cos 60^\circ$$
  
 $F_R = \sqrt{3}F = \sqrt{3} \frac{G^2}{a^2}$   
 $\therefore \text{ BD} = \frac{\sqrt{AB^2 - AD^2}}{a^2 - (\frac{a}{2})^2} = \frac{\sqrt{3}a}{2}$   
and radius BO = AO = OC =  $\frac{\sqrt{3}a}{2} \times \frac{2}{3} = \frac{a}{\sqrt{3}}$   
 $\frac{mv^2}{r} = \frac{\sqrt{3}Gm^2}{a^2}$   
 $\frac{mv^2}{\sqrt{3}} = \frac{\sqrt{3}G^2}{a^2}$   
 $\Rightarrow v = \sqrt{\frac{Gm}{a}}$ 

# The relationship between Young's modulus Y, bulk modulus K and modulus of rigidity $\eta$ is

**Options:** 

A.  $Y = \frac{9\eta K}{\eta + 3K}$ B.  $Y = 9\eta K(K + 3\eta)$ C.  $\eta = \frac{9YK}{3K + Y}$ D.  $Y = \frac{3\eta K}{9\eta + K}$ 

Answer: A

### Solution:

**Solution:** The relationship between Young's modulus Y, bulb modulus K and modulus of rigidity  $\eta$  is  $Y = \frac{9\eta K}{\eta + 3K}$ 

\_\_\_\_\_

## **Question 18**

**Two soap bubbles of radii 2** mm **and 4** mm **coalesce to form a double bubble. The radius of its internal common interface will be** 

#### **Options:**

A. 2 mm

B. 4 mm

C. 6 mm

D. 3 mm

Answer: B

### Solution:

#### Solution:

The radius of its internal common interface

 $r = \frac{r_1 r_2}{r_1 - r_2} = \frac{2 \times 4}{4 - 2} = \frac{8}{2} = 4 \text{ mm}$ 

The rate of flow of liquid through a capillary tube under a constant pressure difference is *Q*. On doubling the length of tube and reducing the diameter of tube to half, the rate of flow will become

**Options:** 

A.  $\frac{Q}{4}$ B.  $\frac{Q}{8}$ 

C.  $\frac{Q}{32}$ 

D. 16*Q* 

Answer: B

### Solution:

Solution: Rate of flow of liquid  $\therefore Q = \frac{\pi p r^4}{8 \eta 1}$   $\therefore Q' = \frac{\pi p (\frac{r}{2})^4}{8 \eta \times 2 l}$   $Q' = \frac{\pi p r^4}{8 \eta \times 321}$ or  $Q' = \frac{\pi p r^4}{8 \eta 1 \times 32}$ The rate of flow,  $Q' = \frac{Q}{32}$ 

\_\_\_\_\_

## **Question 20**

2 moles of a diatomic gas are mixed with 1 mole of a monoatomic gas. The ratio of two specific heats ( $\gamma = C_p / C_V$ ) of the mixture will be

### **Options:**

A.  $\frac{7}{3}$ B.  $\frac{5}{4}$ 

C.  $\frac{19}{13}$ 

15

D.  $\frac{15}{19}$ 

#### Answer: C

### Solution:

#### Solution:

The ratio of specific heats  $= \frac{C_{\rho}}{C_{V}} = \gamma_{mix}$   $= \frac{\frac{\mu_{1}\gamma_{1}}{\gamma_{1}-1} + \frac{\mu_{2}\gamma_{2}}{\gamma_{2}-1}}{\frac{\mu_{1}}{\gamma_{1}-1} + \frac{\mu_{2}}{\gamma_{2}-1}}$ For diatomic gas  $\gamma_{1} = 7/5$ and for a monoatomic gas  $\gamma_{2} = 5/3$   $\frac{2 \times \frac{7}{5}}{\frac{7}{5}-1} + \frac{1 \times \frac{5}{3}}{(\frac{5}{3}-1)}}{\frac{2}{(\frac{7}{5}-1)} + \frac{1}{(\frac{5}{3}-1)}}$  $= \frac{\frac{7}{1} + \frac{5}{2}}{\frac{10}{2} + \frac{3}{2}} = \frac{19}{13}$ 

## **Question 21**

If work is obtained from 1 cal heat, the amount of work obtained will be (J = 4.18 J / cal)

#### **Options:**

#### A. 4.18J

B. more than 4.18J

C. less than 4.18J

D. Nothing can be said

#### Answer: A

### Solution:

Solution: Work W = JQ =  $4.18 \times 1$ W = 4.18J

------

\_\_\_\_\_

## **Question 22**

An ideal engine is working between temperatures 400K and 300K. It absorbs 600 cal heat from the source. The work obtained per cycle from the engine is

#### **Options:**

A. 630J

- B. 630 cal
- C. 2400 cal
- D. zero

#### **Answer:** A

### Solution:

Solution:  $\frac{W}{Q_1} = 1 - \frac{T_2}{T_1}$   $\frac{W}{600} = 1 - \frac{300}{400}$   $W = 600[\frac{400 - 300}{400}] = \frac{600 \times 100}{400} = 150 \text{ cal}$   $W = 150 \times 4.2 = 630 \text{ J}$ 

#### ------

## **Question 23**

# A particle is executing simple harmonic motion with a frequency f. The frequency of oscillations of its kinetic energy will be

#### **Options:**

A.  $\frac{f}{2}$ 

B. f

- C. 2f
- D. zero

#### Answer: C

### Solution:

```
Solution:

y = a \sin ft

v = \frac{dy}{dt} = af \cos ft

Kinetic energy K = \frac{1}{2}mv^2

= \frac{1}{2}ma^2f^2\cos^2 ft

= \frac{1}{2}ma^2f^2(1 + \cos 2 ft)

Therefore, the frequency of oscillations of its kinetic energy will be 2f.
```

\_\_\_\_\_

The wavelength of light emitted from a star is 4320Å. If radius of star is  $7 \times 10^8$ m and period of its rotational motion is 22 days, the Doppler's displacement will be

| Options:  |  |
|-----------|--|
| A. 0.033Å |  |

B. 0.33Å

C. 3.3Å

D. 33Å

Answer: C

### Solution:

```
Solution:

Doppler's displacement

\Delta \lambda = \lambda \cdot \frac{V}{C}
= \frac{\lambda}{C} \cdot r \times (\frac{2\pi}{T})
= \frac{4320 \times 7 \times 10^8 \times 2 \times 3.14}{3 \times 10^8 \times 22 \times 86400} = 0.033 \text{\AA}
```

------

## **Question 25**

In double slit experiment with sodium light ( $\lambda = 5890$ Å), the angular width of interference fringes is 0.20°. The change in wavelength required to increase the angular width by 10% will be

**Options:** 

A. increase of 589Å

B. decrease of  $589 \text{\AA}$ 

C. increase of 6479Å

D. decrease of 6479Å

Answer: A

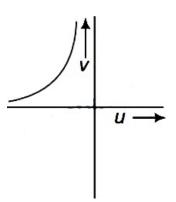
### Solution:

#### Solution:

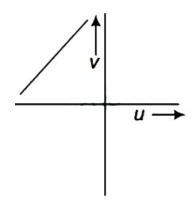
Angular width of fringe  $\theta = \frac{\lambda}{d}$  $\theta \propto \lambda$ 

```
\therefore \quad \frac{\theta_1}{\theta_2} = \frac{\lambda_1}{\lambda_2}
When the angular width is increased by 1%.

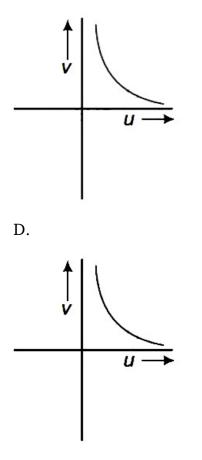
\theta_2 = 0.20 + 0.20 \times \frac{10}{100} = 0.22
\therefore \quad \frac{0.20}{0.22} = \frac{5890}{\lambda_2}
\lambda_2 = \frac{5890 \times 0.22}{0.20}
\lambda = 6479 \text{ Å}
Therefore change in wavelength


\lambda = \lambda_2 - \lambda_1
= 6479 - 5890
= 589 \text{ Å (increase)}
```

In experiment of finding the focal length of a convex lens by two-pin method, the u-v graph obtained by the student will be as


\_\_\_\_\_

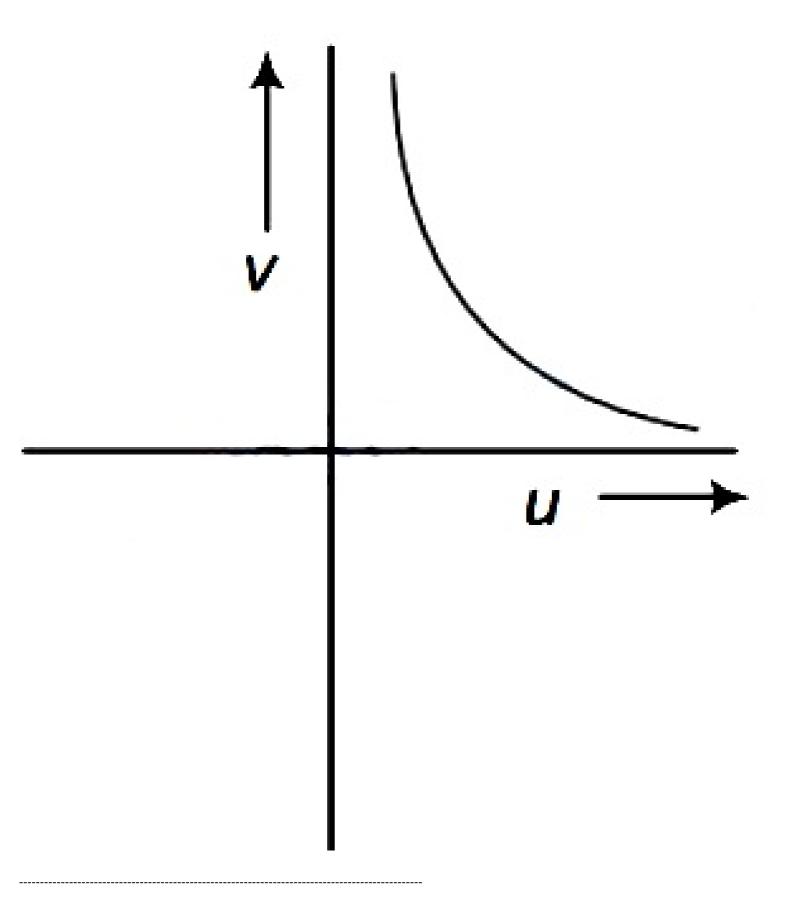
**Options:** 


A.



В.




C.



### Answer: C

## Solution:

**Solution:** When  $u \rightarrow f, v \rightarrow \infty$  and when  $u \rightarrow \infty, v \rightarrow f$ 



For a glass prism of refractive index 1.5, the angle of minimum deviation is equal to the refracting angle of prism. The refracting angle of prism will be

- A. 62 °
- B. 41°
- C. 82 °
- D. 31°

Answer: C

## Solution:

#### Solution:

Refractive index 
$$\mu = \frac{\sin \frac{A + \delta_{m}}{2}}{\sin \frac{A}{2}}$$
  
 $\mu = \frac{\sin \frac{2A}{2}}{\sin \frac{A}{2}} (\because \delta_{m} = A)$   
 $\mu = \frac{\sin A}{\sin \frac{A}{2}}$   
 $1.5 = \frac{2\sin \frac{A}{2} \cdot \cos \frac{A}{2}}{\sin \frac{A}{2}}$   
 $\frac{1.5}{2} = \cos \frac{A}{2}$   
 $\cos \frac{A}{2} = \frac{3}{4}$   
 $\cos \frac{A}{2} = \cos 41.4$   
 $\frac{A}{2} = 41.4$   
 $A = 82.8^{\circ}$ 

\_\_\_\_\_

## **Question 28**

In a compound microscope, length of the tube is 10 cm and focal lengths of objective and eye lens are respectively 0.5 cm and 1.0 cm. The magnifying power of microscope will be nearly

#### **Options:**

A. 5

B. 23

C. 166

D. 444

Answer: D

### Solution:

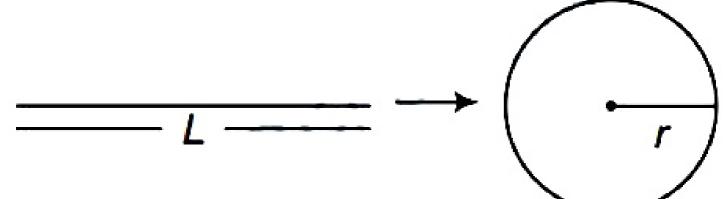
Solution: Given, L = 10 cm

$$\begin{split} &f_0 = 0.5 \, \text{cm and } f_c = 1.0 \, \text{cm} \\ &\text{Magnifying power of microscope} \\ &M_D = \; \frac{L}{f_O} \Big( \frac{D}{f_e} \Big) \\ &M_D = \; \frac{10}{0.5} (\; \frac{25}{1}) = 20(25) = 500 \\ &\text{Here the magnifying power of microscope will be nearly 444} \; . \end{split}$$

\_\_\_\_\_

## **Question 29**

A straight wire carrying current / is bent in form of a circle. If length of wire is L, its magnetic moment will be


#### **Options:**

- A.  $\frac{\text{IL}}{4\pi}$
- B.  $\frac{\mathrm{IL}^2}{4\pi}$
- C.  $\frac{|^2L^2}{4\pi}$
- D.  $\frac{\mathsf{L}\mathsf{I}^2}{4\pi}$

### Answer: D

### Solution:

#### Solution:



When a straight wire is bent in form of circle, Circumference of circle  $= 2\pi r = L$ Area of circle  $A = \pi r^2$ 

$$A = \pi \frac{L^2}{4\pi^2} [\because \gamma = \frac{L}{2\pi}]$$
$$A = \frac{L^2}{4\pi}$$

Magnetic moment M = IA =  $\frac{IL^2}{4\pi}$ 

\_\_\_\_\_

## **Question 30**

### A condenser of capacity C is charged to a potential V. The electric flux passing through a closed surface surrounding the condenser will be

**Options:** 

A.  $\frac{CV}{\varepsilon_0}$ B.  $\frac{2 \text{ CV}}{\varepsilon_0}$ 

C.  $\frac{CV}{2\varepsilon_0}$ 

D. zero

**Answer:** A

### **Solution:**

## Solution: Electric flux, $\varphi = \frac{q}{\varepsilon_0}$ $\varphi = \frac{CV}{\varepsilon_0}$ ( :: q = CV)

\_\_\_\_\_

## **Question 31**

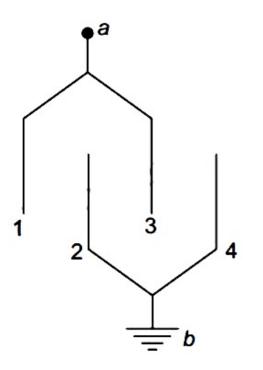
The electric potential at a point is  $V = -5x + 3y + \sqrt{15}z$  volt, where x, y and z are in metres. The magnitude of electric field will be

### **Options:**

A.  $3\sqrt{2}$ Vm<sup>-1</sup>

B.  $4\sqrt{2}$ Vm<sup>-1</sup>

C.  $5\sqrt{2}$ Vm<sup>-1</sup>


D. 7Vm<sup>-1</sup>

**Answer:** A

### **Solution:**

Solution: Electric potential V =  $-5x + 3y + \sqrt{15z}$ Electric field E<sub>x</sub> =  $-\frac{dV}{dx} = -5$  $E_{y} = -\frac{dV}{dy} = -3$   $E_{2} = -\frac{dV}{dz} = -\sqrt{15}$   $E = \frac{\sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}}{\sqrt{(-5)^{2} + (-3)^{2} + (-\sqrt{15})^{2}}}$  E = 7V / m

In the diagram below, area of each plate is A and separation between two consecutive plates is d, which is filled with air. The equivalent capacity between the points a and b is



#### **Options:**

A. 
$$\frac{\varepsilon_0 A}{d}$$
  
B.  $\frac{2\varepsilon_0 A}{d}$   
C.  $\frac{3\varepsilon_0 A}{d}$ 

D. 
$$\frac{4\varepsilon_0 A}{d}$$

#### Answer: C

## Solution:

#### Solution:

Given arrangement is equivalent to combination of three capacitors. Therefore, capacity =  $3C = 3 \frac{\varepsilon_0 A}{d}$ 

## **Question 33**

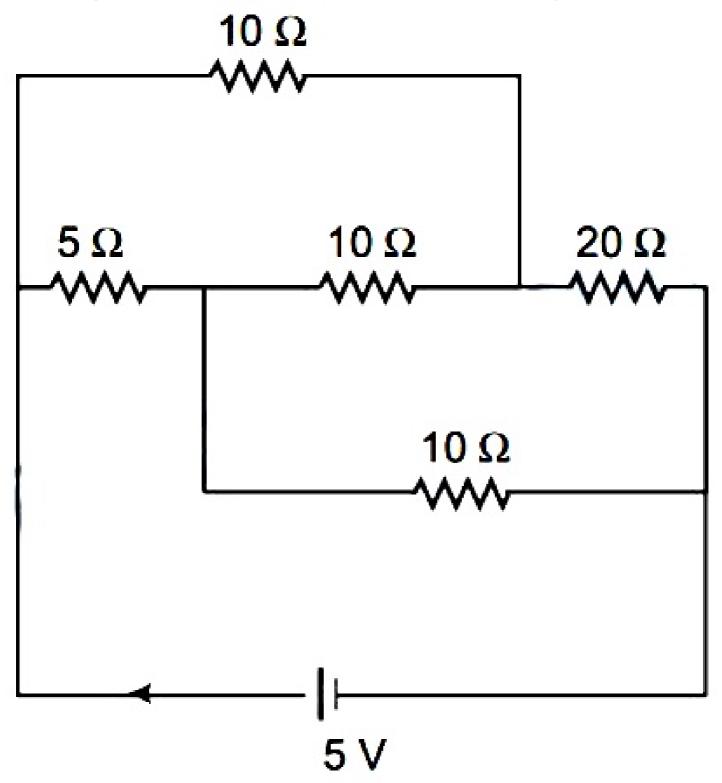
Two wires A and B are of same lengths but different radii made up of copper and iron respectively. They carry same current under the same potential difference. If specific resistance of copper and iron is  $1.7 \times 10^{-8} \Omega$ m and  $1.0 \times 10^{-7} \Omega$ m respectively, the ratio of their radii  $r_B / r_A$  will be

B. 2.4

C. 3.6

D. 4.8

### Answer: B


### Solution:

#### Solution:

Resistance of wire R =  $\frac{\rho I}{A}$  or  $1 = \frac{RA}{\rho}$   $1 = \frac{AV}{\rho I}$  [ $\because$  R =  $\frac{V}{I}$ ] A and B have same length, same current and same potential difference.

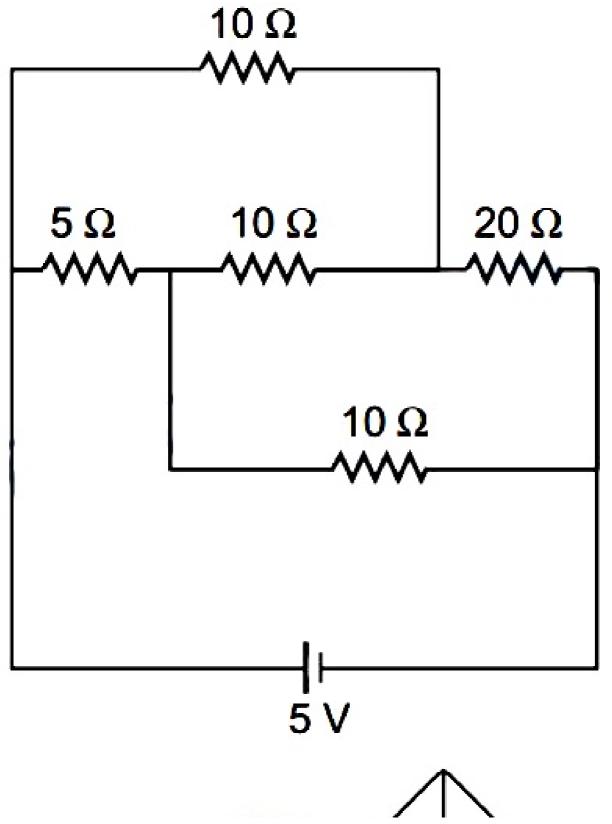
$$\therefore \mathbf{1}_{A} = \mathbf{1}_{B} \frac{A_{1}V}{\tau_{A}I} = \frac{A_{2}V}{\tau_{B}I} \text{or} \frac{\pi r_{A}^{2}}{\tau_{A}} = \frac{\pi r_{B}^{2}}{\tau_{B}} \frac{r_{B}^{2}}{r_{A}^{2}} = \frac{\tau_{B}}{\tau_{A}} = \frac{1.0 \times 10^{-7}}{1.7 \times 10^{-8}} \frac{r_{B}}{r_{A}} = \sqrt{5.88} = 2.4$$

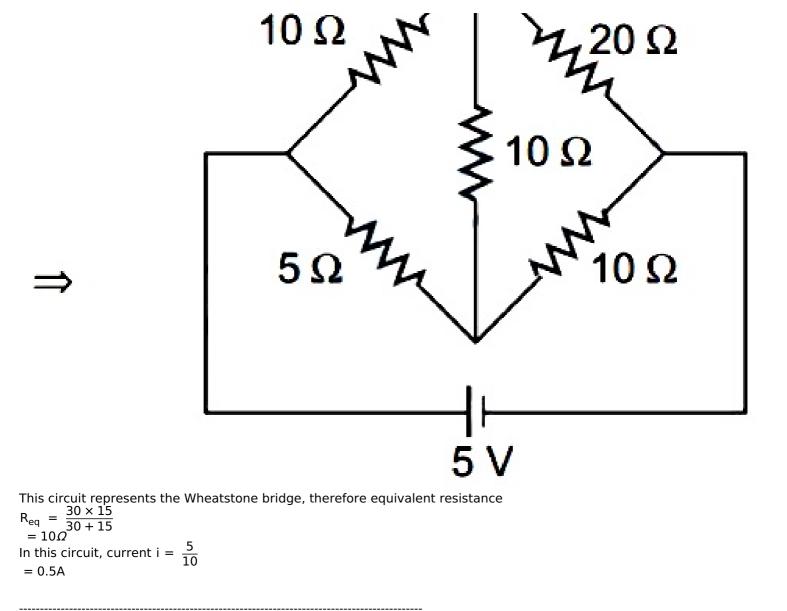
In the diagram below, current / drawn from the battery is



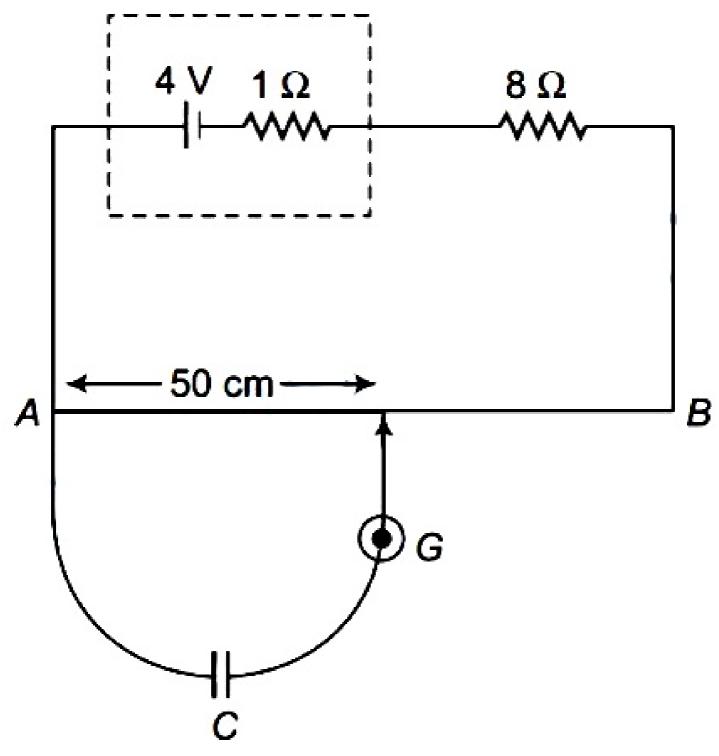
### **Options:**

A. 0.5A


- B. 0.67A
- C. 0.17A


D. None of these

Answer: A


## Solution:

Solution:





In the diagram below, the wire *AB* is of length 100 cm and resistance  $3\Omega$ . The null point is obtained at 50 cm. The emf of cell *C* is



### **Options:**

A. zero

- B. 0.5V
- C. 1.0V
- D. 1.5V
- Answer: B

## Solution:

## Solution: Emf of cell E = $\frac{e}{(R + R_h + r)} \times \frac{R}{L} \times 1$

 $= \frac{4}{(3+8+1)} \times \frac{3}{1} \times 0.5$ E =  $\frac{12 \times 0.5}{12} = 0.5V$ 

-----

## **Question 36**

The current flow in electrolytes is due to motion of

#### **Options:**

- A. only positive ions
- B. only negative ions
- C. free electrons
- D. both positive and negative ions

#### Answer: D

### Solution:

**Solution:** The current flow in electrolytes is due to motion both positive and negative ions.

-----

## **Question 37**

1 kWh is equal to

#### **Options:**

- A.  $3.6 \times 10^{6}$ J
- B.  $3.6 \times 10^4$ J
- C.  $3.6 \times 10^{3}$ J
- D.  $6 \times 10^{-4}$ J

### Answer: A

### Solution:

Solution:

\_\_\_\_\_

## **Question 38**

## An ideal voltmeter has resistance

#### **Options:**

A. zero

B. very low

C. very high

D. infinite

#### Answer: D

### Solution:

**Solution:** An ideal voltmeter has resistance infinite.

-----

## **Question 39**

### The SI unit of magnetic dipole moment is

#### **Options:**

A. Am<sup>-1</sup>

B.  $Am^2$ 

C. mA<sup>-1</sup>*s* 

D. mA<sup>-2</sup>s

Answer: B

Solution:

**Solution:** Magnetic dipole moment = NiA where *i* is current and A is area of coil.  $\therefore$  The SI unit of magnetic moment is Am<sup>2</sup>.

\_\_\_\_\_

## **Question 40**

The emf induced in a coil of area A due to change in magnetic flux in a magnetic field B is given as

# A. $e = -A \cdot \frac{dB}{dt}$ B. $e = -B \cdot \frac{dA}{dt}$ C. $e = -\frac{d}{dt}(B \cdot A)$ D. $e = -\frac{d}{dt}(A \times B)$

#### Answer: B

### Solution:

**Solution:** The emf induced in a coil of area A due to change in magnetic flux in a magnetic field B is given as  $E = -B \frac{dA}{dt}$ 

\_\_\_\_\_

## **Question 41**

### Lenz's law is based on

#### **Options:**

- A. conservation of energy
- B. conservation of momentum
- C. conservation of mass
- D. conservation of charge

Answer: A

### Solution:

**Solution:** Lenz's law is based on conservation of energy.

\_\_\_\_\_

## **Question 42**

# On an AC circuit, the hot wire ammeter reads current **10**A. Its peak value is

#### **Options:**

B. 20A

C. 14.14A

D. 7.07A

Answer: C

## Solution:

Solution:

 $I_{rms} = \frac{I_0}{\sqrt{2}}$  $I_0 = \sqrt{2}I_{rms}$  $= \sqrt{2} \times 10$ = 14.14A

\_\_\_\_\_

## **Question 43**

## In an AC circuit with pure capacitance

#### **Options:**

A. emf leads ahead of current by  $\pi/2$ 

B. current leads ahead of voltage by  $\pi/2$ 

C. current lags behind the voltage by  $\pi$ 

D. voltage lags behind the current by  $\pi$ 

### Answer: B

### Solution:

**Solution:** In an AC circuit with pure capacitance, current leads ahead of voltage by  $\pi/2$ .

#### \_\_\_\_\_

## **Question 44**

Light rays of frequency  $\nu$  are made incident on a substance of threshold frequency  $\nu_0$ . The kinetic energy of photoelectron emitted can be

#### **Options:**

A. hv

B. *hv*<sub>0</sub>

C.  $hv - hv_0$ 

D.  $hv + hv_0$ 

**Answer: C** 

## Solution:

Solution: Kinetic energy of photoelectron  $K_{max} = h(\nu - v_0)$ 

\_\_\_\_\_

## **Question 45**

### The specific charge of electron is

#### **Options:**

A.  $1.76 \times 10^{11}$ Ckg<sup>-1</sup>

B.  $1.6 \times 10^{-19}$ Ckg<sup>-1</sup>

C.  $9.1 \times 10^{-31}$ Ckg<sup>-1</sup>

D.  $1.76 \times 10^{-11}$ Ckg<sup>-1</sup>

Answer: A

## Solution:

Solution:

\_\_\_\_\_

## **Question 46**

The penetrating power of X-rays can be increased by

### **Options:**

- A. increasing the filament current
- B. decreasing the filament current
- C. increasing the potential on anode
- D. decreasing the potential on anode

## Answer: C

## Solution:

The penetrating power of X-rays can be increased by increasing the potential on anode.

\_\_\_\_\_

## **Question 47**

## The source of sun's energy is

#### **Options:**

A. nuclear fission

- B. ion exchange process
- C. photoelectric process
- D. nuclear fusion

Answer: D

## Solution:

**Solution:** The source of sun's energy is nuclear fusion.

\_\_\_\_\_

## **Question 48**

In a Bohr orbit of hydrogen atom, the ratio of kinetic energy of electron to its potential energy is

#### **Options:**

A. 1:2

B. 2:1

C. -1:2

D. -2:1

#### Answer: A

### Solution:

#### Solution:

Potential energy of electron U =  $\frac{kZ e^2}{r_n}$ Kinetic energy of electron K =  $\frac{kZe^2}{2r_n}$  $\therefore K = \frac{1}{2}$ 

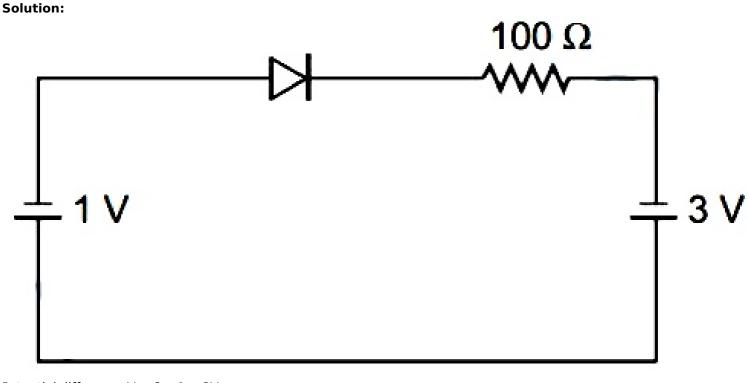
\_\_\_\_\_

$$\therefore \frac{K}{U} = \frac{1}{2}$$

## In the following diagram, current in $100\Omega$ , resistor will be

#### **Options:**

A. zero

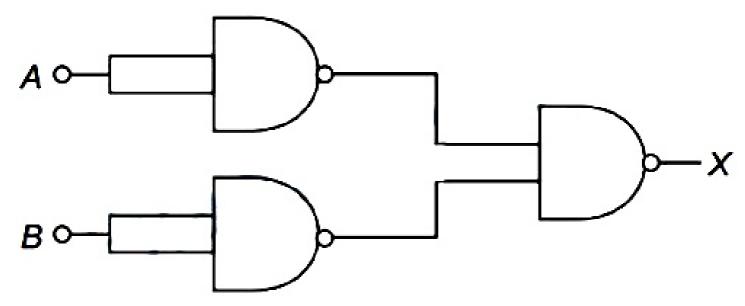

B. 10 mA

C. 20 mA

D. 50 mA

Answer: C

## Solution:




Potential difference V = 3 - 1 = 2VCurrent in  $100\Omega$ , i =  $\frac{V}{R}$ =  $\frac{2}{100}$ =  $20 \times 10^{-3}$ A = 20 mA

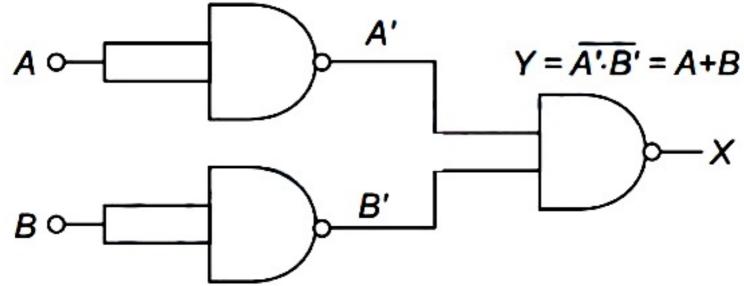
------

## **Question 50**

The following combination of gates is equivalent to



C


#### **Options:**

- A. OR gate
- B. NOT gate
- C. XOR gate
- D. NAND gate

#### Answer: A

#### Solution:

Solution:



The following combination of gates is equivalent to OR gate.

------

### **Question 51**

Among the following, the group of molecules that undergoes rapid hydrolysis is

#### **Options:**

A. SF<sub>6</sub>, Al<sub>2</sub>Cl<sub>6</sub>, SiMe<sub>4</sub>

B. BCl<sub>3</sub>, SF<sub>6</sub>, SiCl<sub>4</sub>

C. BCl<sub>3</sub>, SiCl<sub>4</sub>, PCl<sub>5</sub>

D. SF<sub>6</sub>, Al<sub>2</sub>Cl<sub>6</sub>, SiCl<sub>4</sub>

Answer: C

#### Solution:

 $\begin{array}{l} \textbf{Solution:} \\ \text{BCl}_3, \text{SiCl}_4 \text{ and } \text{PCl}_5 \text{ molecules undergo rapid hydrolysis.} \\ \text{BCl}_3 + 3\text{H}_2\text{O} \longrightarrow \text{H}_3\text{BO}_3 + 3\text{HCl} \\ 3\text{SiF}_4 + 4\text{H}_2\text{O} \longrightarrow \text{H}_4\text{SiO}_4 + \begin{array}{c} 2\text{H}_2\text{SiF}_6 \\ \text{fluorosilicic acid} \\ \text{PCl}_5 + 4\text{H}_2\text{O} \longrightarrow \text{H}_3\text{PO}_4 + \begin{array}{c} 5\text{HCl} \\ 5\text{HCl} \\ \text{orthophosphoric acid} \end{array}$ 

\_\_\_\_\_

### **Question 52**

Nitric acid ionises slightly in HF,  $HNO_3 + HF_{(Solvent)} \rightleftharpoons H_2NO_3^+ + F^-$ Then

#### **Options:**

A.  $HNO_3$  and  $H_2NO_3^+$  are bases

B. HF and F  $^-\,\mathrm{are}$  bases

C.  $HNO_3$  and  $F^-$  are bases

D. only HNO<sub>3</sub> is base

**Answer: C** 

#### Solution:

**Solution:** According to Bronsted-Lowry acid is proton donor while base is proton acceptor.  $\frac{HNO_3}{_{base}} + \frac{HF}{_{acid}} \approx \frac{H_2NO_3^+}{_{acid}} + \frac{F}{_{base}}^-$ 

\_\_\_\_\_

### **Question 53**

For the reaction, 2 NO(g) + Cl<sub>2</sub>(g) ≈ 2 NOCl(g) which relation is true ?

#### **Options:**

A. 
$$K_p = K_c \times RT$$
  
B.  $K_p = \frac{K_c}{RT}$   
C.  $K_p = K_c (RT)^2$   
D.  $K_p = \frac{K_c}{(RT)^2}$ 

Answer: B

#### Solution:

$$\begin{split} & \textbf{Solution:} \\ & \textbf{K}_p = \textbf{K}_c(\textbf{RT})^{\Delta n_g} \\ & \Delta n_g = (n_p - n_r)_{gaseous} \\ & 2 \, \text{NO}(g) + \text{Cl}_2(g) \rightleftharpoons 2 \, \text{NOCI}(g) \\ & \Delta n_g = 2 - 3 = -1 \\ & \textbf{K}_p = \textbf{K}_c(\textbf{RT})^{-1} \\ & \textbf{K}_p = \frac{\textbf{K}_c}{\textbf{RT}} \end{split}$$

\_\_\_\_\_

### **Question 54**

The following compounds have identical molecular weight. Which would have the lowest boiling point?

#### **Options:**

A. 2-butanol

- B. 2-methyl-1-propanol
- C. 1, 1-dimethyl ethanol
- D. 1-methoxypropane

Answer: D

#### Solution:

#### Solution:

For isomeric alcohols, the boiling points decrease in the order Primary > secondary > tertiary It is due to the fact that surface area decreases with branching and therefore van der Waals' force decreases. Further, ethers have low boiling point, lower than that of isomeric alcohols. Hence, 1-methoxypropane has the lowest boiling point among the given compounds.

### **Question 55**

#### Which pair of the following carbonyl compounds can be differentiated by l<sub>2</sub> / NaOH ?

#### **Options:**

A. 
$$C_{6}H_{5} - CHO \text{ and } C_{6}H_{5} - \overset{O}{C} - CH_{2} - CH_{3}$$
  
B.  $C_{6}H_{5} - C - CH_{3} \text{ and } CH_{3} - CH_{2} - \overset{O}{C} - CH_{3}$   
C.  $CH_{3} - CH_{2} - C - CH_{2} - CH_{3} \text{ and } C_{6}H_{5} - \overset{O}{C} - CH_{2} - CH_{3}$   
D.  $C_{6}H_{5} - \overset{O}{C} - CH_{6} - CH_{3} \text{ and } C_{6}H_{5} - \overset{O}{C} - CH_{3}$ 

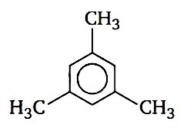
\_\_\_\_\_



#### Solution:

Compounds containing  $-C - CH_3$  (methyl carbonyl species) give a positive iodoform test with  $I_2 / NaOH$ .  $C_6H_5COCH_3 + 4 NaOH + 3I_2$   $\xrightarrow{acetophenone} - C_6H_5COONa + CHI_3 + 3H_2O + 3 NaI$  yellow ppt.  $- CH - CH_3 - - - - -$ 

No yellow ppt.


## **Question 56** In the reaction sequence, $CH_3MgBr (2 mol)$ $H_3O^+$ → [A] CH<sub>3</sub>CN Conc. $H_2SO_4 \rightarrow [B]$

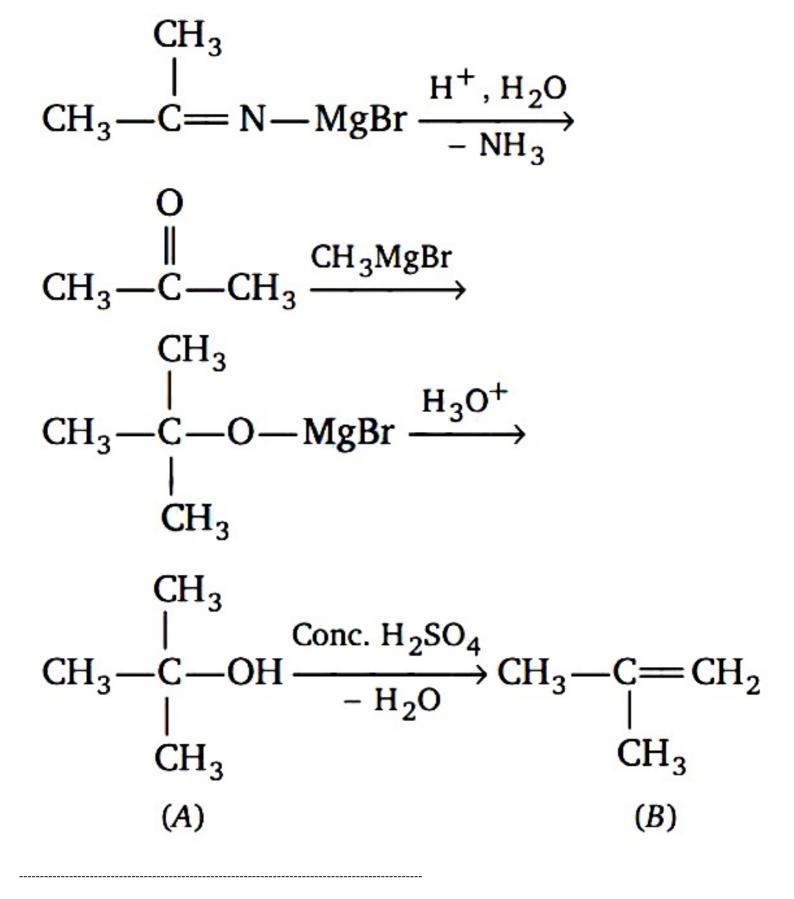
### The products [A] and [B] are

#### **Options:**

A.

CH<sub>3</sub>COCH<sub>3</sub>,




- B.  $(CH_3)_3 COH, (CH_3)_2 C = CH_2$
- C.  $(CH_3)_2$  CHOH,  $CH_3$  CH =  $= CH_2$
- D.  $CH_3COCH_3, CH_3CH = CH_2$

#### Answer: B

### Solution:

#### Solution:

 $CH_3 - C \equiv N + CH_3 MgBr - Pry ether$ 



### **Question 57**

Which one of the following is both nucleophilic and electrophilic?

#### **Options:**

A. CH<sub>4</sub>

B. CH<sub>3</sub>CN

C. H<sub>2</sub>O

D.  $CH_3OH$ 

Answer: B

#### Solution:

#### Solution:

Organic compounds containing a multiple bond between carbon and a more electronegative atom can act both as an electrophile as well as a nucleophile.

**Example**  $CH_3 - \overset{\delta_+}{C} \stackrel{\delta_-}{==} \overset{\delta_-}{N}$ electrophile nucleophile

\_\_\_\_\_

### **Question 58**

Match List I with List II and select the correct answer using the codes given below the lists.

| List I(Metals) | List II<br>(Name of refining process) |  |
|----------------|---------------------------------------|--|
| (P) Ni         | (1) Distillation                      |  |
| (Q) Cu         | (2) Electrolysis                      |  |
| (R) Cr         | (3) Mond process                      |  |
| (S) Hg         | (4) Aluminothermic process            |  |

#### **Options:**

A. (P-3), (Q-2), (R-4), (S-1)

B. (P-2), (Q-3), (R-1), (S-4)

C. (P-4), (Q-1), (R-2), (S-3)

D. (P-1), (Q-4), (R-3), (S-2)

**Answer:** A

#### Solution:

#### Solution: Ni metal is refined by Mond process. Ni + 4 CO $\xrightarrow{80^{\circ}C}$ Ni(CO)<sub>4</sub> $\xrightarrow{200^{\circ}C}$ Ni + 4 CO ↑ Cu metal is refined by electrolysis process. Cr metal is refined by aluminothermic process. Hg metal is refined by distillation process.

\_\_\_\_\_

### **Question 59**

# Which of the following two ions have the same number of unpaired electrons ?

- (1) Mn<sup>3+</sup>
- (2) Fe<sup>3+</sup>
- (3) Cr<sup>3+</sup>
- (4) Co<sup>3+</sup>

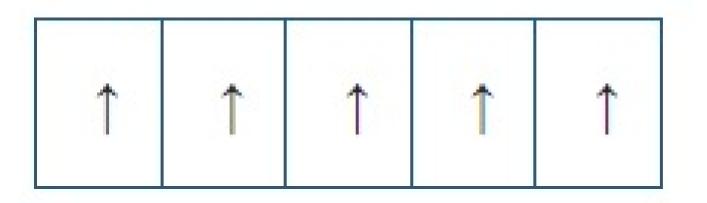
#### **Options:**

A. (2) and (3)

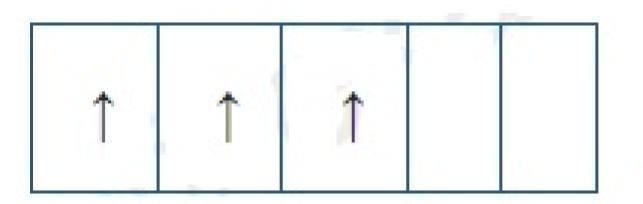
B. (3) and (4)

C. (1) and (2)

D. (1) and (4)

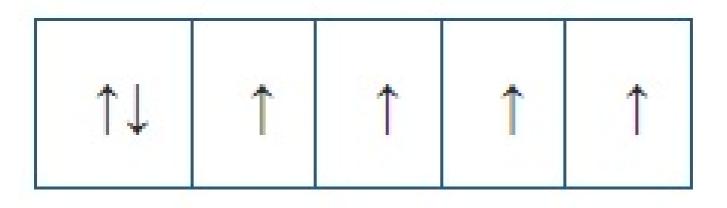

#### **Answer: D**

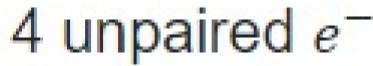
#### Solution:


 $3^{+}: |Ar| 3d^{4}$ 



# 4 unpaired $e^{-1}$ Fe<sup>3+</sup>: [Ar]3 $d^{5}$





5 unpaired  $e^-$ Cr<sup>3+</sup>: [Ar]3 $d^3$ 



3 unpaired e<sup>-</sup>

 $3^{+}: |Ar| 3d^{6}$ 





Hence,  $Mn^{3+}$  and  $Co^{3+}$  ions have the same number of unpaired electrons.

### **Question 60**

### The correct IUPAC name of [Pt(NH<sub>3</sub>)<sub>3</sub>Br(NO<sub>2</sub>)Cl]Cl is

#### **Options:**

- A. triammine chlorobromonitroplatinum (IV) chloride
- B. triamminebromochloronitroplatinate (IV) chloride
- C. triamminebromochloronitroplatinum (IV) chloride
- D. triamminebromochloronitroplatinum (II) chloride

#### **Answer: C**

#### Solution:

Solution:  $[Pt(NH_3)_3 Br(NO_2) CI] CI$ Let the oxidation number of Pt is x. x + 3(0) - 1 - 1 - 1 - 1 = 0 = +4Hence, its IUPAC name is triammine bromochloronitroplatinum (IV) chloride.

### **Question 61**

#### The pair having the similar shape is

#### **Options:**

A.  $BF_3$  and  $NF_3$ 

B.  $BF_4^-$  and  $NH_4^+$ 

C.  $SiCl_4$  and  $SCl_4$ 

D.  $CH_3^+$  and  $H_3O^+$ 

Answer: B

#### Solution:

**Solution:** In  $BF_4^-$  and  $NH_4^+$  both central atom is  $sp^3$  hybridised hence, both  $BF_4^-$  and  $NH_4^+$  have similar tetrahedral structure.

\_\_\_\_\_

### **Question 62**

The wavelength of an electron having kinetic energy equal to  $4.55 \times 10^{-25}$  j is (h =  $6.6 \times 10^{-34}$ kgm<sup>2</sup>s<sup>-1</sup>., mass of electron =  $9.1 \times 10^{-31}$ kg )

#### **Options:**

A.  $7.25 \times 10^{-7}$  nm

B. 725m

C.  $7.25 \times 10^{-7}$ m

D.  $7.25 \times 10^7$ m

Answer: C

#### Solution:

```
Solution:

KE = \frac{1}{2}mv^2

4.55 × 10<sup>-25</sup> = \frac{1}{2} × 9.1 × 10<sup>-31</sup> × v^2

v^2 = \frac{2 \times 4.55 \times 10^{-25}}{9.1 \times 10^{-31}}

v = 10^3m / s

\lambda = \frac{h}{mv}

= \frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^3}

\lambda = 7.25 \times 10^{-7}m
```

\_\_\_\_\_

### **Question 63**

In the carbylamine reaction, R - X is converted to R - Y via the intermediate Z. R - X, R - Y and Z, respectively, are

#### **Options:**

A. RNH<sub>2</sub>, RNC, carbene

- B. RNH<sub>2</sub>, RNC, nitrene
- C. RNC, RNH<sub>2</sub>, carbene
- D. ROH, RNC, nitrene

**Answer:** A

#### Solution:

#### Solution:

In carbylamine reaction, a primary amine (aliphatic or aromatic) is warmed with chloroform and alcoholic KOH. It forms an isocyanide or carbylamine having extremely offensive smell. In this reaction intermediate carbene is formed.

 $\text{CHCl}_3 + 3\text{KOH} + \text{RNH}_2 \xrightarrow{\Delta}$  $RNC + 3KCl + 3H_2O$ Mechanism  $\operatorname{CHCl}_3 + \operatorname{OH}^- \xrightarrow{-\operatorname{H}_2O} \operatorname{Cl}_3 \xrightarrow{-\operatorname{Cl}^-} \operatorname{Cl}_2$ dichloro carbene  $RNH_2 + CCl_2 \rightarrow R \overset{+}{N}H_2 \overline{C}Cl_2 \longrightarrow RNH\overline{C}Cl_2$  $-H^+$  $RN = \bar{C}Cl$ -Cl<sup>-</sup> RNC

------

### **Question 64**

### Which one of the following molecules has zero dipole moment?

#### **Options:**

A. NO<sub>2</sub><sup>+</sup>

B. H<sub>2</sub>O

C.  $NH_3$ 

D. CO

Answer: A

 $NO_2^+$  has linear structure with bond angle 180°. Dipole moment of symmetrical molecule is always zero because all the bond moments are cancelled. Hence, the dipole moment of  $NO_2^+$  is zero. Its structure is as  $: \ddot{O} = N - \ddot{O}:$ Molecule  $NO_2^+$  H<sub>2</sub>O NH<sub>3</sub>CO Dipole moment (D) zero 1.84 1.46 2.1

-----

### **Question 65**

A proton is converted to a neutron by
1. β<sup>-</sup> emission
2. β<sup>+</sup> emission
3. Electron capture
Which of the statements given above are correct ?

#### C

#### **Options:**

A. (1) and (2) only

B. (2) and (3) only

C. (1) and (3) only

D. (1), (2) and (3)

Answer: B

#### Solution:

**Solution:** A proton is converted to a neutron by  $\beta^+$  emission or electron capture.  ${}_{1}^{1}H \longrightarrow {}_{0}^{1}n + {}_{+1}^{0}e(\beta^+)$  ${}_{1}^{1}H + {}_{-1}^{0}e \longrightarrow {}_{0}^{1}n$ 

\_\_\_\_\_

### **Question 66**

#### The temperature of maximum density of $H_2O$ and $D_2O$ respectively are

#### **Options:**

A. 0°C and 11.6°C B. 4°C and 0°C C. 4°C and 11.6°C

D.  $4\,^\circ\,C$  and  $12.5\,^\circ\,C$ 

#### Answer: C

\_\_\_\_\_

### **Question 67**

Consider the following statements. The role of catalyst is to

- (1) reduce the activation energy
- (2) increase the activation energy
- (3) increase the rate of attainment of equilibrium
- (4) decrease the rate of attainment of equilibrium

Which of the statements given above are correct?

#### **Options:**

A. (2) and (4)

B. (1) and (4)

C. (1) and (3)

D. (2) and (3)

#### Answer: C

#### Solution:

#### Solution:

A catalyst decreases the activation energy of the reaction and hence, increases the rate of reaction. It increases the rate of attainment of equilibrium.

\_\_\_\_\_

### **Question 68**

# A silver iodide sol has been prepared by adding slight excess of KI solution to AgNO<sub>3</sub> solution having the same concentration as that of KI solution. The silver iodide sol particles are

#### **Options:**

- A. positively charged
- B. negatively charged
- C. neutral
- D. partially positively and partially negatively charged

#### Answer: B

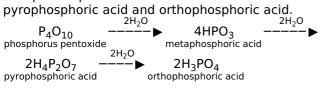
When KI solution and  $AgNO_3$  solution of equal concentration are mixed, silver iodide sol is formed. Since KI is in excess, the sol formed adsorbed I<sup>-</sup> ions. Thus, it is negatively charged.  $AgNO_3 + KI \rightarrow AgI + KNO_3$  $AgI + KI \rightarrow [AgI]x^-:K^+$ negatively charged sol

\_\_\_\_\_

### **Question 69**

#### $P_4O_{10}$ on reacting with water does not form

#### **Options:**


- A. tetrametaphosphoric acid
- B. phosphorus acid
- C. orthophosphoric acid
- D. pyrophosphoric acid

#### Answer: B

#### Solution:

#### Solution:

Phosphorus pentoxide reacts with water to form metaphosphoric acid which reacts with excess of water to give pyrophosphoric acid and orthophosphoric acid.



\_\_\_\_\_

### **Question 70**

If the molar solubility of  $X_3B_3(\mathsf{A}|\mathsf{F}_6)_2$  at 298K is x, the solubility product  $\mathsf{K}_{sp}$  is

#### **Options:**

- A. 18x<sup>3</sup>
- B. 27x<sup>4</sup>
- C. 27x<sup>8</sup>
- D. 2916x<sup>8</sup>

**Answer: D** 

#### Solution:

```
Solution:

X_{3}B_{3}(A|F_{6})_{2} \Rightarrow 3X + 3B + 2A|F_{6}

3x \ 3x \ 2x

K_{sp} = [X]^{3}[B]^{3}[A|F_{6}]^{2}

= (3x)^{2}(3x)^{2}(2x)^{2}

= (27x^{3})(27x^{3})(4x^{2}) = 2916x^{8}
```

### **Question** 71

In Neptunium series  $^{241}_{94}$  Pu  $\rightarrow$  Am  $\rightarrow$  Np  $\rightarrow$  Pa  $\rightarrow ^{238}_{92}$ U, the order of radiation is

\_\_\_\_\_

#### **Options:**

A. *β*, *α*, *α*, *β* 

B.  $\beta$ ,  $\beta$ ,  $\alpha$ ,  $\alpha$ 

C. *α*, *β*, *α*, *β* 

D.  $\alpha, \alpha, \beta, \beta$ 

Answer: A

#### Solution:

### **Question 72**

#### Which of the following is not a biopolyme?

\_\_\_\_\_

#### **Options:**

A. Polysaccharide

B. Protein

C. Lipid

D. Nucleic acid

Answer: C

#### Solution:

Polysaccharides are neutral polymeric compounds in which monosaccharide units are joined by glycosidic linkages. Proteins are long polymers of amino acids linked by peptide bonds.

Nucleic acids are regarded as polynucleotides. These are the polymer of nucleotides.

Lipids are oily, fatty or waxy substances present in living organisms. Chemically, lipids are esters of long chain fatty acids and alcohols.

-----

### **Question 73**

#### The boiling points of three isomeric pentanes 1,2 and 3 are (1) 9.5 °C (2) 28 °C (3) 36 °C

1,2 and 3 are respectively

#### **Options:**

A. n-pentane, iso-pentane, neo-pentane

B. iso-pentane, neo-pentane, n-pentane

C. n-pentane, neo-pentane, iso-pentane

D. neo-pentane, iso-pentane, n-pentane

\_\_\_\_\_

Answer: D

#### Solution:

#### Solution:

In a group of isomeric compounds, the normal compound always has the highest boiling point and generally, the more the branching, lower is the boiling point.

| Com-pound :     | n-pentane | iso-pentane (2-methyl butane) | neo-pentane (2,2-dimethyl propane) |
|-----------------|-----------|-------------------------------|------------------------------------|
| Boiling point : | 36°C      | 28°C                          | 9.5°C                              |

### **Question 74**

Indicate the pair whose one member has the highest and other has the lowest electronegativity

#### **Options:**

A. I and F

B. Fr and Li

```
C. K and Cs % \left( {{{\mathbf{F}}_{{\mathbf{F}}}} \right)
```

D. F and Fr

**Answer: D** 

#### Solution:

#### Solution:

Electronegativity decreases on moving down the group and increases along a period. Hence, F has the highest and Fr has the lowest electronegativity.

\_\_\_\_\_

### **Question 75**

Atomic numbers of elements X,Y and Z are 50,78 and 60 respectively. These elements are placed in modern long form of Periodic Table respectively in

#### **Options:**

A. p-block, d-block and f-block

B. p-block, d-block and s-block

C. s-block, p-block and d-block

D. s-block, d-block and f-block

**Answer:** A

#### Solution:

**Solution:** The electronic configurations of X,Y and Z are as  $X(50):[Kr]4d^{10}, 5s^{2}5p^{2}$  $Y(78):[Xe]4f^{14}, 5d^{9}, 6s^{1}$  $Z(60):[Xe]4f^{4}, 6s^{2}$ Hence, these elements are placed in long form of Periodic Table respectively in p-block, d-block and f-block.

### **Question 76**

Consider the following statements.

\_\_\_\_\_

(1) Fuel cells are voltaic cell which convert electrical energy of fuel into chemical energy.

(2) Fuel cells are galvanic cells which convert chemical energy of fuel into electrical energy.

(3) The efficiency of  $H_2 - O_2$  fuel cell is approximately 25%.

(4) Fuel cells do not cause pollution problem.

Among these, the correct statements are

#### **Options:**

A. (2) and (3) only

B. (1) and (4) only

C. (2) and (4) only

D. (2), (3) and (4) only

Answer: C

#### Solution:

#### Solution:

A fuel cell is a galvanic cell in which one of the reactants is a traditional fuel such as  $CH_4$  or  $H_2$ . Fuel cells convert chemical energy of fuel into electrical energy. Fuel cells do not cause pollution problems. These cells converts 74% of chemical energy into electrical energy.

\_\_\_\_\_

### **Question** 77

### Which of the following relationships is correct?

**Options:** 

A. k = 
$$\frac{T\Delta S^{\circ} - \Delta H^{\circ}}{RT}$$
  
B. k =  $\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}$   
C. ln k =  $\frac{T\Delta S^{\circ} - \Delta H^{\circ}}{RT}$   
D. ln k =  $\frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}$ 

Answer: C

Solution:

\_\_\_\_\_

### **Question 78**

The thermal decomposition of a compound is of first order. If a sample of the compound decomposes 50% in 120 min, what time will it take to undergo 90% decomposition?

#### **Options:**

- A. Nearly 400 min
- B. Nearly 45 min
- C. Nearly 480 min
- D. Nearly 240 min

**Answer:** A

#### Solution:

Solution:  $k = \frac{2.303}{t} \log \frac{[A]_0}{[A]}$ Let  $[A]_0 = 100, [A] = 100 - 50 = 50$   $k = \frac{2.303}{120} \log \frac{100}{50}$   $k = \frac{2.303}{120} \log 2$   $= 0.00578 \text{min}^{-1}$ If [A] = 100 - 90 = 10 then  $t = \frac{2.303}{k} \log \frac{[A]_0}{[A]}$   $= \frac{2.303}{0.00578} \log \frac{100}{10}$   $= 398.44 \text{ min} \approx 400 \text{ min}$ 

-----

### **Question 79**

What is the half-life of Na – 24, if  $2 \times 10^{-4}$ g sample of it disintegrates at the rate of  $7.0 \times 10^{12}$  atoms per second?

#### **Options:**

A.  $4.97 \times 10^6 s$ 

B.  $4.97 \times 10^5 s$ 

C.  $0.497 \times 10^5 s$ 

D.  $4.97 \times 10^4 s$ 

#### **Answer: B**

```
Solution:

N = \frac{6.02 \times 10^{23} \times 2 \times 10^{-4}}{24}
= 5.02 \times 10^{18} \text{ atoms}
- \frac{dN}{dt} = kN
7.0 \times 10^{12} = k \times 5.02 \times 10^{18}
k = \frac{7.0 \times 10^{12}}{5.02 \times 10^{18}} = 1.4 \times 10^{-6}
```

$$t_{1/2} = \frac{0.693}{k} = \frac{0.693}{1.4 \times 10^{-6}} = 4.97 \times 10^5 s$$

------

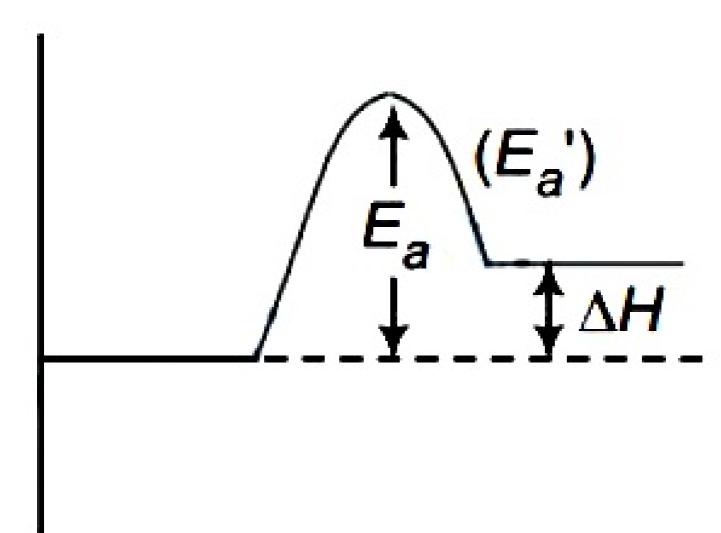
### **Question 80**

### Energy of activation of an endothermic reaction is

#### **Options:**

A. negative

B. positive


C. zero

D. Cannot be predicted

Answer: B

#### Solution:

#### **Solution:** For endothermic reaction



 $E_a = E_a' + \Delta H$ 

ie,  $E_a > \Delta H$ Hence, energy of activation of an endothermic reaction is positive.

\_\_\_\_\_

### **Question 81**

### Chlorine reacts with carbon disulphide in presence of |2 catalyst to form

#### **Options:**

A. CHCl<sub>3</sub>

B. CHI<sub>3</sub>

C.  $CCI_4$ 

D.  $C_2H_5CI$ 

**Answer: C** 

#### **Solution:**

**Solution:** Chlorine reacts with carbon disulphide in the presence of I<sub>2</sub> catalyst to form carbon tetrachloride.  $CS_2 + 3CI_2 - \stackrel{I_2}{\longrightarrow} CCI_4 + S_2CI_2$ 

Suppur monochlorideS<sub>2</sub>Cl<sub>2</sub> formed further reacts with CS<sub>2</sub> to form more CCl<sub>4</sub>.

\_\_\_\_\_

### **Question 82**

#### The sample with largest number of atoms is

#### **Options:**

A.  $1gO_2(g)$ 

B. 1g Ni(*s*)

C. 1gB(*s*)

D.  $1gN_{2}(g)$ 

Answer: C

#### Solution:

Solution: No. of atoms in 1g of  $O_2(g) = 2 \times \frac{1}{32} \times 6.023 \times 10^{23}$ = 0.38 × 10<sup>23</sup> No. of atoms in 1g of 
$$\begin{split} \text{Ni}(s) &= \frac{1}{58.2} \times 6.023 \times 10^{23} \\ &= 0.10 \times 10^{23} \\ \text{No. atoms in 1g of} \\ \text{B}(s) &= \frac{1}{10.8} \times 6.023 \times 10^{23} \\ &= 0.56 \times 10^{23} \\ \text{No. of atoms in 1g of} \\ \text{N}_2(g) &= 2 \times \frac{1}{28} \times 6.023 \times 10^{23} \\ &= 0.43 \times 10^{23} \\ \text{Thus, 1g} B(s) \text{ contains the largest number of atoms.} \end{split}$$

-----

### **Question 83**

#### The electronic configuration of P in $H_3PO_4$

#### **Options:**

A.  $1s^22s^2$ ,  $2p^6$ ,  $3s^23p^6$ 

B. 1*s*<sup>2</sup>, 2*s*<sup>2</sup>, 2p<sup>6</sup>3*s*<sup>2</sup>

C.  $1s^2$ ,  $2s^22p^6$ 

D. 1*s*<sup>2</sup>, 2*s*<sup>2</sup>, 2*p*<sup>6</sup>, 3*s*<sup>2</sup>3*p*<sup>3</sup>

Answer: C

#### Solution:

#### Solution:

In H<sub>3</sub>PO<sub>4</sub>, P is present as P<sup>5+</sup> The electric configuration of P atom P(15):1 $s^2$ , 2 $s^2$ , 2p<sup>6</sup>, 3 $s^2$ 3p<sup>3</sup> P<sup>5+</sup> = 1 $s^2$ , 2 $s^2$ , 2p<sup>6</sup> Thus, the electronic configuration of P in H<sub>3</sub>PO<sub>4</sub> is 1 $s^2$ , 2 $s^2$ , 2p<sup>6</sup>.

\_\_\_\_\_

### **Question 84**

**Pick out the isoelectronic structures from the following** CH<sub>3</sub><sup>+</sup>; H<sub>3</sub>O <sup>+</sup>; NH<sub>3</sub>; CH<sub>3</sub><sup>-</sup> I II III IV

#### **Options:**

A. I and II

B. I and III

C. I and IV

D. II, III and IV

#### Answer: D

#### Solution:

Isoelectronic structures have same number of electrons. Number of electrons in  $CH_3^+ = 6 + 3 - 1 = 8$ Number of electrons in  $H_3O^+ = 3 + 8 - 1 = 10$ Number of electrons in  $NH_3 = 7 + 3 = 10$ Number of electrons in  $CH_3^- = 6 + 3 + 1 = 10$ Hence,  $H_3O^+$ ,  $NH_3$  and  $CH_3^-$  are isoelectronic structures.

\_\_\_\_\_

### **Question 85**

### Doping of silicon with boron leads to

#### **Options:**

A. n-type semiconductor

B. p-type semiconductor

C. superconductor

D. insulator

Answer: B

Solution:

**Solution:** Doping of silicon with group- 13 elements such as B, Al, or Ga gives p-type semiconductors.

\_\_\_\_\_

### **Question 86**

#### The flame colours of metal ions are due to

#### **Options:**

- A. Schottky defect
- B. Frenkel defect
- C. metal excess defect
- D. metal deficiency defect

#### Answer: C

**Solution:** The flame colours of metal ions are due to metal excess defect. Example non-stoichiometric sodium chloride is yellow, non-stoichiometric potassium chloride is violet.

-----

### **Question 87**

# The percentage composition by weight of an aqueous solution of a solute (molar mass 150) which boils at 373.26K(k<sub>b</sub> = 0.52) is

#### **Options:**

A. 7

B. 6

C. 9

D. 15

#### Answer: A

#### Solution:

**Solution:**  $\begin{array}{l} \Delta T_b = K_b \times m \\ 0.26 = 0.52m \\ m = 0.5 \end{array}$ 0.5 mole is present in 1000g of the solvent. or 0.5 × 150g = 75g is present in 1000g of the solvent. Hence, weight of solution = 1075g % by weight =  $\displaystyle \frac{75}{1075} \times 100 \approx 7\%$ 

#### \_\_\_\_\_

### **Question 88**

#### Solutions *P*, *Q*, *R* and *S* are respectively 0.1M glucose, 0.05M NaCl, 0.05MBaCl<sub>2</sub> and 0.1M AlCl<sub>3</sub>. Which one of the following pairs is isotonic?

#### **Options:**

A. P and Q

B. Q and R

C. P and S

D. P and R

Answer: A

#### Solution:

**Solution:** Isotonic solutions have equal concentrations of particles. For isotonic solution  $\pi = iC$ For glucose,  $\pi = 1 \times 0.1 = 0.1$ For NaCl,  $\pi = 2 \times 0.05 = 0.1$ Hence, 0.1M glucose and 0.05M NaCl solutions are isotonic.

\_\_\_\_\_

### **Question 89**

### In which one of the following reactions, nitrogen is not reduced?

#### **Options:**

A.  $NO_2 \rightarrow NO_2^-$ 

B.  $NO_3^- \rightarrow NO$ 

C.  $NO_3^- \rightarrow NH_4^+$ 

D.  $NH_4^+ \rightarrow N_2$ 

#### **Answer: D**

#### Solution:

#### Solution:

Increase in oxidation number is defined as oxidation while decrease in oxidation number is defined as reduction.  $\stackrel{+4}{NO_2} \rightarrow \stackrel{+3}{NO_2}^{-}$  (Reduction)  $\stackrel{+5}{NO_3} \rightarrow \stackrel{+0}{NO}$  (Reduction)  $\stackrel{+5}{NO_3} \rightarrow \stackrel{-3}{NH_4}^{+}$  (Reduction)  $\stackrel{-3}{NH_4} \rightarrow \stackrel{0}{N_2}$  (Oxidation)

\_\_\_\_\_

### **Question 90**

#### Which one of the following is the strongest base?

#### **Options:**

A. 2, 4, 6-trinitroaniline

B. 2, 4, 6-trinitro-N, N-dimethyl aniline

C. N, N-dimethyl aniline

D. Aniline

#### Answer: B

In 2, 4, 6-trinitro-N, N-dimethylaniline, the bulky nitro substituents at o-position throw the p-orbital of N-atom containing the lone pair of electrons out of the plane of the p-orbitals of the benzene ring. As a result delocalisation of nitrogen electrons on the ring cannot occur. In other words, these electrons are readily available for protonation and hence, it is much stronger base than 2,4, 6-trinitroaniline, aniline and N, N-dimethylaniline where delocalisation is not inhibited by resonance.

\_\_\_\_\_

### **Question 91**

# Which one of the following is the best reagent to accomplish the following conversion ?

 $CH_3CH_2Br \xrightarrow{?} CH_3 - CH_3$ 

#### **Options:**

A. NaBH<sub>4</sub>

B. Na | ether

C. Zn |  $C_2H_5OH$ 

D. Mg followed by  $H_3O^+$ 

#### **Answer: C**

#### Solution:

#### Solution:

Reduction of alkyl halides by dissolving metals e.g., zinc and acetic acid or dil. HCl, zinc and NaOH, zinc-copper couple and ethanol gives the alkane.  $Z_{n} = C_{n}/C_{n} = C_{n}/C_{n}$ 

 $\begin{array}{c} Zn - Cu / C_2H_5 \text{ OH} \\ CH_3CH_2 \text{ Br } - - - - - - \rightarrow CH_3 - CH_3 \\ \text{Mechanism} \\ Zn \rightarrow Zn^{2+} + 2e^- \\ CH_3CH_2 - \text{ Br } + e^- \rightarrow CH_3CH_2 \bullet + \text{ Br }^- \\ CH_3CH_2 \bullet + e^- \rightarrow CH_2CH_2 : - \\ CH_3CH_2 : - + C_2H_5OH \rightarrow \\ CH_3 - CH_3 + C_2H_5O^- \end{array}$ 

\_\_\_\_\_

### **Question 92**

### Which of the following statements is true?

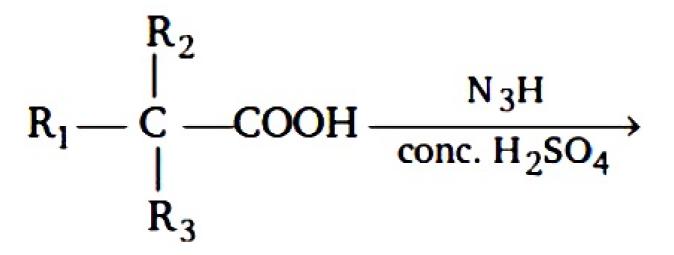
#### **Options:**

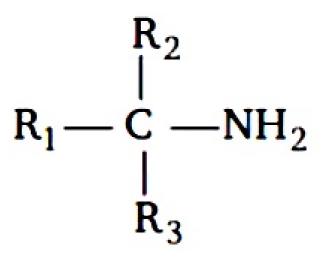
A. All proteins act as biocatalyst

- B. Denaturation of protein changes the primary structure of protein
- C. C-terminal amino acid in proteins is determined by Edman degradation
- D. The pleated sheet structure of proteins was determined by Pauling

#### Answer: D

#### Solution:


All proteins are not biocatalysts. Denaturation of proteins affects only secondary and fertiary structures. The most commonly used method for determining the C-terminal amino acid residue in a protein is hydrazinolysis. In this method, protein is treated with anhydrous hydrazine at 373K when all amino acid residues except C-terminal one is converted into amino acid hydrazides. The mixture of products is subjected to chromatography. On elution the strongly basic hydrazides are retained, but the free amino acid is eluted. By identifying the free amino acid the C-terminal amino acid residue of a protein can be determined.


The first  $\beta$ -pleated sheet structure was proposed by  $\omega$ . Astburry while a refined version was proposed by Linus pauling and Robert corey.

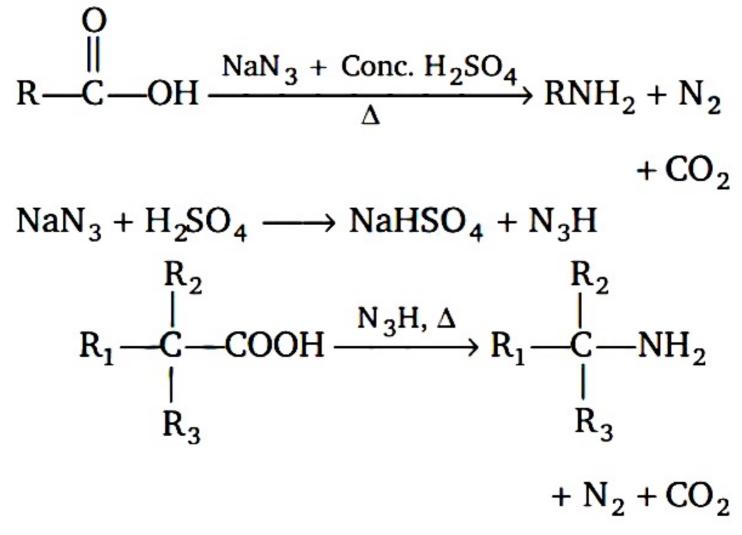
### **Question 93**

#### The given reaction is called as

\_\_\_\_\_






#### **Options:**

- A. Schmidt rearrangement
- B. Curtius rearrangement
- C. Hofmann rearrangement
- D. Lossen rearrangement

**Answer:** A

#### Solution:

Schmidt reaction converts RCOOH into RNH<sub>2</sub>



### **Question 94**

Which of the following contains thymine?

#### **Options:**

A. m-RNA

B. r-RNA

C. t-RNA

D. None of the above

Answer: D

#### Solution:

Solution:

RNA contains cytosine and uracil as pyrimidine bases and guanine and adenine as purine bases. Thymine is not present

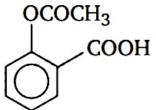
in RNA.

\_\_\_\_\_

### **Question 95**

### The functional groups present in aspirin are

#### **Options:**


- A. OH, NHCOCH<sub>3</sub>
- B. OC<sub>2</sub>H<sub>5</sub>, COOH
- C. COOH, OCOCH<sub>3</sub>
- D. OH, OCOCH<sub>3</sub>

Answer: C

#### Solution:

#### Solution:

Acetyl salicylic acid or 2-acetoxy benzoic acid is known as aspirin. It contains - COOH and -OCOCH<sub>3</sub> group. Its structure is as



\_\_\_\_\_

### **Question 96**

# The coordination number and oxidation state of Cr in $K_3[Cr(C_2O_4)_3]$ are respectively

#### **Options:**

- A. 6 and +3
- $B.\;3\;and\;0$
- C. 4 and +2
- D. 3 and +3

#### Answer: A

#### **Solution:**

0

Coordination number is the number of ligands in the coordination sphere of the complex compound. Oxalate ion  $(C_2O_4^{2-})$  is a bidentate ligand, hence coordination number of Cr in  $K_3[Cr(C_2O_4)_3]$  is 6. Let the oxidation number of Cr is x. 3 + x + 3(-2) = 03 + x - 6 = 0x - 3 = 0x = 3

\_\_\_\_\_

### **Question 97**

The equivalent weight of  $\mathsf{MnSO}_4$  is equal to its molecular weight when it is converted to

C

#### **Options:**

A. Mn<sub>2</sub>O<sub>3</sub>

B.  $MnO_2$ 

C.  $MnO_4^{-}$ 

D. MnO<sub>4</sub><sup>2</sup> -

Answer: A

### Solution:

#### Solution:

Oxidation number of Mn in MnSO<sub>4</sub> is +2. Oxidation number of Mn in Mn<sub>2</sub>O<sub>3</sub> is +3. Change in oxidation number = 3 - 2 = 1Equivalent weight =  $\frac{\text{molecular weight}}{\text{total change in oxidation number of Mn}}$ Equivalent weight =  $\frac{\text{molecular weight}}{1}$ Equivalent weight = molecular weight

------

### **Question 98**

### The mineral from which potassium permanganate is manufactured

#### **Options:**

- A. manganite,  $Mn_2O_3 \cdot H_2O$
- B. pyrolusite,  $MnO_2$
- C. Both (a) and (b)
- D. None of the above

#### Answer: B

#### Solution:

Potassium permanganate is prepared from mineral pyrolusite (  $\rm MnO_2)$  .

\_\_\_\_\_

 $2MnO_2 + 4KOH + O_2 \xrightarrow{Heat}$ 

2K<sub>2</sub>MnO<sub>4</sub> + 2H<sub>2</sub>O potassium manganate (green)

### $2K_2MnO_4 + Cl_2 \longrightarrow 2KCl + 2KMnO_4$ potassium permanganate (purple)

**Question 99** 

### Which one of the following hydrocarbons has octane number 100?

#### **Options:**

- A. 2, 2, 3-trimethylpentane
- B. 2, 3, 3-trimethylpentane
- C. 2, 2, 4trimethylpentane
- D. 2, 3, 4-trimethylpentane

Answer: C

#### Solution:

#### Solution:

The octane number of iso-octane (2, 2, 4-trimethyl pentane) is 100 . The quality of a petrol sample can be expressed in terms of octane number.

\_\_\_\_\_

### **Question 100**

Which one of the following gases has both oxidising as well as reducing property?

#### **Options:**

- A. CO
- B. SO<sub>2</sub>
- C.  $H_2S$
- D. PH<sub>3</sub>

#### **Answer: B**

#### **Solution:**

#### Solution:

Sulphur dioxide (SO<sub>2</sub>) gas has both oxidising as well as reducing property. It reduces acidified  $Cr_2O_7^{2-}$  into green  $Cr^{3+}$ .  $K_2Cr_2O_7 + 3SO_2 + H_2SO_4 \rightarrow K_2SO_4$   $+ Cr_2(SO_4)_3 + H_2O$ It oxidises  $H_2S$  to S.  $2H_2S + SO_2 \rightarrow 2H_2O + S$ 

\_\_\_\_\_

### **Question 101**

#### **Evaluate**

$$\sum_{k=1}^{6} (\sin \frac{2k\pi}{7} - i\cos \frac{2k\pi}{7})$$

#### **Options:**

- A. 2i
- В. і
- C.i
- D. –2i
- **Answer: C**

#### **Solution:**

$$\sum_{k=1}^{6} (\sin \frac{2k\pi}{7} - i\cos \frac{2k\pi}{7})$$
$$= -i \left[ \sum_{k=1}^{6} (\cos \frac{2k\pi}{7} + i\sin \frac{2k\pi}{7}) \right]$$

$$= -i[\left(\cos\frac{2\pi}{7} + i\sin\frac{2\pi}{7}\right) \\ +\left(\cos\frac{4\pi}{7} + i\sin\frac{4\pi}{7}\right) \\ + \dots + \left(\cos\frac{12\pi}{7} + i\sin\frac{12\pi}{7}\right)] \\ = -i[\cos\left(\frac{2\pi}{7} + \frac{4\pi}{7} + \frac{6\pi}{7} + \frac{8\pi}{7} + \frac{10\pi}{7} + \frac{12\pi}{7}\right) \\ +i\sin\left(\frac{2\pi}{7} + \frac{4\pi}{7} + \frac{6\pi}{7} + \frac{8\pi}{7} + \frac{10\pi}{7} + \frac{12\pi}{7}\right)] \\ = -i[\cos\frac{42\pi}{7} + i\sin\frac{42\pi}{7}) \\ = -i[\cos 6\pi + i\sin 6\pi] \\ = -i[\cos 6\pi] = -i[-1] = i$$

### Question 102

If a, b, c are in HP, then the value of  $\frac{b+a}{b-a} + \frac{b+c}{b-c}$  is

\_\_\_\_\_

#### **Options:**

A. 0

B. 1

C. 2

D. 3

Answer: C

#### Solution:

Solution: Since a, b, c are in HP.  $\therefore b = \frac{2ac}{a+c}$ Now,  $\frac{b+a}{b-a} + \frac{b+c}{b-c}$   $= \frac{\frac{2ac}{a+c} + a}{\frac{2ac}{a+c} - a} + \frac{\frac{2ac}{a+c} + c}{\frac{2ac}{a+c} - c}$   $= \frac{3ac+a^2}{ac-a^2} + \frac{3ac+c^2}{ac-c^2}$   $= \frac{3c+a-3a-c}{c-a} = \frac{2(c-a)}{c-a} = 2$ 

\_\_\_\_\_

### **Question 103**

If  $x^2 - 4x + \log_{1/2} a = 0$  does not have two distinct real roots, then maximum value of a is

A. 
$$-\frac{1}{4}$$
  
B.  $\frac{1}{16}$   
C.  $\frac{1}{4}$ 

D. None of these

Answer: B

#### Solution:

Solution: Since, given equation does not have two distinct real roots. Therefore, D < 0  $16 - 4\log_{1/2}a < 0$   $\Rightarrow 4\log_{1/2}a > 16$   $\Rightarrow \log_{1/2}a > 4$   $\Rightarrow a < (\frac{1}{2})^4$  $\Rightarrow a < \frac{1}{16}$ 

-----

### **Question 104**

#### A polygon has 44 diagonals. Find the number of sides.

#### **Options:**

A. 8

B. 10

C. 11

D. 13

Answer: C

#### Solution:

```
Solution:

Number of diagonals in a polygon of n sides is

\frac{n(n-3)}{2}
\therefore \frac{n(n-3)}{2} = 44
\Rightarrow n(n - 3) = 88 = 11 \times 8
\therefore n = 11
```

\_\_\_\_\_

### **Question 105**

The coefficient of  $x^4$  in the expansion of  $\log(1 + 3x + 2x^2)$  is

### **Options:**

A. 
$$\frac{16}{3}$$
  
B.  $-\frac{16}{3}$   
C.  $\frac{17}{4}$   
D.  $-\frac{17}{4}$ 

### Answer: D

### Solution:

Solution:  $\log(1 + 3x + 2x^{2}) = (3x + 2x^{2})^{2} + \frac{(3x + 2x^{2})^{3}}{2} + \frac{(3x + 2x^{2})^{3}}{3} - \frac{(3x + 2x^{2})^{4}}{4} + \dots$ In this expansion, the coefficient of  $x^{4}$  $= -\frac{1}{2}(4) + \frac{1}{3}(54) - \frac{1}{4}(81)$   $= -2 + 18 - \frac{81}{4}$   $= 16 - \frac{81}{4}$   $= -\frac{17}{4}$ 

## **Question 106**

If 
$$A = \begin{bmatrix} \mathbf{1} & \tan x \\ -\tan x & \mathbf{1} \end{bmatrix}$$
, then the value of  $|A^T A^{-1}|$  is

### **Options:**

A. cos 4 x

B.  $sec^2x$ 

C. –cos 4 *x* 

D. 1

#### Answer: B

### Solution:

Solution: We have,

$$A = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$$
Now,  $A^{T} = \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$ 
adj $(A) = \begin{bmatrix} 1 & \tan x \\ -\tan x & 1 \end{bmatrix}$ 
and  $A^{-1} = \frac{1}{|A|}(\operatorname{adj} A)$ 

$$= \frac{1}{\sec^{2}x} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$
Now,  $|A^{T}A^{-1}|$ 

$$= \begin{vmatrix} \frac{1}{\sec^{2}x} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$

$$= \begin{vmatrix} \frac{1}{\sec^{2}x} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$

$$= \begin{vmatrix} \frac{1}{\sec^{2}x} \begin{bmatrix} 1 & -\tan x \\ 1 & -\tan x \\ \tan x & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$

$$= \begin{vmatrix} \frac{1}{\sec^{2}x} \begin{bmatrix} 1 & -\tan x \\ 1 & -\tan x \\ \tan x & 1 \end{bmatrix}$$

$$= \frac{1}{\sec^{2}x} \begin{bmatrix} 1 & -\tan x \\ 1 & -\tan^{2}x \\ \tan x & 1 & -\tan^{2}x \end{bmatrix}$$

$$= \frac{1}{\sec^{2}x} \begin{bmatrix} 1 - \tan^{2}x & -2\tan x \\ 2\tan x & 1 & -\tan^{2}x \end{bmatrix}$$

$$= \frac{(1 + \tan^{2}x)^{2}}{\sec^{2}x}$$

$$= \frac{(1 + \tan^{2}x)^{2}}{\sec^{2}x}$$

In a  $\triangle ABC$ , if cot A cot B cot C > 0, then the triangle is

\_\_\_\_\_

### **Options:**

A. acute angled

B. right angled

C. obtuse angled

D. does not exist

Answer: A

### Solution:

**Solution:** Since,  $\cot A \cot B \cot C > 0$  $\therefore \cot A, \cot B$  and  $\cot C$  are positive.  $\Rightarrow$  Triangle is acute angled.

\_\_\_\_\_

## **Question 108**

If  $\left(\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}\right)^2 = \lambda \left(\frac{1-\cos\theta}{1+\cos\theta}\right)$ , then  $\lambda$  equals

A. -1

- B. 1
- C. 2
- D. -2

**Answer: B** 

### **Solution:**

Solution:  

$$\left(\frac{1+\sin\theta-\cos\theta}{1+\sin\theta+\cos\theta}\right)^{2} = \lambda\left(\frac{1-\cos\theta}{1+\cos\theta}\right)$$

$$\Rightarrow \lambda = \frac{\left[\left(1+\sin^{2}\theta+\cos^{2}\theta+2\sin\theta-2\sin\theta\cos\theta-2\cos\theta\right)\left(1+\cos\theta\right)\right]}{\left[\left(1+\sin^{2}\theta+\cos^{2}\theta+2\sin\theta+2\sin\theta\cos\theta+2\cos\theta\right)\left(1-\cos\theta\right)\right]}$$

$$= \lambda = \frac{\left[2(1+\sin\theta-\cos\theta-\sin\theta\cos\theta)\right]}{\left[2(1+\sin\theta+\cos\theta+\sin\theta\cos\theta);(1-\cos\theta)\right]}$$

$$= \lambda = \frac{\left[1+\sin\theta+\cos\theta+\sin\theta\cos\theta-\sin\theta\cos\theta+\cos\theta\right]}{\left[1+\sin\theta+\cos\theta+\sin\theta\cos\theta-\cos^{2}\theta-\sin\theta\cos^{2}\theta\right]}$$

$$\Rightarrow \lambda = \frac{1+\sin\theta-\cos^{2}\theta-\sin\theta\cos^{2}\theta}{1+\sin\theta-\cos^{2}\theta-\sin\theta\cos^{2}\theta}$$

## **Question 109**

If the sides of a  $\triangle ABC$  are in AP and a is the smallest side, then  $\cos A$ equals

### **Options:**

- A.  $\frac{3c-4b}{2c}$
- B.  $\frac{3c-4b}{2b}$
- C.  $\frac{4c-3b}{2c}$
- D.  $\frac{4c 3b}{2b}$

### **Answer: C**

## **Solution:**

#### Solution:

Given, a, b, c are in AP where a is the smallest side.  $\therefore 2b = a + c$   $\Rightarrow a = 2b - c$ Now,  $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ 

$$= \frac{b^2 + c^2 - (2b - c)^2}{2bc} \\
= \frac{b^2 + c^2 - 4b^2 - c^2 + 4bc}{2bc} \\
= \frac{-3b^2 + 4bc}{2bc} \\
\Rightarrow \cos A = \frac{4c - 3b}{2c}$$

The number of common tangents that can be drawn to the circles  $x^2 + y^2 - 4x - 6y - 3 = 0$  and  $x^2 + y^2 + 2x + 2y + 1 = 0$  is

#### **Options:**

A. 1

B. 2

C. 3

D. 4

Answer: C

## Solution:

Solution:

Given circles are  $x^2 + y^2 - 4x - 6y - 3 = 0 \dots$  (i) and  $x^2 + y^2 + 2x + 2y + 1 = 0 \dots$  (ii) For circle (i),  $g_1 = -2$ ,  $f_1 = -3$ ,  $c_1 = -3$   $\therefore$  Centre C<sub>1</sub>(2, 3) and  $r_1 = \sqrt{4} + 9 + 3 = 4$ and for circle (ii),  $g_2 = 1$ ,  $f_2 = 1$ ,  $c_2 = 1$   $\therefore$  Centre C<sub>2</sub>(-1, -1) and  $r_2 = \sqrt{1} + 1 - 1 = 1$ Now,  $C_1C_2 = \sqrt{(2+1)^2 + (3+1)^2} = \sqrt{9+16} = 5$ and  $r_1 + r_2 = 4 + 1 = 5$ So,  $C_1C_2 = r_1 + r_2$ Thus, both the circles touch each other externally. Hence, number of common tangents = 3

## **Question 111**

If two circles  $(x - 1)^2 + (y - 3)^2 = r^2$  and  $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then

### **Options:**

A. 2 < r < 8 B. r < 2

C. r = 2

D. *r* > 2

**Answer:** A

### Solution:

**Solution:** Given circles are  $(x-1)^2 + (y-3)^2 = r^2$ and  $x^2 + y^2 - 8x + 2y + 8 = 0$ For circle (i),  $C_1 = (1,3), r_1 = r$ For circle (ii)  $C_2 = (4, -1), r_2 = \sqrt{16 + 1 - 8} = 3$ Since, both the circles intersect in two distinct points, therefore  $r_1 - r_2 < C_1 C_2 < r_1 + r_2$   $\Rightarrow r - 3 < \sqrt{9} + 16 < r + 3$   $\Rightarrow r - 3 < 5 < r + 3$   $\Rightarrow r < 8$  and 2 < r $\Rightarrow 2 < r < 8$ 

-----

## **Question 112**

The equation of the tangent at the vertex of the parabola  $x^2 + 4x + 2y = 0$ , is

#### **Options**:

A. x = -2

B. *x* = 2

C. y = -2

D. y = 2

**Answer: D** 

### Solution:

```
Solution:

Given, equation of parabola

x^2 + 4x + 2y = 0

\Rightarrow x^2 + 4x + 4 = -2y + 4

\Rightarrow (x + 2)^2 = -2(y - 2)

\Rightarrow X^2 = -2Y

where X = x + 2 and Y = y - 2

Vertex of this parabola

X = 0, Y = 0

\Rightarrow x + 2 = 0, y - 2 = 0

\Rightarrow (-2, 2)

Now, equation of tangent at the vertex (-2, 2) of the given parabola is

x(-2) + 2(x - 2) + y + 2 = 0

\Rightarrow -2x + 2x - 4 + y + 2 = 0

\Rightarrow y = 2
```

\_\_\_\_\_

## **Question 113**

The distance between the directrices of the ellipse  $\frac{x^2}{4} + \frac{y^2}{9} = 1$  is

#### **Options:**

- A.  $\frac{9}{\sqrt{5}}$
- B.  $\frac{18}{\sqrt{5}}$
- C.  $\frac{24}{\sqrt{5}}$
- D. None of these

### **Answer: B**

## Solution:

Solution: We have, equation of ellipse  $\frac{x^2}{4} + \frac{y^2}{9} = 1$ Eccentricity of the ellipse  $e = \sqrt[4]{1 - \frac{a^2}{b^2}} = \sqrt[4]{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3}$ Now distance between the d Now, distance between the directries =  $\frac{2b}{e} = \frac{2 \cdot 3}{\sqrt{5}/3} = \frac{18}{\sqrt{5}}$ 

## **Question 114**

The ratio in which yz-plane divides the line joining (2, 4, 5) and (3, 5, 7) is

### **Options:**

A. -2:3

- B. 2:3
- C. 3:2

D. -3:2

**Answer:** A

### Solution:

Solution: Let the required ratio be  $m_1: m_2$ .  $\therefore \frac{m_1 x_2 + m_2 x_1}{m_1 + m_2} = 0$ 

 $\therefore x$  -coordinate on yz-plane is zero  $\Rightarrow \dot{m}_1 \times 3 + m_2 \times 2 = 0$  $\Rightarrow 3m_1 = -2m_2$  $\frac{m_1}{m_2} = \frac{-2}{3}$ 

If a line makes angles  $\alpha$ ,  $\beta$ ,  $\gamma$  with x-axis, y-axis and z-axis respectively, then  $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma$  equals

#### **Options:**

A. 1

B. 2

C. 3

D. -1

Answer: B

### Solution:

**Solution:** Since, the line makes angles  $\alpha$ ,  $\beta$ ,  $\gamma$  with x, y and z-axis respectively, therefore  $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$  $\Rightarrow 1 - \sin^2 \alpha + 1 - \sin^2 \beta + 1 - \sin^2 \gamma = 1$  $\Rightarrow \sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma = 2$ 

\_\_\_\_\_

## **Question 116**

# The length of the perpendicular from the point (1, 2, 3) on the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$ is

### **Options:**

A. 3 units

B. 4 units

C. 5 units

D. 7 units

Answer: D

## Solution:

#### Solution:

Let L be the foot of perpendicular drawn from the point P(1,2,3) to the given line. The coordinate of a general point on  $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2} = \lambda$  are given by  $(3\lambda + 6, 2\lambda + 7, -2\lambda + 7)$ Let this point be

$$P(1, 2, 3)$$

$$L$$
Now, direction ratios of PL are  
 $3\lambda + 6 - 1, 2\lambda + 7 - 2, -2\lambda + 7 - 3$   
i.e.,  $3\lambda + 5, 2\lambda + 5, -2\lambda + 4$   
and direction cosines of given line are  $3, 2, -2$ .  
 $\therefore$  PL is perpendicular to the given line.  
 $3(3\lambda + 5) + 2(2\lambda + 5) + (-2)(-2\lambda + 4) = 0$   
 $\Rightarrow \lambda = -1$   
 $\therefore L(3 \times -1 + 6, 2 \times -1 + 7, -2 \times -1 + 7)$   
 $= L(3, 5, 9)$   
 $\therefore PL = \sqrt{(3 - 1)^2 + (5 - 2)^2 + (9 - 3)^2}$   
 $= 7$  units

## **Question 117**

The equation of the plane passing through the intersection of the planes 2x - 3y + z - 4 = 0 and x - y + z + 1 = 0 and perpendicular to the plane x + 2y - 3z + 6 = 0 is

#### **Options:**

- A. x 5y + 3z 23 = 0
- B. x 5y 3z 23 = 0
- C. x + 5y 3z + 23 = 0
- D. x 5y + 3z + 23 = 0

#### **Answer: B**

### Solution:

#### Solution:

The equation of a plane passing through the intersection of the planes 2x - 3y + z - 4 = 0 and x - y + z + 1 = 0  $\Rightarrow (2 + \lambda)x + (-3 - \lambda)y + (1 + \lambda)z + \lambda - 4 = 0 \dots$  (i) But plane (i) is perpendicular to the plane x + 2y - 3z + 6 = 0  $\therefore (2 + \lambda)1 + (-3 - \lambda)2 + (1 + \lambda)(-3) = 0$   $\Rightarrow 2 + \lambda - 6 - 2\lambda - 3 - 3\lambda = 0$   $\Rightarrow -4\lambda - 7 = 0$   $\Rightarrow \lambda = \frac{-7}{4}$ Putting this value of  $\lambda$  in Eq. (i), we get the required equation of plane  $(2 - \frac{7}{4})x + (-3 + \frac{7}{4})y + (1 - \frac{7}{4})z$  $+ (-4 - \frac{7}{4}) = 0$ 

# The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$ , z = 2 and $\frac{x-1}{1} = \frac{y+3}{3} = \frac{z+5}{2}$ is

### **Options:**

A.  $\cos^{-1}(\frac{-3}{\sqrt{182}})$ B.  $\cos^{-1}(\frac{5}{\sqrt{182}})$ C.  $\cos^{-1}(\frac{3}{\sqrt{182}})$ D.  $\cos^{-1}(\frac{-5}{\sqrt{182}})$ 

#### **Answer: A**

### **Solution:**

Solution:

**Solution:** Given lines are  $\frac{x-2}{3} = \frac{y+1}{-2} = \frac{z-2}{0} \dots (i)$ and  $\frac{x-1}{1} = \frac{y+3}{3} = \frac{z+5}{2} \dots (ii)$ Here,  $a_1 = 3, b_1 = -2, c_1 = 0$ If  $\theta$  be the angle between both the lines, then  $a_2 = 1, b_2 = 3, c_2 = 2$   $\cos \theta = \frac{a_1a_2 + b_1b_2 + c_1c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2}\sqrt{a_2^2 + b_2^2 + c_2^2}}$   $\Rightarrow \theta = \cos^{-1}(\frac{(3)(1) + (-2)(3) + (0)(2)}{\sqrt{9 + 4} + 0\sqrt{1 + 9 + 4}})$   $\Rightarrow \theta = \cos^{-1}(\frac{-3}{\sqrt{13}\sqrt{14}})$   $\Rightarrow \theta = \cos^{-1}(\frac{-3}{-3})$  $\Rightarrow \theta = \cos^{-1}(\frac{-3}{\sqrt{182}})$ 

\_\_\_\_\_

## **Question 119**

The scalar  $A \cdot \{(B + C) \times (A + B + C)\}$  equals

#### **Options:**

A. [*ABC*][*BCA*]

C. 0

D. None of these

Answer: C

## Solution:

Solution:  $A \cdot \{(B+C) \times (A+B+C)\}\$   $= A \cdot \{(B+C) \times A + (B+C) \times (B+C)\}\$   $= A \cdot \{(B+C) \times A + 0\}\$   $= A \cdot \{(B+C) \times A\} = [A(B+C)A]\$ = 0

-----

## **Question 120**

The points with position vectors 60i + 3j, 40i - 8j and ai -52j are collinear, if

### **Options:**

A. a = -40

B. a = 40

C. a = -20

D. a = 20

**Answer:** A

### Solution:

#### Solution:

Given that the points with position vectors 60i + 3j, 40i - 8j and i - 52j are collinear, then there exist three scalars 1, x and y such that  $1 + x + y = 0 \dots$  (i) and  $(60i + 3j) \cdot 1 + (40i - 8j) \cdot x$  $+(ai - 52j) \cdot y = 0$  $\Rightarrow (60 + 40x + ay)i + (3 - 8x - 52y)j = 0$ = 0i + 0jComparing both sides, we get  $60 + 40x + ay = 0 \dots$  (ii) and  $3 - 8x - 52y = 0 \dots$  (iii)

Solving Eqs. (i) and (iii), we get  $x = \frac{-5}{4}, y = \frac{1}{4}$ Then, from Eq. (ii),  $60 + 40(\frac{-5}{4}) + a(\frac{1}{4}) = 0$  $\Rightarrow \frac{a}{4} = -10 \Rightarrow a = -40$ 



## **Question 121**

$$\lim_{x \to 5} \frac{x-5}{|x-5|}$$
 equals

#### **Options:**

- A. 2
- B. 0
- C. -2

D. None of these

### Answer: D

## Solution:

Solution:  $\lim_{x \to 5} \frac{x-5}{|x-5|}$ Taking LHL, we get  $\lim_{x \to 5^{-}} \frac{x-5}{|x-5|}$   $= \lim_{h \to 0^{-}} \frac{5-h-5}{|5-h-5|}$   $= \lim_{h \to 0^{-}} \frac{-h}{|-h|}$   $= \lim_{h \to 0^{-}} \frac{-h}{h} = -1$ and RHL,  $\lim_{x \to 5^{+}} \frac{x-5}{|x-5|}$   $= \lim_{h \to 0^{+}} \frac{5+h-5}{|5+h-5|}$   $= \lim_{h \to 0^{+}} \frac{h}{|h|}$   $= \lim_{h \to 0^{+}} \frac{h}{h} = 1$ Since, LHL  $\neq$  RHL  $\therefore$  Limit does not exist.

## **Question 122**

$$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(\frac{\pi}{3} - x\right)}{2\cos x - 1} \text{ is equal to}$$

### **Options:**

A.  $\frac{1}{2}$ B.  $\frac{1}{\sqrt{3}}$ C.  $\frac{-1}{\sqrt{3}}$ 



### Answer: B

### Solution:

Solution:  

$$\lim_{x \to \frac{\pi}{3}} \frac{\sin(\frac{\pi}{3} - x)}{2\cos x - 1}$$

$$= \lim_{x \to \frac{\pi}{3}} \frac{\cos(\frac{\pi}{3} - x)(-1)}{-2\sin x}$$

$$= \lim_{x \to \frac{\pi}{3}} \frac{\cos(\frac{\pi}{3} - x)}{2\sin x}$$

$$= \frac{\cos(\frac{\pi}{3} - \frac{\pi}{3})}{2\sin \frac{\pi}{3}}$$

$$= \frac{1}{2 \cdot \frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}$$

## **Question 123**

 $sin^{-1}(\frac{1+x^2}{2x})$  is

#### **Options:**

- A. continuous but not differentiable at x = 1
- B. differentiable at x = 1
- C. neither continuous nor differentiable at x = 1

\_\_\_\_\_

D. continuous everywhere

#### **Answer:** A

### Solution:

Solution: Given function  $sin^{-1}(\frac{1+x^2}{2x})$ At x = 1, LHL  $\lim_{h \to 0^-} sin^{-1} \left[ \frac{1+(1-h)^2}{2(1-h)} \right]$   $= sin^{-1}(\frac{1+1}{2}) = \frac{\pi}{2}$ and RHL  $\lim_{h \to 0^+} sin^{-1} \left[ \frac{1+(1+h)^2}{2(1+h)} \right]$   $= sin^{-1}(\frac{2}{2}) = \frac{\pi}{2}$ and  $f(1) = sin^{-1}(\frac{2}{2}) = \frac{\pi}{2}$ Thus, given function is continuous at x = 1.

Now, 
$$\frac{d}{dx} \{ \sin^{-1}(\frac{1+x^2}{2x}) \}$$
  

$$= \frac{1}{\sqrt{1-(\frac{1+x^2}{2x})^2}} \cdot \left[ \frac{2x(2x) - (1+x^2) \cdot 2}{(2x)^2} \right]$$

$$= \frac{\frac{2x}{\sqrt{4x^2 - (1+x^4 + 2x^2)}}}{\frac{2x^2 - 1}{\sqrt{-(1+x^4 - 2x^2)} \cdot (2x)}} \cdot \frac{\frac{2x^2 - 1}{(2x)^2}}{(2x)^2}$$

$$= \frac{\frac{2x^2 - 1}{2x\sqrt{-(1-x^2)^2}}}{\sqrt{-(1-x^2)^2}}$$
which does not exist at x = 1.  
Hence, given function is not differentiable at x = 1.

If 
$$\sqrt{x^2 + y^2} = a \tan^{-1}(\frac{y}{x}), a > 0$$
, then  $\frac{d^2y}{dx^2}$  at  $x = 0$  is

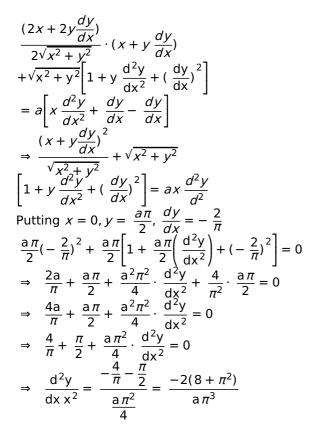
\_\_\_\_\_

#### **Options:**

A. 0

B. 
$$\frac{2}{a}e^{-\frac{\pi}{2}}$$

$$C. - \frac{2}{a}e^{-\frac{n}{2}}$$


D. None of these

#### **Answer: D**

### Solution:

Solution:  $\sqrt{x^2 + y^2} = \operatorname{atan}^{-1}(\frac{y}{x}) \dots$  (i) Putting x = 0, we get  $y = \operatorname{atan}^{-1}(\infty)$   $y = \frac{a\pi}{2}$  $y = \frac{a\pi}{2}$ Now, differentiating Eq. (i) w.r.t. x, we get  $\frac{(2x+2y\frac{dy}{dx})}{2\sqrt{x^2+y^2}} = a \cdot \frac{1}{1+\frac{y^2}{x^2}} \cdot \left\{ \frac{x\frac{dy}{dx}-y \cdot 1}{x^2} \right\}$   $\Rightarrow \frac{x+y\frac{dy}{dx}}{\sqrt{x^2+y^2}} = \frac{ax^2}{x^2+y^2} \left\{ \frac{x\frac{dy}{dx}-y}{x^2} \right\}$   $\Rightarrow \sqrt{x^2+y^2}(x+y\frac{dy}{dx}) = a(x\frac{dy}{dx}-y) \dots (ii)$ At  $x = 0, y = \frac{a\pi}{2},$   $\frac{a\pi}{2}[\frac{a\pi}{2} \cdot \frac{dy}{dx}] = a[-\frac{a\pi}{2}]$   $\frac{\pi}{2} \cdot \frac{dy}{dx} = -1$   $\frac{dy}{dx} = -\frac{2}{\pi}$ Again, differentiating Eq. (ii). wr the we get

Again, differentiating Eq. (ii), w.r.t. x, we get



Find C of Lagrange's mean value theorem for the function  $f(x) = 3x^2 + 5x + 7$  in the interval [1, 3].

#### **Options:**

A.  $\frac{7}{3}$ B. 2 C.  $\frac{3}{2}$ D.  $\frac{4}{3}$ 

**Answer: B** 

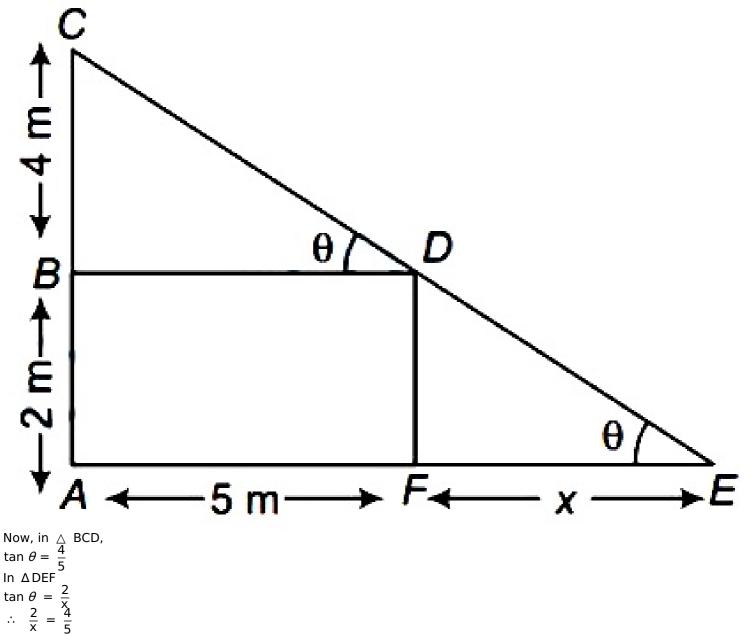
### Solution:

#### Solution:

Solution: Given,  $f(x) = 3x^2 + 5x + 7$  and interval [1,3] Now,  $f(c) = 3c^2 + 5c + 7$   $\Rightarrow f'(c) = 6c + 5$ But  $f'(c) = \frac{f(3) - f(1)}{3 - 1}$   $= \frac{49 - 15}{2} = \frac{34}{2} = 17$   $\therefore 6c + 5 = 17$   $\Rightarrow 6c = 12$ 

A man 2m tall walks at a uniform speed of 5 km / h away from a lamp post 6m high. The rate at which the length of his shadow increases, is

### **Options:**


- A. 2.5 km / h
- B. 5 km / h
- C. 15 km / h
- D.  $\frac{5}{3}$  km / h

### Answer: A

## Solution:

#### Solution:

Let the person reaches F from the lamp post A and let his shadow is EF.



\_\_\_\_\_

## **Question 127**

 $\int \frac{dx}{x(x^n+1)}$  is equal to

## **Options:**

A. 
$$\frac{1}{n}\log_e(\frac{x^n}{x^n+1}) + C$$
  
B.  $-\frac{1}{n}\log_e(\frac{x^n+1}{x^n}) + C$ 

C. 
$$\log_{e}(\frac{x^{n}}{x^{n}+1}) + C$$

D. None of the above

### Answer: A

## Solution:

Solution:  
Let 
$$I = \int \frac{dx}{x(x^n + 1)}$$
  
Put  $x^n = t$   
 $\Rightarrow nx^{n-1}dx = dt$   
 $\therefore I = \int \frac{dt}{nx n^{n-1} \cdot x(t+1)} = \int \frac{dt}{nt(t+1)}$   
 $= \frac{1}{n} \int (\frac{1}{t} - \frac{1}{t+1}) dt$   
 $= \frac{1}{n} [\log_e t - \log_e (t+1)] + C$   
 $\Rightarrow I = \frac{1}{n} \log_e (\frac{t}{t+1}) + C$   
 $\Rightarrow I = \frac{1}{n} \log_e (\frac{x^n}{x^n+1}) + C$ 

\_\_\_\_\_

## **Question 128**

Evaluate 
$$\int \frac{dx}{x(x^5+2)}$$

### **Options:**

A. 
$$\frac{1}{10} \log \left| \frac{x^5 + 1}{x^5 + 2} \right| + C$$
  
B.  $\frac{1}{5} \log \left| \frac{x^5}{x^5 + 2} \right| + C$ 

C. 
$$\frac{1}{10} \log \left| \frac{x^5}{x^5 + 2} \right| + C$$
  
D.  $\frac{1}{5} \log \left| \frac{x^5 + 1}{x^5 + 2} \right| + C$ 

### Answer: C

## Solution:

## Solution:

Let 
$$I = \int \frac{dx}{x(x^5 + 2)}$$
  
Put  $x^5 + 2 = t$   
Then,  $5x^4 dx = dt$   
 $\therefore I = \int \frac{dt}{5x^4 \cdot x(t)}$   
 $= \int \frac{dt}{5(t-2)t}$   
 $\Rightarrow I = \frac{1}{5}\int \frac{1}{2} \cdot \frac{2}{t(t-2)} dt$   
 $= \frac{1}{10}\int(\frac{1}{t-2} - \frac{1}{t}) dt$   
 $= \frac{1}{10}\log(\frac{t-2}{t}) + C$   
 $\Rightarrow I = \frac{1}{10}\log(\frac{x^5}{x^5+2}) + C$ 

## **Question 129**

$$\int_{2}^{3} \frac{\sqrt{x}}{\sqrt{5} - x + \sqrt{x}} dx$$
 is equal to

\_\_\_\_\_

## **Options:**

- A.  $\frac{1}{4}$ B. 1
- D. 1
- C.  $\frac{3}{2}$
- D.  $\frac{1}{2}$

### Answer: B

## Solution:

Solution:  
Let 
$$I = \int_{2}^{3} \frac{\sqrt{X}}{\sqrt{5 - x} + \sqrt{X}} dx \dots (i)$$
  
 $\Rightarrow I = \int_{2}^{3} \frac{\sqrt{2 + 3 - x}}{\sqrt{2 + 3 - (5 - x)} + \sqrt{2 + 3 - x}} dx$   
 $\Rightarrow I = \int_{2}^{3} \frac{\sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} dx \dots (ii)$   
Adding Eqs. (i) and (ii), we get

$$2I = \int_{2}^{3} \left( \frac{\sqrt{x} + \sqrt{5 - x}}{\sqrt{x} + \sqrt{5 - x}} \right) dx$$
$$= \int_{2}^{3} 1 dx = [x]_{2}^{3} = 1$$
$$\Rightarrow I = \frac{1}{2}$$

\_\_\_\_\_

## **Question 130**

If 
$$I = \int_{-1}^{1} \left( \frac{x^2 + \sin x}{1 + x^2} \right) dx$$
, then its value is

### **Options:**

A. 0

- B. 2 +  $\frac{\pi}{2}$
- C. 2  $\frac{\pi}{2}$
- D.  $\frac{\pi}{2} 2$

## Answer: C

## Solution:

Solution:  

$$I = \int_{-1}^{1} \left( \frac{x^2 + \sin x}{1 + x^2} \right) dx$$

$$= \int_{-1}^{1} \frac{x^2}{1 + x^2} dx + \int_{-1}^{1} \frac{\sin x}{1 + x^2} dx$$

$$= 2 \int_{0}^{1} \frac{x^2}{1 + x^2} dx + 0$$

$$= 2 \int_{0}^{1} (1 - \frac{1}{1 + x^2}) dx$$

$$= 2[x - \tan^{-1}x]_{0}^{1}$$

$$= 2[1 - \tan^{-1}(1) - 0 + \tan^{-1}(0)]$$

$$= 2[1 - \frac{\pi}{4}]$$

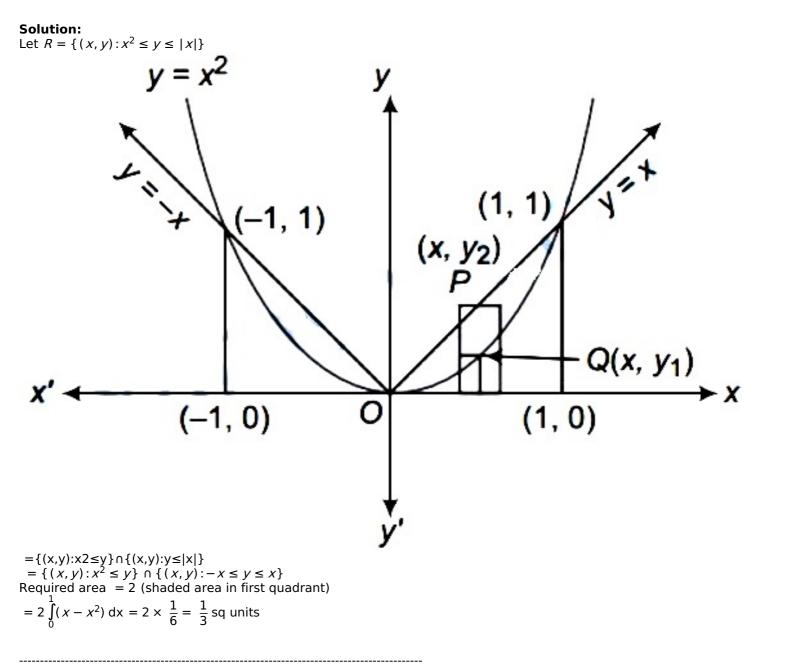
$$= 2 - \frac{\pi}{2}$$

------

## **Question 131**

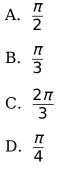
Find the area of the region  $\{(x, y): x^2 \le y \le x|\}$ 

### **Options:**


A.  $\frac{1}{3}$  sq units

C

- B.  $\frac{2}{3}$  sq units
- C.  $\frac{4}{3}$  sq units
- D. None of these


### Answer: A

## Solution:



## **Question 132**

Determine the area included between the curve  $y = \cos^2 x$ ,  $0 \le x \le \frac{\pi}{2}$  and the axes.



#### **Answer: D**

### **Solution:**

Solution:

Solution: Required area  $= \int_{0}^{\pi/2} \cos^{2} x \, dx$   $= \int_{0}^{\pi/2} (\frac{1 + \cos 2x}{2}) \, dx$   $= [\frac{1}{2} \cdot x + \frac{1}{2} \sin 2x \cdot \frac{1}{2}]_{0}^{\pi/2}$   $= \frac{1}{2} \cdot \frac{\pi}{2} + 0 + 0 - 0$   $= \frac{\pi}{4}$ 

## **Question 133**

### The differential equation whose solution represents the family $y = ae^{3x} + be^{x}$ is given by

#### **Options:**

- A.  $\frac{d^2y}{dx^2} 4\frac{dy}{dx} 3y = 0$
- B.  $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} 3y = 0$
- C.  $\frac{d^2y}{dx^2} 4\frac{dy}{dx} + 3y = 0$
- D. None of the above

**Answer: C** 

### Solution:

#### Solution:

Solution: We have,  $y = ae^{3x} + be^{x} \dots$  (i)  $\Rightarrow \frac{dy}{dx} = 3a^{3x} + be^{x} \dots$  (ii) and  $\frac{d^{2}y}{dx^{2}} = 9a^{3x} + be^{x} \dots$  (ii)

Now,  $\frac{d^2y}{dx^2} - \frac{4dy}{dx} + 3y$  $= 9ae^{3x} + be^x - 12ae^{3x} - 4e^x$  $\Rightarrow \frac{d^2y}{dx^2} - \frac{4dy}{dx} + 3y = 0 + 3e^{3x} + 3be^x$ Which is the required differential equation.

## **Question 134**

Solve  $\frac{2dy}{dx} = \frac{y}{x} + \frac{y}{x^2}$ 

### **Options:**

A.  $y = x + C_{\sqrt{XY}}$ 

B.  $y = x - C\sqrt{xy}$ C.  $y = x + Cy\sqrt{x}$ 

D.  $y = x + C_{\sqrt{y}}$ 

### Answer: C

### Solution:

Solution:  $2 \frac{dy}{dx} = \frac{y}{x} + \frac{y^2}{x^2} \dots (i)$ Put  $\frac{y}{x} = v$   $\Rightarrow y = vx$   $\Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$ Then, Eq. (i) becomes,  $2v + 2x \frac{dv}{dx} = v^2 + v$   $\Rightarrow 2x \frac{dv}{dx} = v^2 - v$   $\Rightarrow 2x \frac{dv}{dx} = v^2 - v$   $\Rightarrow 2 \cdot \frac{dv}{v^2 - v} = \frac{dx}{x}$   $\Rightarrow \int \frac{dv}{v^2 - v} = \frac{1}{2} \int \frac{dx}{x}$   $\Rightarrow \int (\frac{1}{v - 1} - \frac{1}{v}) dv = \frac{1}{2} \int \frac{dx}{x}$   $\Rightarrow \log(\frac{v - 1}{v}) = \frac{1}{2} \log x + \log C$   $\Rightarrow \log \frac{v - 1}{v} = \log \sqrt{x}C$   $\Rightarrow \frac{v - 1}{y} = \sqrt{x}C$   $\Rightarrow \frac{y - x}{y} = C\sqrt{x}$ 

### ------

## **Question 135**

Seven weddings occur in a week. What is the probability that they happen on the same day?

#### **Options:**



C. 
$$\frac{1}{7^6}$$

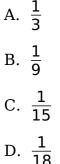
D. None of these

### **Answer: C**

### Solution:

Solution:

First wedding can be occured in a week in 7 ways. Similarly, second, third , ..., seventh wedding can also be occured in 7 ways.


 $\therefore$  Total number of cases of occuring the weddings = 7<sup>7</sup> Number of cases that these weddings occur on the same day = 7  $\therefore$  Required probability =  $\frac{7}{7^7} = \frac{1}{7^6}$ 

\_\_\_\_\_

## **Question 136**

Two small squares on a chess board are chosen at random. Probability that they have a common side is

### **Options:**



### **Answer: D**

### Solution:

#### Solution:

Two squares can be chosen in a single row by 7 ways as there are 8 squares in each row. But there are 8 rows. So, number of ways to choose two squares in any of the row  $= 7 \times 8 = 56$ . Similarly, number of ways to choose two squares in any of the column = 56

$$\therefore$$
 Total number of favourable cases = 56 + 56  
64  $\times$  63

= 112 and total number of cases = 
$${}^{64}C_2 = \frac{64 \times 63}{2} = 32 \times 63$$

 $\therefore$  Required probability =  $\frac{112}{32 \times 63} = \frac{1}{18}$ 

A die is thrown 7 times. What is the chance that an odd number turns up exactly 4 times?

**Options:** 

A.  $\frac{35}{128}$ 

B.  $\frac{37}{128}$ 

C.  $\frac{4}{7}$ 

D.  $\frac{43}{128}$ 

Answer: A

### Solution:

#### Solution:

Required probability is given by  ${}^{n}C_{r}p^{r}q^{n-r}$ where n = 7, r = 4, p = q =  $\frac{1}{2}$   $\therefore$  Required probability =  ${}^{7}C_{4}(\frac{1}{2})^{4}(\frac{1}{2})^{3}$ =  $\frac{7 \times 6 \times 5 \times 4}{4 \times 3 \times 2 \times 1} \cdot \frac{1}{2^{7}} = \frac{35}{128}$ 

\_\_\_\_\_

## **Question 138**

Find the regression coefficient  $b_{xy}$  for the data  $\Sigma x = 32$ ,  $\Sigma y = 24$ ,  $\Sigma xy = 218$ ,  $\Sigma x^2 = 216$ ,  $\Sigma y^2 = 246$  and n = 8

#### **Options:**

A. 0.3

B. 0.7

C. 0.8

D. 0.6

#### Answer: B

### Solution:

**Solution:** Regression coefficient  $b_{xy} = \frac{n \Sigma xy - \Sigma x \Sigma y}{n \Sigma y^2 - (\Sigma y)^2}$ 

⇒  $b_{xy} = \frac{8 \times 218 - 32 \times 24}{8 \times 246 - (24)^2}$ ⇒  $b_{xy} = \frac{1744 - 768}{1968 - 576}$ ⇒  $b_{xy} = \frac{976}{1392} = 0.7$ 

# If two regression coefficients are found to be -0.6 and -1.4, the correlation coefficient will be

**Options**:

A. 0.92

B. 0.43

C. -0.43

D. -0.92

**Answer: D** 

### **Solution:**

**Solution:** We known that the correlation coefficient is the GM of regression coefficient.  $\therefore$  Required correlation coefficient  $= -\sqrt{(-0.6)(-1.4)} = -\sqrt{0.84} = -0.916$  $\approx -0.92$ 

-----

\_\_\_\_\_

## **Question 140**

The iteration formula  $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$  is commonly known as

### **Options:**

- A. Bisection method
- B. Newton-Raphson method
- C. False-positions method
- D. None of the above

### Answer: B

### Solution:

**Solution:** The iteration formula  $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$ is commonly known as Newton-Raphson method.

\_\_\_\_\_

## **Question 141**

## Which of the following methods is surely convergent?

### **Options:**

- A. Regula-Falsi method
- B. Bolzano method
- C. Both (a) and (b)
- D. Neither (a) nor (b)

### Answer: C

### Solution:

#### Solution:

Both Regula-falsi method and Bolzano method are convergent.

-----

## **Question 142**

A curve is drawn to pass through the points given by the following table.

| x | 1 | 1.5 | 2   | 2.5 | 3 | 3.5 | 4   |
|---|---|-----|-----|-----|---|-----|-----|
| у | 2 | 2.4 | 2.7 | 2.8 | 3 | 2.6 | 2.1 |

Using Simpson's 1/3rd rule, estimate the area bounded by the curve, the x-axis and the lines x = 1, x = 4

### **Options:**

A. 7.74 sq units

B. 7.76 sq units

C. 7.78 sq units

D. 7.82 sq units

#### Answer: C

### Solution:

### Solution:

We have,

| x | 1              | 1.5            | 2              | 2.5            | 3              | 3.5            | 4              |
|---|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| у | 2              | 2.4            | 2.7            | 2.8            | 3              | 2.6            | 2.1            |
|   | y <sub>0</sub> | y <sub>1</sub> | у <sub>2</sub> | y <sub>3</sub> | y <sub>4</sub> | y <sub>5</sub> | y <sub>6</sub> |

Here, h = 1.5 - 1 = 0.5, n = 6 Simpson's  $\frac{1}{3}$  rd rule is  $\int_{a}^{b} f(x) dx = \frac{h}{3}[(y_{0} + y_{n}) + 4(y_{1} + y_{3} + ...) + 2(y_{2} + y_{4} + ...)]$   $\therefore \int_{a}^{4} f(x) dx = \frac{0.5}{3}[(2 + 2.1) + 4(2.4 + 2.8 + 2.6) + 2(2.7 + 3)]$   $= \frac{0.5}{3}[4.1 + 4(7.8) + 2(5.7)]$   $= \frac{0.5}{3}[4.1 + 31.2 + 11.4]$  = 7.78 squnits

## **Question 143**

Which of these methods for numerical integration is also called as parabolic formula?

### **Options:**

- A. Simpson's one-third rule
- B. Simpson's three-eighth's rule
- C. Trapezoidal rule
- D. None of the above

### Answer: A

### Solution:

-----

## **Question 144**

Calculate by Trapezoidal rule an approximate value of  $\int_{-3}^{3} x^4 dx$  by taking seven equidistant ordinates

### **Options:**

A. 98

B. 97.2

C. 100

D. 115

Answer: D

### Solution:

### Solution:

We know the trapezoidal rule

 $\int_{a}^{b} f(x) dx$ =  $h[\frac{1}{2}(y_0 + y_n) + (y_1 + y_2 + ... + y_{n-1})]$ For seven ordinates, n = 6 $\therefore h = \frac{3 - (-3)}{6} = \frac{6}{6} = 1$ Now,

| х                     | -3 | -2 | -1 | 0 | 1 | 2  | 3  |
|-----------------------|----|----|----|---|---|----|----|
| <i>x</i> <sup>4</sup> | 81 | 16 | 1  | 0 | 1 | 16 | 81 |

 $\therefore \int_{-3}^{3} x^4 dx$ = 1[  $\frac{1}{2}(81 + 81) + (16 + 1 + 0 + 1 + 16)$ ] = 81 + 34 = 115

## **Question 145**

A gigabyte (GB) refers to

### **Options:**

- A.  $2^{10}$  bytes
- B. 2<sup>20</sup> bytes
- C.  $2^{30}$  bytes
- D.  $2^{40}$  bytes

#### **Answer: C**

### Solution:

Solution:  $1 \text{ GB} = 2^{30} \text{ bytes.}$ 

\_\_\_\_\_

## **Question 146**

### Which of the following is a peripheral device?

### **Options:**

- A. Visual display unit
- B. Hard disk drive
- C. Floppy disk drive
- D. All of the above

**Answer: D** 

Solution:

**Solution:** Visual display unit, Hard disk drive and floppy disk drive, all are peripheral device.

\_\_\_\_\_

## **Question 147**

## Which of the following is not a general purpose application software?

#### **Options:**

- A. Word processors
- B. Programs for playing games

- C. Spread-sheets
- D. Data communication software

#### Answer: B

### Solution:

**Solution:** Programs for playing games is not a general purpose application software.

-----

## **Question 148**

## The value of $(1 + i)^3 + (1 - i)^6$ is

#### **Options:**

A. i

B. 2(−1 + 5i)

C. 1 – 5*i* 

D. 2 + 1 - 5i

**Answer: B** 

### Solution:

Solution:  $\begin{aligned} &\&(1+i)^3 + (1-i)^6 \\ &= (1+i)^3 + [(1-i)^3]^2 \\ &= 1+i^3 + 3i(1+i) + [1-i^3 - 3i(1-i)]^2 \\ &= 1-i+3i-3 + (1+i-3i-3)^2 \\ &= -2+2i + (-2-2i)^2 \\ &= -2+2i + 4 + 4i^2 + 8i \\ &= -2+2i + 4 - 4 + 8i \\ &= 10i-2 = 2(-1+5i) \end{aligned}$ 

## **Question 149**

The equation of the normal to the hyperbola  $x^2 - 16y^2 - 2x - 64y - 72 = 0$  at the point (-4, -3) is

#### **Options:**

A. 5x + 16y + 79 = 0

B. 16x + 5y + 97 = 0

C. 16x + 5y + 79 = 0

D. 5x + 16y + 97 = 0

**Answer: C** 

### **Solution:**

#### Solution:

First, we find the equation of tangent to the hyperbola  $x^{2} - 16y^{2} - 2x - 64y - 72 = 0 ... (i)$ at the point (-4, -3), which is given by -4x + 48y - (x - 4) - 32(y - 3) - 72 = 0 ⇒ -4x + 48y - x + 4 - 32y + 96 - 72 = 0 ⇒ -5x + 16y + 28 = 0 ... (ii) Required normal is the normal to the tangent (ii), which is given by 16x + 5y + c = 0But it passes through (-4, -3).  $\therefore -64 - 15 + c = 0 \dots$  (iii) ⇒c = 79 Putting this value in Eq. (iii), we get 16x + 5y + 79 = 0Which is the required normal.

\_\_\_\_\_

## **Question 150**

**Solve** 
$$(x + 2y^3) \frac{dy}{dx} = y, y > 0$$

#### **Options:**

A. 
$$y = x^{3} + Cy$$
  
B.  $x = y^{3} + Cy$   
C.  $y = x^{3} - Cy$   
D.  $x = y^{3} - Cy$ 

### **Answer: D**

### **Solution:**

Solution:  

$$(x + 2y^3) \frac{dy}{dx} = y, y > 0$$
  
 $\Rightarrow (x + 2y^3) dy = y dx$ 

⇒

$$\Rightarrow 2y^3 dy = y dx - x dy$$
  
$$\Rightarrow 2y dy = \frac{y dx - x dy}{y dx - x dy}$$

 $y^2$ 

\_\_\_\_\_

On integrating,

$$\frac{2y^2}{2} = \frac{x}{y} + C$$
  

$$y^3 = \frac{x}{y} + C$$
  

$$\Rightarrow y^3 = x + Cy$$
  

$$\Rightarrow x = y^3 - Cy$$