

Playing with Numbers

MATHEMATICAL REASONING

- 1. The number $(10^n 1)$ is divisible by 11 for____.
 - (a) $n \in N$
 - (b) Odd values of n
 - (c) Even values of n
 - (d) n is the multiple of 11
- **2.** The values of *A* and *B* in the given addition respectively are ____.
 - 23A
 - + A 3 B

6	D	1

(a) 4, 7	(b) 7, 4
(c) 5, 6	(d) 6, 5

3. The greatest value that must be given to x so that the number 7713×8 is divisible by 4

is	
(a) 1	(b) 6
(c) 8	(d) 7

1 A

4. If $\times A$, where A and B are single digit $\overline{B} 6$

numbers, such that B - A = 3, then the values of A and B respectively are ____. (a) 4, 5 (b) 9, 6 (c) 5, 4

- (d) 6, 9
- 5. Suppose that the division $N \div 5$ leaves a remainder of 4 and the division $N \div 2$ leaves a remainder of 1. What must be the ones digit of N?

(a) 7	(b) 3
(c) 9	(d) 4

Given that the number 148101a095 is divisible by 11, where a is single digit number, what are the possible values of a?
(a) 4 (b) 1
(c) 7 (d) 9

The largest natural number by which the product of three consecutive even natural numbers is always divisible, is _____.
(a) 16 (b) 24 (c) 48 (d) 96

- 8. If in a number, difference between the sum of digits at its odd places and that of digits at the even places is given 0, then the number is divisible by _____.
 (a) 7 (b) 9
 (c) 5 (d) 11
- 9. A 5-digit number xy235 is divisible by 3 such that x + y < 5, where x and y are single digits, then possible values of (x, y) are _____.
 (a) (1, 1) or (4, 0)
 (b) (1, 1) or (2, 0)
 (c) (1, 1) or (0, 2)
 (d) (2, 0) or (0, 2)
- **1** A B **10.** If $\frac{+C C A}{69 7}$ and there is no carry on addition, then the value of B is _____.
 - (a) 5 (b) 4 (c) 3 (d) 2
- If N divided by 5 leaves a remainder of 3, then one's digit of N must be _____.
 (a) Either 3 or 6
 (b) Either 3 or 8
 (c) Either 8 or 1
 (d) Either 8 or 6

12. Given that the number 67y19 is divisible by 9, where y is a single digit, what is the least possible value of y?
(a) 3
(b) 9

(c) 7 (d) 4

- **13.** A 3-digit number 'cba' is divisible by 3 if ____.
 - (a) a + 2b + c is divisible by 3
 - (b) 2a + b + c is divisible by 3
 - (c) a + b + 2c is divisible by 3
 - (d) a + b + c is divisible by 3
 - ΑΒ
- **14.** If $\underline{\times A \ 3}_{5 \ 7 \ B}$, then the value of B is____. (a) 5 (b) 2 (c) 0 (d) 4
- **15.** In a division, the divisor is 12 times the quotient and 5 times the remainder, if the remainder is 48, then dividend is _____.
 - (a) 240
 - (b) 576
 - (c) 4800
 - (d) 4848

ACHIEVERS SECTION (HOTS)

16. Which of the following statements is INCORRECT?

(a) All even natural numbers which are divisible by 3 are also divisible by 6.

(b) If a natural number is divisible by 21, then it is divisible by both 3 and 7.

(c) If $AB \times 4 = 192$, then A+B=10

(d) A number of the form 14 N + 2 leaves the remainder 2 when divided by 7.

17. Fill in the blanks.

(i) If sum of 3-digit numbers xyz, yzx and zxy is divided by (x + y + z), then quotient is P.

(ii) The difference between 2-digit numbers ab and ba, (where a > b) is divided by 3. The quotient is __Q___.

(iii) Sum of a 2-digit number and the number obtained by reversing its digits is always divisible by \underline{R} .

	Р	Q	R
(a)	111	3(a + b)	11
(b)	99	(a + b)	7
(c)	111	3(a - b)	11
(d)	99	(a – b)	3

18. Match the following.

Column – I	Column – II
(P) If 213×27 is divisible by 9,	(i) 2
then x=	(1) 2
(Q) If $2415x$ is divisible by 6,	(::) 8
then x =	(ii) 8
(R) If $22135x$ is divisible by 4	(iii) 3
and 3, then $x =$	(III) 3
(S) If 7251×93 is divisible by 11,	(:) 6
then x=	(iv) 6

(a) $(P) \rightarrow (iii); (Q) \rightarrow (ii); (R) \rightarrow (iv); (S) \rightarrow (i)$ (b) $(P) \rightarrow (ii); (Q) \rightarrow (iv); (R) \rightarrow (i); (S) \rightarrow (iii)$ (c) $(P) \rightarrow (iii); (Q) \rightarrow (iv): (R) \rightarrow (i); (S) \rightarrow (ii)$ (d) $(P) \rightarrow (ii); (Q) \rightarrow (iii); (R) \rightarrow (i); (S) \rightarrow (iv)$

- **19.** How many 5-digit numbers of the form AABAA is divisible by 33?
 - (a) 1 (b) 3
 - (c) 0 (d) infinite
- **20.** Find the value of A, B and C respectively.

			A	8	5 3	3	
		×		С	2	9	
(i)		A	0	4	A	1	
	+1	5	В	BE	3 ()	
	С	С	: A	4 () /	4	
		4		3	Α	4	
		×			3	Α	
(ii)		В	7	С	7	6	
	+]	В	С	0	С	2	0
		В	4	7	6	9	6

	(i)	(ii)
(a)	2, 6, 7	9, 5. 2
(b)	6, 7, 2	4, 3, 1
(c)	7, 5, 2	9, 2, 5
(d)	7, 6, 2	4, 1, 3

ANSWER KEY									
1.	С	2.	А	3.	С	4.	D	5.	С
6.	А	7.	С	8.	D	9.	В	10.	С
11.	В	12.	D	13.	D	14.	А	15.	D
16.	С	17.	С	18.	С	19.	В	20 .	D

HINTS & EXPLANATIONS

- 1. (c) : $(10^{n} 1)$ is divisible by 11 for even values of n as $10^{2} - 1 = 99$, $10^{4} - 1 = 99999$, $10^{6} - 1 = 9999999$ etc., are divisible fay 11.
- **2.** (a) :
- **3.** (c) : 7713×8 is divisible by 4 if ifs last two digits is divisible by 4. So, we have x8 to be divisible by 4. Therefore, greatest value of x is 8.
- **4.** (d) : We have, $\times \underline{6}$ and $\times \underline{4}$ 96Since, B-A = 3

 \therefore Possible values of A and B are 6 and 9.

5. (c) :

- 6. (a) : If 148101a095 is divisible by 11, then (1+8+0+a+9)-(4+1+1+0+5) is either 0 or a multiple of 11 $\Rightarrow (a+18)-11$ is either 0 or a multiple of 11 $\Rightarrow a+7=0$ or a multiple of 11 $\therefore a+7=11 \Rightarrow a=4$
- 7. (c) : The required number would be the product of three smallest even natural number i.e. $2 \times 4 \times 6 = 48$.

8. (d) :

9. (b) : xy235 is divisible by 3 so sum of its digits is also divisible by 3, $\therefore x + y + 2 + 3 + 5 = x + y + 10$ is divisible by 3 and x + y < 5. So possible values of (x, y) are (1, 1) or (2, 0),

10. (c) :

	1	4	3
+	5	5	4
	6	9	7

- **11.** (b) : N leaves remainder 3 when divided by 5.
 - \Rightarrow (*N* 3) is divisible by 5.
 - \Rightarrow One's digit of N-3 is either 0 or 5.

 \Rightarrow One's digit of N is either 3 or 8.

12. (d) : 67y19 is divisible by 9 so sum of its digits is also divisible by 9 6+7+y+1+9=23+y is divisible by 9. So, least possible value of y = 4.

13. (d) :

$$\begin{array}{r}
 2 5 \\
 \times 2 3 \\
 14. (a): 7 5 \\
 + 5 0 0 \\
 5 7 5
\end{array}$$

- **15.** (d) : Remainder = 48 \therefore Divisor = 48 × 5 = 240 Quotient = $\frac{240}{12}$ = 20 \therefore Dividend = Divisor × Quotient + Remainder = 240 × 20 + 48 = 4800 + 48 = 4848.
- **16.** (c) :

17. (c) : (i) As,
$$xyz = 100x + 10y + z$$
 ...(i)
 $yzx = 100y + 10z + x$...(ii)

zxy = -100z + 10x + y...(iii) Adding (i), (ii) and (iii), we get xyz + yzx + zxy = 100x + 10y + z + 100y+10z + x + 100z + 10x + y= 111x + 111y + 111z= 111(x + y + z)On dividing by (x + y + z), we get Quotient = 111. ab = 10 a + b and ba = 10 b + a(ii) ab - ba = 10 a + b - (10 b + a)= 9a - 9b = 9(a - b)On dividing by 3, we get Quotient = 3(a - b)(iii) Let two digit number be 10x + y. On reversing the digits, number becomes 10y + x. Sum = 10x + y + 10y + x = 11x + 11y = 11(x + y)Which is always divisible by 11 (c) : (P) Since, 213×27 is divisible by 9. So, 2 + 1 + 3 + x + 2 + 7 = 15 + x is divisible

by 9. ∴ x = 3 (Q) 2415x is divisible by 6, if it is divisible by both 2 and 3. $\therefore x = 6$ (R) 23245x is divisible by 4 and 3 \Rightarrow 5x is divisible by 4 \therefore Possible values of x are 2, 6 Also, 2+3+2+4+5+x = 16+x is divisible by 3. \therefore Possible values of x is 2. (S) We have, 7251×93 is divisible by 11 $\therefore [(7 + 5 + x + 3) - (2 + 1 + 9)]$ is divisible by 11 \Rightarrow 15 + x - 12 = 3 + x is divisible by 11 $\therefore x$ can be equal to 8.

18.

19. (b) : We have AABAA is divisible by 33. So, it is divisible by both 3 and 11. $\therefore A + B + A - (A + A) = B$ is divisible by 11. $\Rightarrow B = 0$ Also, A + A + B + A + A = 4A + B is divisible by 3. $\Rightarrow 4A$ is divisible by 3 ($\because B = 0$) $\Rightarrow A$ is divisible by 3 Hence, possible values of A are 0, 3, 6, 9 But A can't be equal to zero. \therefore Number of possible 5-digit numbers are 3.

(i)	7 8 9 × 2 9 7 0 4 7 + 1 5 6 6 0							
			2	2	7	0	7	
			4		4 3	□ 4	4 □	
(ii)			1	7	3	7	6	
	+	1	3	0	3	2	0	
		1	4	7	6	9	6	