Chapter 5

Continuity and Differentiability

Exercise 5.5

Q. 1 Differentiate the functions given in w.r.t. x.

 $\cos x \cdot \cos 2x \cdot \cos 3x$

Answer:

Given: $\cos x \cdot \cos 2x \cdot \cos 3x$

Let $y = \cos x \cdot \cos 2x \cdot \cos 3x$

Taking log on both sides, we get

$$\log y = \log (\cos x. \cos 2x. \cos 3x)$$

$$\Rightarrow$$
 log $y = \log(\cos x) + \log(\cos 2x) + \log(\cos 3x)$

Now, differentiate both sides with respect to x

$$\frac{d}{dx}(\log y) = \frac{d}{dx}\log(\cos x) + \frac{d}{dx}\log(\cos 2x) + \frac{d}{dx}(\log\cos 3x)$$

$$= \frac{1}{y}\frac{dy}{dx} = \frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x) + \frac{1}{\cos 2x} \cdot \frac{d}{dx}(\cos 2x) + \frac{1}{\cos 3x}\frac{d}{dx}(\cos 3x)$$

$$= \frac{dy}{dx} = y \left[-\frac{\sin x}{\cos x} - \frac{\sin 2x}{\cos 2x} \cdot \frac{d}{dx}(2x) - \frac{\sin 3x}{\cos 3x}\frac{d}{dx}(3x) \right]$$

$$= \frac{dy}{dx} = -\cos x \cdot \cos 2x \cdot \cos 3x \left[\tan x + \tan 2x (2) + \tan 3x (3) \right]$$

$$= \frac{dy}{dx} = -\cos x \cdot \cos 2x \cdot \cos 3x \left[\tan x + 2 \tan 2x + 3 \tan 3x \right]$$

Q. 2 Differentiate the functions given in w.r.t. x.

 $(\log x)^{\cos x}$

Answer:

Given: $(\log x)^{\cos x}$

Let $y = (\log x)^{\cos x}$

Taking log on both sides, we get

$$\log y = \log (\log x)^{\cos x}$$

$$\Rightarrow \log y = \cos x \cdot \log (\log x)$$

Now, differentiate both sides with respect to x

$$\frac{d}{dx}(\log y) = \frac{d}{dx}[\cos x.\log(\log x)]$$

$$= \frac{1}{y}\frac{dy}{dx} = \cos x.\frac{d}{dx}(\log(\log x)) + \log(\log x).\frac{d}{dx}(\cos x)$$

$$= \frac{dy}{dx} = y\left[\cos x.\frac{1}{\log x}.\frac{d}{dx}(\log x) + \log(\log x).(-\sin x)\right]$$

$$= \frac{dy}{dx} = (\log x)^{\cos x}\left[\cos x.\frac{1}{\log x}.\frac{1}{x} + \log(\log x).(-\sin x)\right]$$

$$= \frac{dy}{dx} = (\log x)^{\cos x}\left[\frac{\cos x}{x.\log x} - (\sin x).\log(\log x)\right]$$

Q. 4 Differentiate the functions given in w.r.t. x.

$$x^x - 2^{\sin x}$$

Answer:

Given: $x^x - 2^{\sin x}$

Let
$$y = x^x - 2^{\sin x}$$

Let
$$y = \mathbf{u} - \mathbf{v}$$

$$\Rightarrow$$
 u = xx and v = $2^{\sin}x$

For,
$$u = x^x$$

Taking log on both sides, we get

$$\log u = \log x^x$$

$$\Rightarrow$$
log u = x. log(x)

Now, differentiate both sides with respect to x

$$= \frac{d}{dx}(\log u) = \frac{d}{dx}[x.\log(x)]$$

$$= \frac{1}{u} \frac{du}{dx} = x \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx} (x)$$

$$= \frac{du}{dx} = u \left[x \cdot \frac{1}{x} + \log x \cdot (1) \right]$$

$$= \frac{du}{dx} = x^x (1 + \log x)$$

For,
$$v = 2\sin x$$

Taking log on both sides, we get

$$\log v = \log 2^{\sin x}$$

$$\Rightarrow \log v = \sin x \cdot \log (2)$$

Now, differentiate both sides with respect to x

$$= \frac{d}{dx}(\log v) = \frac{d}{dx}[\sin x.\log(2)]$$

$$= \frac{1}{v} \frac{dv}{dx} = \log 2 \cdot \frac{d}{dx} (\sin x)$$

$$=\frac{dv}{dx}=v[\log 2.(\cos x)]$$

$$=\frac{dv}{dx}=2^{\sin x}.\cos x \log 2$$

Because, y = u - v

$$= \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

$$dy/dx = x^x (1 + \log x) - 2\sin x \cdot \cos x \cdot \log 2$$

Q. 5 Differentiate the functions given in w.r.t. x.

$$(x+3)^2$$
. $(x+4)^3$. $(x+5)^4$

Answer:

Given:
$$(x + 3)^2$$
. $(x + 4)^3$. $(x + 5)^4$

Let
$$y = (x + 3)^2$$
. $(x + 4)^3$. $(x + 5)^4$

Taking log on both sides, we get

$$\log y = \log ((x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4)$$

$$\Rightarrow \log y = \log (x+3)^2 + \log (x+4)^3 + \log (x+5)^4$$

$$\Rightarrow \log y = 2.\log(x+3) + 3.\log(x+4) + 4.\log(x+5)^4$$

Now, differentiate both sides with respect to *x*

$$= \frac{d}{dx}(\log y) = \frac{d}{dx}(2.\log(x+3)) + \frac{d}{dx}(3.\log(x+4)) + \frac{d}{dx}(4.\log(x+5))$$

$$= \frac{1}{y} \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} \cdot \frac{d}{dx}(x+3) + 3 \cdot \frac{1}{x+4} \cdot \frac{d}{dx}(x+4) + 4 \cdot \frac{1}{x+5} \cdot \frac{d}{dx}(x+5)$$

$$=\frac{dy}{dx}=y\left[\frac{2}{x+3}+\frac{3}{x+4}+\frac{4}{x+5}\right]$$

$$= \frac{dy}{dx} = (x+3)^2(x+4)^3(x+5)^4 \left[\frac{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right]$$

$$= \frac{dy}{dx} = (x+3)^{1}(x+4)^{2}(x+5)^{3}[2(x^{2}+9x+20)+3(x^{2}+8x+$$

$$15) + 4(x^2 + 7x + 12)]$$

=
$$(x + 3) (x + 4)^2 (x + 5)^3 (9x^2 + 70x + 133)$$

Q. 6 Differentiate the functions given in w.r.t. x.

$$\left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$

Answer:

Given:
$$\left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$

Let
$$y = \left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$

Also, Let y = u + v

$$= u \left(x + \frac{1}{x}\right)^x$$
 and $v = x^{\left(1 + \frac{1}{x}\right)}$

for,
$$u = \left(x + \frac{1}{x}\right)^x$$

Taking log on both sides, we get

$$\log u = \log \left(x + \frac{1}{x} \right)^x$$

$$= \log u = x. \log \left(x + \frac{1}{x} \right)$$

$$\frac{d}{dx}(\log u) = \frac{d}{dx}\left[x \cdot \log\left(x + \frac{1}{x}\right)\right]$$

$$= \frac{1}{u} - \frac{du}{dx} = x \cdot \frac{d}{dx}\left(\log\left(x + \frac{1}{x}\right)\right) + \log\left(x + \frac{1}{x}\right) \cdot \frac{d}{dx}(x)$$

$$= \frac{du}{dx} = u\left[x \cdot \frac{1}{\left(x + \frac{1}{x}\right)} \cdot \frac{d}{dx}\left(x + \frac{1}{x}\right) + \log\left(x + \frac{1}{x}\right)\right]$$

$$= \frac{du}{dx} = u\left[x \cdot \frac{1}{\left(x + \frac{1}{x}\right)} \cdot \left(\frac{dx}{dx} + \frac{d}{dx}\left(\frac{1}{x}\right)\right) + \log\left(x + \frac{1}{x}\right)\right]$$

$$= \frac{du}{dx} = u \left[\frac{x}{\left(x + \frac{1}{x}\right)} \cdot \left(1 - \frac{1}{x^2}\right) + \log\left(x + \frac{1}{x}\right) \right]$$

$$= \frac{du}{dx} = u \left[\frac{x}{\left(x + \frac{1}{x}\right)} \cdot \left(\frac{x^2 - 1}{x^2}\right) + \log\left(x + \frac{1}{x}\right) \right]$$

$$= \frac{du}{dx} = \left(x + \frac{1}{x}\right)^x \left[\left(\frac{x^2 - 1}{x^2 + 1}\right) + \log\left(x + \frac{1}{x}\right) \right]$$

for,
$$v = x^{\left(1 + \frac{1}{x}\right)}$$

Taking log on both sides, we get

$$\log v = \log x^{\left(1 + \frac{1}{x}\right)}$$
$$= \log v = \left(1 + \frac{1}{x}\right) \cdot \log x$$

Now, differentiate both sides with respect to x

$$= \frac{d}{dx} (\log v) = \frac{d}{dx} \left[\left(1 + \frac{1}{x} \right) \cdot \log x \right]$$

$$= \frac{1}{v} \frac{dv}{dx} = \log x \cdot \frac{d}{dx} \left(1 + \frac{1}{x} \right) + \left(1 + \frac{1}{x} \right) \cdot \frac{d}{dx} (\log x)$$

$$= \frac{dv}{dx} = v \left[\log x \cdot \left(0 - \frac{1}{x^2} \right) + \left(1 + \frac{1}{x} \right) \cdot \frac{1}{x} \right]$$

$$= \frac{dv}{dx} = x^{\left(1 + \frac{1}{x} \right)} \left[-\frac{\log x}{x^2} + \left(\frac{1}{x} + \frac{1}{x^2} \right) \right]$$

$$= \frac{dv}{dx} = x^{\left(1 + \frac{1}{x} \right)} \left[\frac{-\log x + x + 1}{x^2} \right]$$

$$= \frac{dv}{dx} = x^{\left(1 + \frac{1}{x} \right)} \left[\frac{x + 1 - \log x}{x^2} \right]$$

Because, y = u + v

$$=\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$= \frac{dy}{dx} = \left(x + \frac{1}{x}\right)^{x} \left[\left(\frac{x^{2} - 1}{x^{2} + 1}\right) + \log\left(x + \frac{1}{x}\right) \right] + x^{\left(1 + \frac{1}{x}\right)} \left[\frac{x + 1 - \log x}{x^{2}} \right]$$

Q. 7 Differentiate the functions given in w.r.t. x.

$$(\log x)^x + x^{\log x}$$

Answer:

Given:
$$(\log x)^x + x^{\log x}$$

Let
$$y = (\log x) x + x^{\log x}$$

Let
$$y = u + v$$

$$\Rightarrow$$
 u = $(\log x)^x$ and v = $x^{\log x}$

For,
$$u = (\log x)^x$$

Taking log on both sides, we get

$$\log u = \log (\log x)^x$$

$$\Rightarrow$$
log u = x.log (log(x))

Now, differentiate both sides with respect to x

$$\frac{d}{dx}(\log u) = \frac{d}{dx}[x.\log(\log x)]$$

$$= \frac{1}{u} - \frac{du}{dx} = x \cdot \frac{d}{dx} \log(\log x) + \log(\log x) \cdot \frac{d}{dx}(x)$$

$$= \frac{du}{dx} = u \left[x \cdot \frac{1}{\log x} \frac{d}{dx} (\log x) + \log(\log x) \cdot (1) \right]$$

$$= \frac{du}{dx} = (\log x)^x \left[\frac{x}{\log x} \cdot \frac{1}{x} + \log(\log x) \cdot (1_{-} \right]$$

$$= \frac{du}{dx} = (\log x)^x \left[\frac{1 + \log(\log x) \cdot (\log x)}{\log x} \right]$$

$$= \frac{du}{dx} = (\log x)^{x-1} \left[1 + \log x \cdot \log(\log x) \right]$$

For,
$$v = x^{\log x}$$

Taking log on both sides, we get

$$\log v = \log (x \log x)$$

$$\Rightarrow \log v = \log x \cdot \log x$$

$$\frac{d}{dx}(\log v) = \frac{d}{dx}[(\log x)^2]$$

$$= \frac{1}{v} \frac{dv}{dx} = 2 \cdot \log x \frac{d}{dx} (\log x)$$

$$= \frac{dv}{dx} = v \left[2 \cdot \frac{\log x}{x} \right]$$

$$= \frac{dv}{dx} = x^{\log x} \left[2 \cdot \frac{\log x}{x} \right]$$
$$= \frac{dv}{dx} = 2 \cdot x^{\log x - 1} \cdot \log x$$

Because, y = u + v

$$= \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$= \frac{dy}{dx} = (\log x)^{x-1} \left[1 + \log x \cdot \log(\log x) \right] + 2 \cdot x^{\log x - 1} \cdot \log x$$

Q. 8 Differentiate the functions given in w.r.t. x.

$$(\sin x)^x + \sin^{-1} \sqrt{x}$$

Answer:

Given:
$$(\sin x)^x + \sin^{-1}\sqrt{x}$$

Let
$$y = (\sin x)^x + \sin^{-1}\sqrt{x}$$

Let
$$y = u + v$$

$$= u = (\sin x)^x$$
 and $v = \sin^{-1} \sqrt{x}$

for,
$$u = (\sin x)^x$$

Taking log on both sides, we get

$$\log u = \log (\sin x)^x$$

$$= \frac{d}{dx}(\log u) = \frac{d}{dx}[x.\log(\sin x)]$$

$$= \frac{1}{u} \frac{du}{dx} = x \cdot \frac{d}{dx} \log(\sin x) + \log(\sin x) \cdot \frac{d}{dx}(x)$$

$$= \frac{du}{dx} = u \left[x \cdot \frac{1}{\sin x} \frac{d}{dx} (\sin x) + \log(\sin x) \cdot (1) \right]$$

$$= \frac{dy}{dx} = (\sin x)^x \left[\frac{x}{\sin x} \cdot \cos x + \log(\sin x) \cdot (1) \right]$$

$$= \frac{dy}{dx} = (\sin x)^x [x \cdot \cot x + \log \sin x]$$

for,
$$v = \sin^{-1}\sqrt{x}$$

Now, differentiate both sides with respect to x

$$=\frac{dv}{dx}=\frac{d}{dx}\left[\sin^{-1}\sqrt{x}\right]$$

$$= \frac{dv}{dx} = \frac{1}{\sqrt{1 - (\sqrt{x})^2}} \cdot \frac{d}{dx} (\sqrt{x})$$

$$=\frac{dv}{dx}=\frac{1}{\sqrt{1-x}}\cdot\frac{1}{2(\sqrt{x})}$$

$$=\frac{dv}{dx}=$$

$$\frac{1}{2\sqrt{x-x^2}}$$
Because, $y = u + v$

$$=\frac{dy}{dx}=\frac{du}{dx}+\frac{dv}{dx}$$

$$= \frac{dy}{dx} = (\sin x)^x \left[x \cdot \cot x + \log \sin x \right] + \frac{1}{2\sqrt{x - x^2}}$$

Q. 9 Differentiate the functions given in w.r.t. x.

$$x^{\sin x} + (\sin x)^{\cos x}$$

Answer:

Given:
$$x^{\sin x} + (\sin x)^{\cos x}$$

Let
$$y = x^{\sin x} + (\sin x)^{\cos x}$$

Let
$$y = u + v$$

$$\Rightarrow$$
 u = $x^{\sin x}$ and v = $(\sin x)^{\cos x}$

For,
$$u = x^{\sin x}$$

Taking log on both sides, we get

$$\log u = \log (x \sin x)$$

$$\Rightarrow$$
log u = sin x.log(x)

Now, differentiate both sides with respect to x

$$= \frac{d}{dx} (\log u) = \frac{d}{dx} [\sin x \cdot \log x]$$

$$= \frac{1}{u} \frac{du}{dx} = \sin x \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx} (\sin x)$$

$$= \frac{du}{dx} = u \left[\sin x \cdot \frac{1}{x} + \log x \cdot \cos x \right]$$

$$= \frac{du}{dx} = (x)^{\sin x} \left[\frac{\sin x}{x} + \log x \cdot \cos x \right]$$

For, $v = (\sin x)^{\cos x}$

Taking log on both sides, we get

$$\log v = \log (\sin x)^{\cos x}$$

$$\Rightarrow$$
log v = cos x. log (sin x)

Now, differentiate both sides with respect to x

$$\frac{d}{dx}(\log v) = \frac{d}{dx}[\cos x.\log(\sin x)]$$

$$= \frac{1}{v}\frac{dv}{dx} = \cos x.\frac{d}{dx}\log(\sin x) + \log\sin x.\frac{d}{dx}(\cos x)$$

$$= \frac{dv}{dx} = v\left[\cos x.\frac{1}{\sin x}.\frac{d}{dx}(\sin x) + \log(\sin x).(-\sin x)\right]$$

$$= \frac{dv}{dx} = (\sin x)^{\cos x}\left[\frac{\cos x}{\sin x}.\cos x + \log\sin x.(-\sin x)\right]$$

$$= \frac{dy}{dx} = (\sin x)^{\cos x}\left[\cot x.\cos x - \sin x.\log\sin x\right]$$
Because, $y = u + v$

$$= \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$= \frac{dy}{dx} = (x)^{\sin x}\left[\frac{\sin x}{x} + \log x.\cos x\right] + (\sin x)^{\cos x}\left[\cot x.\cos x - \sin x.\log\sin x\right]$$

Q. 10 Differentiate the functions given in w.r.t. x.

$$x^{x\cos x} + \frac{x^2+1}{x^2-1}$$

Answer:

Given:
$$x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Let
$$y = x^{x \cos x} + \frac{x^2 + 1}{x^2 - 1}$$

Let
$$y = u + v$$

$$= u = x^{x \cos x}$$
 and $v = \frac{x^2 + 1}{x^2 - 1}$

for,
$$u = x^{x\cos x}$$

Taking log on both sides, we get

$$\log u = \log x^{x \cos x}$$

$$\Rightarrow$$
log u = x. cos x.log

Now, differentiate both sides with respect to x

$$\frac{d}{dx}(\log u) = \frac{d}{dx}[x.\cos x.\log x]$$

$$= \frac{1}{u}\frac{du}{dx} = \cos x \log x \cdot \frac{d}{dx}(x) + x \cdot \log x \cdot \frac{d}{dx}(\cos x) + x \cdot \cos x \cdot \frac{d}{dx}(\log x)$$

$$= \frac{du}{dx} = u \left[\cos x \cdot \log x + x \cdot \log x (-\sin x) + x \cdot \cos x \cdot \left(\frac{1}{x}\right) \right]$$

$$= \frac{du}{dx} = x^{x \cos x} [\cos x \cdot \log x - x \cdot \log x \cdot \sin x + \cos x]$$

$$= \frac{dy}{dx} = x^{x \cos x} [\cos x (1 + \log x) - x \cdot \log x \cdot \sin x]$$

for,
$$v = \frac{x^2 + 1}{x^2 - 1}$$

Taking log on both sides, we get

$$\log v = \log \left(\frac{x^2 + 1}{x^2 - 1} \right)$$

$$\Rightarrow$$
 log v = log (x² + 1) - log (x² - 1)

Now, differentiate both sides with respect to x

$$\frac{d}{dx}(\log v) = \frac{d}{dx}[\log(x^2 + 1) - \log(x^2 - 1)]$$

$$= \frac{1}{v}\frac{dy}{dx} = \frac{1}{x^2 + 1} \cdot \frac{d}{dx}(x^2) - \frac{1}{x^2 - 1} \cdot \frac{d}{dx}(x^2)$$

$$= \frac{dy}{dx} = v \cdot \left[\frac{1}{x^2 + 1} \cdot (2x) - \frac{1}{x^2 - 1} \cdot (2x)\right]$$

$$= \frac{dy}{dx} = \left(\frac{x^2 + 1}{x^2 - 1}\right) \cdot \left[\frac{2x(x^2 - 1) - 2x(x^2 + 1)}{(x^2 + 1)(x^2 - 1)}\right]$$

$$= \frac{dy}{dx} = \left(\frac{x^2 + 1}{x^2 - 1}\right) \cdot \left[\frac{-4x}{(x^2 + 1)(x^2 - 1)}\right]$$

$$=\frac{dy}{dx} = \left[\frac{-4x}{(x^2-1)^2}\right]$$

Because, y = u + v

$$=\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$= \frac{dy}{dx} = x^{x\cos x} [\cos x (1 + \log x) - x \cdot \log x \cdot \sin x] - \left[\frac{4x}{(x^2 - 1)^2} \right]$$

Q. 11 Differentiate the functions given in w.r.t. x.

$$(x\cos x)^x + (x\sin x)^{\frac{1}{x}}$$

Answer:

Given:
$$(x \cos x)^x + (x \sin x)^{\frac{1}{x}}$$

Let
$$y = (x \cos x)^x + (x \sin x)^{\frac{1}{x}}$$

Let
$$y = u + v$$

$$= u = (x \cos x)^{x} \text{ and } v = (x \sin x)^{\frac{1}{x}}$$

for,
$$u = (x \cos x)^x$$

Taking log on both sides, we get

$$\log u = \log (x \cos x)^x$$

$$\Rightarrow$$
 log u = x. log (x cos x)

$$\Rightarrow \log u = x (\log x + \log (\cos x))$$

$$\Rightarrow \log u = x (\log x) + x (\log (\cos x))$$

Now, differentiate both sides with respect to x

$$= \frac{dy}{dx}(\log x) = \frac{d}{dx}[x.\log(x)] + \frac{d}{dx}[x.\log(\cos x)]$$

$$= \frac{1}{u}\frac{du}{dx} = \left\{x \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}(x)\right\} + \left\{x \cdot \frac{d}{dx}(\log \cos x) + \frac{d}{dx}(\log \cos x)\right\}$$

$$\log \cos x \cdot \frac{d}{dx}(x)$$

$$= \frac{du}{dx} = u \left[\left\{ x \cdot \frac{1}{x} + \log x \cdot (1) \right\} + \left\{ x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) + \log \cos x \cdot (1) \right\} \right]$$

Taking log on both sides, we get

$$\log v = \log (x \sin x)^{\frac{1}{x}}$$

$$\frac{d}{dx}(\log v) = \frac{d}{dx} \left[\frac{1}{x} \cdot (\log x) \right] + \frac{d}{dx} \left[\frac{1}{x} \cdot \log(\sin x) \right]$$

$$= \frac{1}{v} \frac{dy}{dx} = \left\{ \frac{1}{x} \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx} \left(\frac{1}{x} \right) \right\} + \left\{ \frac{1}{x} \cdot \frac{d}{dx} (\log \sin x) + \frac{1}{x} \cdot \frac{d}{dx} \left(\log \sin x \right) \right\}$$

$$\log \sin x \cdot \frac{d}{dx} \left(\frac{1}{x}\right)$$

$$= \frac{dy}{dx} = v \left[\left\{ \frac{1}{x} \cdot \frac{d}{dx} (\log x) + \log x \cdot \frac{d}{dx} \left(\frac{1}{x} \right) \right\} + \left\{ \frac{1}{x} \cdot \frac{d}{dx} (\log \sin x) + \frac{1}{x} \cdot \frac{d}{dx} (\log x) + \frac{1}{x} \cdot \frac{dx}{dx} (\log x) + \frac$$

$$\log \sin x \cdot \frac{d}{dx} \left(\frac{1}{x}\right)$$

$$= \frac{dy}{dx} = (x \sin x)^{\frac{1}{x}} \left[\left\{ \frac{1}{x^2} (1 - \log x) \right\} + \left\{ \frac{\cos x}{x \cdot \sin x} - \frac{\log \sin x}{x^2} \right\} \right]$$

$$= \frac{dy}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log x}{x^2} + \frac{\cot x}{x} - \frac{\log \sin x}{x^2} \right]$$

$$= \frac{dy}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 - \log x + x \cot x - \log \sin x}{x^2} \right]$$

$$= \frac{dy}{dx} = (x \sin x)^{\frac{1}{x}} \left[\frac{1 + x \cot x - \log(x \cdot \sin x)}{x^2} \right]$$

$$= \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$$

$$= \frac{dy}{dx} = (x \cos x)^x \left[1 - x \cdot \tan x + \log(x \cdot \cos x) \right] + (x \sin x)^{\frac{1}{x}} \left[\frac{1 + x \cot x - \log(x \cdot \sin x)}{x^2} \right]$$

Q. 12 Find dy/dx of the functions.

$$x^y + y^x = 1$$

Answer:

Given:
$$x^y + y^x = 1$$

$$Let y = x^y + y^x = 1$$

Let
$$u = x^y$$
 and $v = y^x$

Then,
$$\Rightarrow$$
 u + v = 1

$$=\frac{du}{dx} + \frac{dv}{dx} = 0$$

For,
$$u = xy$$

Taking log on both sides, we get

$$Log u = log xy$$

$$\Rightarrow$$
log u = y.log(x)

$$= \frac{d}{dx}(\log u) = \frac{d}{dx}[y.\log(x)]$$

$$= \frac{1}{u} \frac{du}{dx} = \left\{ y. \frac{d}{dx} (\log x) + \log x. \frac{d}{dx} (y) \right\}$$

$$= \frac{du}{dx} = u \left[y. \frac{1}{x} + \log x. \left(\frac{dy}{dx} \right) \right]$$

$$= \frac{dy}{dx} = x^y \left[\frac{y}{x} + \log x. \left(\frac{dy}{dx} \right) \right]$$

For, $v = y^x$

Taking log on both sides, we get

$$\text{Log v} = \text{log } y^x$$

$$\Rightarrow \log v = x.\log(y)$$

Now, differentiate both sides with respect to x

$$= \frac{d}{dx}(\log v) = \frac{d}{dx}[x.\log(y)]$$

$$= \frac{1}{v}\frac{dv}{dx} = \left\{x.\frac{d}{dx}(\log y) + \log y.\frac{d}{dx}x\right\}$$

$$= \frac{dv}{dx} = v\left[x.\frac{1}{y}.\frac{dy}{dx} + \log y.\left(\frac{dy}{dx}\right)\right]$$

$$= \frac{dy}{dx} = y^x \left[\frac{x}{y}.\frac{dy}{dx} + \log y\right]$$
because, $\frac{du}{dx} + \frac{dv}{dx} = 0$

$$\text{so, } x^y \left[\frac{y}{x} + \log x.\left(\frac{dy}{dx}\right)\right] + y^x \left[\frac{x}{y}.\frac{dy}{dx} + \log y\right] = 0$$

$$= (x^y \log x + xy^{x-1}).\frac{dy}{dx} + (yx^{y-1} + y^x \log y) = 0$$

$$= (x^y \log x + xy^{x-1}).\frac{dy}{dx} = -(yx^{y-1} + y^x \log y)$$

$$= \frac{dy}{dx} = -\frac{(yx^{y-1} + y^x \log y)}{(x^y \log x + xy^{x-1})}$$

Q. 13 Find dy/dx of the functions.

$$y^x = x^y$$

Answer:

Given: $y^x = x^y$

Taking log on both sides, we get

$$\log yx = \log x^y$$

$$\Rightarrow$$
x log $y = y log x$

Now, differentiate both sides with respect to x

$$x.\frac{d}{dx}\log y + \log y.\frac{d}{dx}x = y.\frac{d}{dx}\log x + \log x.\frac{d}{dx}y$$

$$x.\frac{1}{y}.\frac{dy}{dx} + \log y.(1) = y.\frac{1}{x} + \log x.\frac{dy}{dx}$$

$$\frac{x}{y} \cdot \frac{dy}{dx} - \log x \cdot \frac{dy}{dx} = y \cdot \frac{1}{x} - \log y$$

$$= \frac{dy}{dx} \left(\frac{x}{y} - \log x \right) = \frac{y - x \log y}{x}$$

$$= \frac{dy}{dx} \left(\frac{x - y \log x}{y} \right) = \frac{y - x \log y}{x}$$

$$= \frac{dy}{dx} = \frac{y}{x} \left(\frac{y - x \log y}{x - y \log x} \right)$$

Q. 14 Find dy/dx of the functions.

$$(\cos x)^y = (\cos y)^x$$

Answer:

Given: $(\cos x)^y = (\cos y) x$

Taking log on both sides, we get

$$\log(\cos x)^y = \log(\cos y)^x$$

$$\Rightarrow$$
y log (cos x) = x log (cos y)

y.
$$\frac{d}{dx}\log(\cos x) + \log(\cos x) \cdot \frac{d}{dx}y = x \cdot \frac{d}{dx}\log(\cos y) + \log\cos y \cdot \frac{d}{dx}x$$

= y. $\frac{1}{\cos x} \cdot \frac{d}{dx}(\cos x) + \log(\cos x) \cdot \frac{dy}{dx} = x \cdot \frac{1}{\cos y} \cdot \frac{d}{dx}(\cos y) + \log(\cos y) \cdot \frac{dy}{dx}$
= $\frac{y}{\cos x} \cdot (-\sin x) + \log(\cos x) \cdot \frac{dy}{dx} = \frac{x}{\cos y} \cdot (-\sin y) \cdot \frac{dy}{dx} + \log(\cos y) \cdot (1)$
= $\frac{dy}{dx} \left(\frac{x \cdot \sin y}{\cos y} + \log(\cos x) \right) = y \cdot \frac{\sin x}{\cos x} + \log(\cos y)$
= $\frac{dy}{dx} (x \tan x + \log(\cos x)) = y \cdot \tan x + \log(\cos y)$
= $\frac{dy}{dx} = \left(\frac{y \cdot \tan x + \log(\cos y)}{x \cdot \tan x + \log(\cos x)} \right)$

Q. 15 Find dy/dx of the functions.

$$xy = e^{(x-y)}$$

Answer:

Given:
$$xy = e^{(x-y)}$$

Taking log on both sides, we get

$$\log(xy) = \log(e(x - y))$$

$$\Rightarrow \log x + \log y = (x - y) \log e$$

$$\Rightarrow \log x + \log y = (x - y) . 1$$

$$\Rightarrow \log x + \log y = (x - y)$$

$$\frac{d}{dx}\log x + \frac{d}{dx}\log y = \frac{d}{dx}x - \frac{d}{dx}y$$

$$\frac{1}{x} + \frac{1}{y} \frac{dy}{dx} = 1 - \frac{dy}{dx}$$

$$\left(1 + \frac{1}{y}\right)\frac{dy}{dx} = 1 - \frac{1}{x}$$

$$\frac{1+y}{y}\frac{dy}{dx} = \frac{x-1}{x}$$

$$\frac{dy}{dx} = \frac{y(x-1)}{x(1+y)}$$

Q. 16 Find the derivative of the function given by $f(x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$ and hence find f'(1).

Answer:

Given:
$$f(x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$$

Taking log on both sides, we get

$$\log f(x) = \log (1+x) + \log (1+x^2) + \log (1+x^4) + \log (1+x^8)$$

$$\frac{d}{dx}\log f(x) = \frac{d}{dx}\log(1+x) + \frac{d}{dx}\log(1+x^2) + \frac{d}{dx}\log(1+x^4) + \frac{d}{dx}\log(1+x^8)$$

$$= \frac{1}{f(x)} \cdot \frac{d}{dx} [f(x)]$$

$$= \frac{1}{1+x} \cdot \frac{d}{dx} (1+x) + \frac{1}{1+x^2} \frac{d}{dx} (1+x^2) + \frac{1}{1+x^4} \frac{d}{dx} (1+x^4) + \frac{1}{1+x^8} \frac{d}{dx} (1+x^8)$$

= f'(x) = f(x) =
$$\left[\frac{1}{1+x} + \frac{1}{1+x^2} \cdot (2x) + \frac{1}{1+x^4} \cdot (4x^3) + \frac{1}{1+x^8} (8x^7)\right]$$

$$= f'(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) \left[\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{2x}{1+x^4} + \frac{2x}{1+x^$$

$$\frac{8x^7}{1+x^8}$$

$$= f'(x) = (1+1)(1+1^2)(1+1^4)(1+1^8) \left[\frac{1}{1+1} + \frac{2(1)}{1+1} + \frac{4(1)^3}{1+(1)^4} + \frac{2(1)}{1+(1)^4} + \frac{4(1)^3}{1+(1)^4} + \frac{4(1)^3}{1+(1)^4} + \frac{2(1)}{1+(1)^4} + \frac{4(1)^3}{1+(1)^4} + \frac{4(1)^4}{1+(1)^4} + \frac{4(1)^4}{1+(1)^4} + \frac{4(1)^4}{1+(1)^4} + \frac{4(1)^4}{1+(1)^4} + \frac{4(1)^4}{1+(1)^4} + \frac{4(1)^$$

$$\frac{8(1)^7}{1+(1)^8}$$

$$= f'(1) = (2)(2)(2)(2) \left[\frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \right]$$

$$= f'(1) = 16 \left[\frac{1+2+4+8}{2} \right]$$

$$= f'(1) = 16 \left(\frac{15}{2} \right)$$

$$= f'(1) = 120$$

Q. 17 Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ in three ways mentioned below:

- (i) by using product rule
- (ii) by expanding the product to obtain a single polynomial.
- (iii) by logarithmic differentiation.

Do they all give the same answer?

Answer:

Given:
$$(x^2 - 5x + 8)(x^3 + 7x + 9)$$

Let
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

(i) By applying product rule differentiate both sides with respect to x

$$\frac{dy}{dx} = \frac{dy}{dx}(x^2 - 5x + 8)(x^3 + 7x + 9)$$

$$= \frac{dy}{dx} = (x^3 + 7x + 9) \cdot \frac{d}{dx}(x^2 - 5x + 8) + (x^2 - 5x + 8) \cdot \frac{d}{dx}(x^3 + 7x + 9)$$

$$= \frac{dy}{dx} = (x^3 + 7x + 9) \cdot (2x - 5) + (x^2 - 5x + 8) \cdot (3x^2 + 7)$$

$$= \frac{dy}{dx} = 2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 + 7x^2 - 15x^3 - 35x + 24x^2 + 56$$

$$= \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11 \dots (1)$$

$$= \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11\dots(1)$$

(ii) by expanding the product to obtain a single polynomial

$$y = (x^{2} - 5x + 8) (x^{3} + 7x + 9)$$

$$y = x^{5} + 7x^{3} + 9x^{2} - 5x^{4} - 35x^{2} - 45x + 8x^{3} + 56x + 72$$

$$y = x^{5} - 5x^{4} + 15x^{3} - 26x^{2} + 11x + 72$$

Now, differentiate both sides with respect to x

$$\frac{dy}{dx} = \frac{d}{dx}(x^5) - \frac{d}{dx}(5x^4) + \frac{d}{dx}(15x^3) - \frac{d}{dx}(26x^2) + \frac{d}{dx}(11x) + \frac{d}{dx}(72)$$

$$\frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11 \dots (2)$$

(iii) by logarithmic differentiation

$$y = (x^2 - 5x + 8) (x^3 + 7x + 9)$$

Taking log on both sides, we get

$$\log y = \log ((x^2 - 5x + 8) (x^3 + 7x + 9))$$

$$\log y = \log (x^2 - 5x + 8) + \log (x^3 + 7x + 9)$$

$$\frac{dy}{dx}(\log y) = \frac{d}{dx}\log(x^2 - 5x + 8) + \frac{d}{dx}\log(x^3 + 7x + 9)$$

$$= \frac{1}{y}\frac{d}{dx}(y) = \left[\frac{1}{(x^2 - 5x + 8)} \cdot \frac{d}{dx}(x^2 - 5x + 8) + \frac{1}{(x^3 + 7x + 9)} \cdot \frac{d}{dx}(x^3 + 7x + 9)\right]$$

$$= \frac{1}{y}\frac{d}{dx}(y) = \left[\frac{1}{(x^2 - 5x + 8)} \cdot (2x - 5) + \frac{1}{(x^3 + 7x + 9)} \cdot (3x^2 + 7)\right]$$

$$= \frac{d}{dx}(y) = y \cdot \left[\frac{(2x - 5)}{(x^2 - 5x + 8)} + \frac{(3x^2 + 7)}{(x^3 + 7x + 9)}\right]$$

$$= \frac{d}{dx}(y) = y \cdot \left[\frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 9)}{(x^2 - 5x + 8)(x^3 + 7x + 9)}\right]$$

$$= \frac{d}{dx}(y) = y \cdot \left[\frac{2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56}{(x - 5x + 8)(x + 7x + 9)} \right]$$

$$= \frac{d}{dx}(y) = (x^2 - 5x + 8)(x^3 + 7x + 9) \cdot \left[\frac{5x^4 - 20x^3 - 45x^2 - 52x + 11}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right]$$

$$= \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11 \dots (3)$$

From equation (i), (ii) and (iii), we can say that value of given function after differentiating by all the three methods is same.

Q. 18 If u, v and w are functions of x, then show that

$$\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w + u.\frac{dv}{dx}.w + u.v.\frac{dw}{dx}$$

in two ways – first by repeated application of product rule, second by logarithmic differentiation.

Answer:

To prove:
$$\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w + u.\frac{dv}{dx}.w + u.v.\frac{dw}{dx}$$

(a) by applying product rule differentiate both sides with respect to x

$$\frac{dy}{dx} = (v.w) \cdot \frac{du}{dx} + u \cdot \frac{d}{dx}(v.w)$$

$$= \frac{dy}{dx} = (v.w) \cdot \frac{du}{dx} + u \cdot \left[v \cdot \frac{d}{dx}(w) + w \cdot \frac{d}{dx}(v)\right]$$

$$= \frac{dy}{dx} = (v.w) \cdot \frac{du}{dx} + (u.v) \cdot \frac{dw}{dx} + (u.w.) \cdot \frac{dv}{dx}$$

(b) Taking log on both sides, we get

$$\log y = \log (u. v. w)$$

$$\log y = \log u + \log v + \log w$$

$$= \frac{d}{dx} (\log y) = \frac{d}{dx} \log u + \frac{d}{dx} \log v + \frac{d}{dx} \log w$$

$$= \frac{1}{y} \cdot \frac{d}{dx} (y) = \frac{1}{u} \cdot \frac{d}{dx} (u) + \frac{1}{v} \cdot \frac{d}{dx} (v) + \frac{1}{w} \cdot \frac{d}{dx} (w)$$

$$= \frac{dy}{dx} (y) = y \left[\frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx} \right]$$

$$= \frac{dy}{dx} = u \cdot v \cdot w \left[\frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx} \right]$$

$$= \frac{dy}{dx} = v \cdot w \cdot \frac{du}{dx} + u \cdot w \cdot \frac{dv}{dx} + u \cdot v \cdot \frac{dw}{dx}$$

From equation (i), (ii) and (iii), we can say that value of given function after differentiating by all the three methods is same.