

Short Answer Type Questions

Q. 1 Give an example of a statement P(n) which is true for all $n \ge 4$ but P(1), P(2) and P(3) are not true. Justify your answer.

			5 5			
Sol.	Let the statement P(n): 3n < n!				
	For $n = 1, 3 \times 1 < 1!$				[fals	se]
	For $n = 2, 3 \times 2 < 2!$	$\Rightarrow 6 < 2$			[fals	se]
	For $n = 3, 3 \times 3 < 3!$	$\Rightarrow 9 < 6$			[fals	e]
	For $n = 4, 3 \times 4 < 4!$	⇒ 12<24			[tru	ie]
	For $n = 5$, $3 \times 5 < 5!$	\Rightarrow 15<5×4×3	$3 \times 2 \times 1 \implies 1$	15 < 120	[tru	ie]
	$101 H = 0, 0 \times 0 \times 0$			10 < 120	Įnu	

Q. 2 Give an example of a statement *P*(*n*) which is true for all *n*. Justify your answer.

Sol. Consider the statement

, Consider the sta	
P (1	$n): 1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{2}$
For <i>n</i> = 1,	$1 = \frac{1(1+1)(2\times 1+1)}{6}$
\Rightarrow	$1 = \frac{2(3)}{6}$
\Rightarrow	1 = 1
For $n = 2$,	$1 + 2^2 = \frac{2(2+1)(4+1)}{6}$
\Rightarrow	$5 = \frac{30}{6} \implies 5 = 5$
For <i>n</i> = 3,	$1 + 2^{2} + 3^{2} = \frac{3(3+1)(7)}{6}$
\Rightarrow	$1 + 4 + 9 = \frac{3 \times 4 \times 7}{6}$
\Rightarrow	14 = 14
Honoo the give	n atatamant in true for all n

Hence, the given statement is true for all *n*.

Prove each of the statements in the following questions from by the Principle of Mathematical Induction.

Q. 3 $4^n - 1$ is divisible by 3, for each natural number *n*.

Thinking Process

In step I put n = 1, the obtained result should be a divisible by 3. In step II put n = k and take P(k) equal to multiple of 3 with non-zero constant say q. In step III put n = k + 1, in the statement and solve till it becomes a multiple of 3.

Sol. Let $P(n): 4^n - 1$ is divisible by 3 for each natural number *n*. *Step* **I** Now, we observe that P(1) is true.

$$P(1) = 4^1 - 1 = 3$$

It is clear that 3 is divisible by 3. Hence, P(1) is true. Step II Assume that, P(n) is true for n = k $P(k): 4^k - 1$ is divisible by 3

$$x4^{k} - 1 = 3q$$

Step III Now, to prove that P(k + 1) is true.

$$P(k + 1): 4^{k+1} - 1$$

= 4^k · 4 - 1
= 4^k · 3 + 4^k - 1
= 3 · 4^k + 3q
= 3(4^k + q) [:: 4^k - 1 = 3q]

Thus, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction P(n) is true for all natural number n.

Q. 4 $2^{3n} - 1$ is divisible by 7, for all natural numbers *n*.

Sol. Let $P(n): 2^{3n} - 1$ is divisible by 7 Step I We observe that P(1) is true. $P(1): 2^{3\times 1} - 1 = 2^3 - 1 = 8 - 1 = 7$ It is clear that P(1) is true. Step **II** Now, assume that P(n) is true for n = k, $P(k): 2^{3k} - 1$ is divisible by 7. $2^{3k} - 1 = 7\alpha$ \Rightarrow Step III Now, to prove P(k + 1) is true. $P(k + 1): 2^{3(k + 1)} - 1$ $=2^{3k} \cdot 2^3 - 1$ $=2^{3k}(7+1)-1$ $=7 \cdot 2^{3k} + 2^{3k} - 1$ $=7 \cdot 2^{3k} + 7q$ [from step II] $=7(2^{3k} + q)$ Hence, P(k + 1): is true whenever P(k) is true.

So, by the principle of mathematical induction P(n) is true for all natural number *n*.

Q. 5 $n^3 - 7n + 3$ is divisible by 3, for all natural numbers *n*.

Sol. Let $P(n): n^3 - 7n + 3$ is divisible by 3, for all natural number *n*. Step I We observe that P(1) is true.

 $P(1) = (1)^{3} - 7(1) + 3$ = 1 - 7 + 3 = -3, which is divisible by 3.Hence, P(1) is true. Step II Now, assume that P(n) is true for n = k. \therefore $P(k) = k^{3} - 7k + 3 = 3q$ Step III To prove P(k + 1) is true $P(k + 1) : (k + 1)^{3} - 7(k + 1) + 3$ $= k^{3} + 1 + 3k(k + 1) - 7k - 7 + 3$ $= k^{3} - 7k + 3 + 3k(k + 1) - 6$ = 3q + 3[k(k + 1) - 2]Hence, P(k + 1) is true whenever P(k) is true. [from step II] So, by the principle of mathematical induction P(n) : is true for all natural number n.

Q. 6 $3^{2n} - 1$ is divisible by 8, for all natural numbers *n*.

Sol. Let $P(n): 3^{2n} - 1$ is divisible by 8, for all natural numbers. Step I We observe that P(1) is true. $P(1): 3^{2(1)} - 1 = 3^2 - 1$ = 9 - 1 = 8, which is divisible by 8. Step II Now, assume that P(n) is true for n = k. $P(k): 3^{2k} - 1 = 8q$ Step III Now, to prove P(k + 1) is true. $P(k + 1): 3^{2(k + 1)} - 1$

 $= 3^{2k} \cdot 3^{2} - 1$ = $3^{2k} \cdot (8 + 1) - 1$ = $8 \cdot 3^{2k} + 3^{2k} - 1$ = $8 \cdot 3^{2k} + 8q$ = $8 (3^{2k} + q)$ [from step II]

Hence, P(k + 1) is true whenever P(k) is true. So, by the principle of mathematical induction P(n) is true for all natural numbers *n*.

Q. 7 For any natural numbers n, $7^n - 2^n$ is divisible by 5.

Sol. Consider the given statement is $P(n): 7^n - 2^n$ is divisible by 5, for any natural number *n*. Step I We observe that P(1) is true. $P(1) = 7^1 - 2^1 = 5$, which is divisible by 5. Step II Now, assume that P(n) is true for n = k. $P(k) = 7^k - 2^k = 5q$ Step III Now, to prove P(k + 1) is true, $P(k + 1): 7^{k+1} - 2^{k+1}$. $= 7^k \cdot 7 - 2^k \cdot 2$

$$= 7^{k} \cdot (5+2) - 2^{k} \cdot 2$$

= 7^k \cdot 5 + 2 \cdot 7^{k} - 2^{k} \cdot 2
= 5 \cdot 7^{k} + 2(7^{k} - 2^{k})
= 5 \cdot 7^{k} + 2(5q)
= 5(7^{k} + 2q), which is divisible by 5. [from step II]

So, P(k + 1) is true whenever P(k) is true. Hence, by the principle of mathematical induction P(n) is true for any natural number n.

Q. 8 For any natural numbers n, $x^n - y^n$ is divisible by x - y, where x and y are any integers with $x \neq y$.

Sol. Let
$$P(n): x^n - y^n$$
 is divisible by $x - y$, where x and y are any integers with $x \neq y$.
Step I We observe that $P(1)$ is true.

 $P(1): x^{1} - y^{1} = x - y$ Step II Now, assume that P(n) is true for n = k. $P(k): x^{k} - y^{k}$ is divisible by (x - y).

$$x^{k} - y^{k} = q(x - y)$$

Step III Now, to prove P(k + 1) is true.

$$P(k + 1) : x^{k+1} - y^{k+1} = x^{k} \cdot x - y^{k} \cdot y$$

= $x^{k} \cdot x - x^{k} \cdot y + x^{k} \cdot y - y^{k} \cdot y$
= $x^{k} (x - y) + y(x^{k} - y^{k})$
= $x^{k} (x - y) + yq (x - y)$
= $(x - y)[x^{k} + yq]$, which is divisible by $(x - y)$. [from step II]

Hence, P(k + 1) is true whenever P(k) is true. So, by the principle of mathematical induction P(n) is true for any natural number n.

Q. 9 $n^3 - n$ is divisible by 6, for each natural number $n \ge 2$.

Thinking Process

In step I put n=2, the obtained result should be divisible by 6. Then, follow the same process as in question no. 4.

Sol. Let P(n): $n^3 - n$ is divisible by 6, for each natural number $n \ge 2$.

Step I We observe that P(2) is true. P(2): $(2)^3 - 2$

```
 \Rightarrow \qquad 8-2=6, \text{ which is divisible by 6.} 
Step II Now, assume that P(n) is true for n = k.

P(k): k^3 - k is divisible by 6.

\therefore \qquad k^3 - k = 6q

Step III To prove P(k + 1) is true

P(k + 1): (k + 1)^3 - (k + 1).

= k^3 + 1 + 3k(k + 1) - (k + 1)

= k^3 + 1 + 3k^2 + 3k - k - 1

= k^3 - k + 3k^2 + 3k

= 6q + 3k(k + 1) [from step II]

We know that, 3k(k + 1) is divisible by 6 for each natural number n = k.
```

So, P(k + 1) is true. Hence, by the principle of mathematical induction P(n) is true.

...

Q. 10 $n(n^2 + 5)$ is divisible by 6, for each natural number *n*. **Sol.** Let P(n): $n(n^2 + 5)$ is divisible by 6, for each natural number n. Step | We observe that P(1) is true. $P(1): 1(1^2 + 5) = 6$, which is divisible by 6. Step **II** Now, assume that P(n) is true for n = k. $P(k): k(k^2 + 5)$ is divisible by 6. $k(k^{2} + 5) = 6q$ *:*.. Step III Now, to prove P(k + 1) is true, we have $P(k + 1): (k + 1)[(k + 1)^{2} + 5]$ $= (k + 1)[k^{2} + 2k + 1 + 5]$ $= (k + 1)[k^{2} + 2k + 6]$ $=k^{3}+2k^{2}+6k+k^{2}+2k+6$ $=k^{3}+3k^{2}+8k+6$ $=k^{3}+5k+3k^{2}+3k+6$ $= k(k^{2} + 5) + 3(k^{2} + k + 2)$ $=(6q) + 3(k^{2} + k + 2)$ We know that, $k^2 + k + 2$ is divisible by 2, where, k is even or odd.

Since, $P(k + 1): 6q + 3(k^2 + k + 2)$ is divisible by 6. So, P(k + 1) is true whenever P(k) is true.

Hence, by the principle of mathematical induction P(n) is true.

Q. 11 $n^2 < 2^n$, for all natural numbers $n \ge 5$.

Sol. Consider the given statement

 $P(n): n^2 < 2^n$ for all natural numbers $n \ge 5$.

Step I We observe that P(5) is true

$$P(5): 5^2 < 2^5 = 25 < 32$$

Hence, P(5) is true.

Step II Now, assume that P(n) is true for n = k. $P(k) = k^2 < 2^k$ is true.

Step III Now, to prove P(k + 1) is true, we have to show that $P(k + 1) : (k + 1)^2 < 2^{k+1}$

Now,

 $k^{2} < 2^{k} = k^{2} + 2k + 1 < 2^{k} + 2k + 1$ = $(k + 1)^{2} < 2^{k} + 2k + 1$...(i) = $2^{k} + 2k + 1 < 2^{k} + 2^{k}$

Now, $(2k + 1) < 2^k$

 $= 2^{k} + 2k + 1 < 2 \cdot 2^{k}$ = 2^k + 2k + 1 < 2^k + 1 ...(ii)

From Eqs. (i) and (ii), we get $(k + 1)^2 < 2^{k+1}$

So, P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction P(n) is true for all natural numbers $n \ge 5$.

Q. 12 2n < (n + 2)! for all natural numbers *n*.

Sol. Consider the statement P(n): 2n < (n + 2)! for all natural number n.

Step I We observe that, P(1) is true. P(1) : 2(1) < (1 + 2)! $2 < 3! \implies 2 < 3 \times 2 \times 1 \implies 2 < 6$ \Rightarrow Hence, P(1) is true. Step II Now, assume that P(n) is true for n = k, P(k): 2k < (k + 2)! is true. Step III To prove P(k + 1) is true, we have to show that P(k + 1): 2(k + 1) < (k + 1 + 2)!Now, 2k < (k + 2)!2k + 2 < (k + 2)! + 22(k + 1) < (k + 2)! + 2...(i) (k+2)! + 2 < (k+3)!Also. ...(ii)

From Eqs. (i) and (ii),

2(k + 1) < (k + 1 + 2)!

So, P(k + 1) is true, whenever P(k) is true. Hence, by principle of mathematical induction P(n) is true.

Q. 13
$$\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}}$$
, for all natural numbers $n \ge 2$.

Sol. Consider the statement $P(n): \sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}}$, for all natural numbers $n \ge 2$. Step I We observe that P(2) is true. $P(2): \sqrt{2} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}}$, which is true. Step II Now, assume that P(n) is true for n = k.

$$P(k): \sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}}$$
 is true.

Step III To prove P(k + 1) is true, we have to show that

$$P(k+1): \sqrt{k+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}} \text{ is true.}$$

Given that,
$$\sqrt{k} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}}$$

 $\sqrt{k} + \frac{1}{\sqrt{k+1}} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}}$ ⇒

$$\frac{(\sqrt{k})(\sqrt{k+1})+1}{\sqrt{k+1}} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \qquad \dots (i)$$
$$\sqrt{k+1} < \frac{\sqrt{k}\sqrt{k+1}+1}{\sqrt{k+1}}$$

...(ii)

lf

 \Rightarrow

$$\Rightarrow \qquad \qquad k+1 < \sqrt{k} \sqrt[n]{k+1} + 1$$

$$\Rightarrow \qquad \qquad \qquad k < \sqrt{k(k+1)} \Rightarrow \sqrt{k} < \sqrt{k} + 1$$

 \Rightarrow

From Eqs. (i) and (ii),

$$\sqrt{k+1} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{k+1}}$$

So, P(k + 1) is true, whenever P(k) is true. Hence, P(n) is true.

Q. 14 2 + 4 + 6 + ... + $2n = n^2 + n$, for all natural numbers *n*. **Sol.** Let $P(n): 2 + 4 + 6 + ... + 2n = n^2 + n$ For all natural numbers n. Step | We observe that P(1) is true. $P(1): 2 = 1^2 + 1$ 2 = 2 which is true. Step II Now, assume that P(n) is true for n = k. $P(k): 2 + 4 + 6 + \dots + 2k = k^2 + k$ *:*.. Step III To prove that P(k + 1) is true. P(k + 1): 2 + 4 + 6 + 8 + ... + 2k + 2(k + 1) $=k^{2} + k + 2(k + 1)$ $= k^{2} + k + 2k + 2$ $=k^{2}+2k+1+k+1$ $= (k + 1)^2 + k + 1$ So, P(k + 1) is true, whenever P(k) is true. Hence, P(n) is true. **Q.** 15 $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} - 1$ for all natural numbers *n*. Sol. Consider the given statement $P(n): 1 + 2 + 2^{2} + ... + 2^{n} = 2^{n+1} - 1$, for all natural numbers n Step I We observe that P(0) is true. $P(1): 1 = 2^{0+1} - 1$ $1 = 2^1 - 1$ 1 = 2 - 11 = 1, which is true. Step II Now, assume that P(n) is true for n = k. So, P(k): 1 + 2 + 2² + ... + 2^k = 2^{k + 1} - 1 is true. Step III Now, to prove P(k + 1) is true. $P(k + 1): 1 + 2 + 2^{2} + \dots + 2^{k} + 2^{k+1}$ $=2^{k+1}-1+2^{k+1}$ $= 2 \cdot 2^{k+1} - 1$ $=2^{k+2}-1$ $=2^{(k+1)+1}-1$

So, P(k + 1) is true, whenever P(k) is true. Hence, P(n) is true.

Q. 16 1 + 5 + 9 + ... + (4n - 3) = n(2n - 1), for all natural numbers *n*.

Sol. Let P(n): 1 + 5 + 9 + ... + (4n - 3) = n(2n - 1), for all natural numbers *n*. Step I We observe that P(1) is true. $P(1): 1 = 1(2 \times 1 - 1), 1 = 2 - 1 \text{ and } 1 = 1$, which is true. Step II Now, assume that P(n) is true for n = k. So, P(k): 1 + 5 + 9 + ... + (4k - 3) = k(2k - 1) is true. Step III Now, to prove P(k + 1) is true.

P (k + 1) : 1 + 5 + 9 + ... + (4k - 3) + 4(k + 1) - 3= k(2k - 1) + 4(k + 1) - 3 = 2k² - k + 4k + 4 - 3 = 2k² + 3k + 1 = 2k² + 2k + k + 1 = 2k(k + 1) + 1(k + 1) = (k + 1)(2k + 1) + 1(k + 1) = (k + 1)[2(k + 1) - 1] = (k + 1)[2(k + 1) - 1]

So, P(k + 1) is true, whenever p(k) is true, hence P(n) is true.

Long Answer Type Questions

Use the Principle of Mathematical Induction in the following questions.

Q. 17 A sequence a_1, a_2, a_3, \dots is defined by letting $a_1 = 3$ and $a_k = 7a_{k-1}$, for all natural numbers $k \ge 2$. Show that $a_n = 3 \cdot 7^{n-1}$ for all natural numbers. **Sol.** A sequence a_1, a_2, a_3, \ldots is defined by letting $a_1 = 3$ and $a_k = 7a_{k-1}$, for all natural numbers $k \ge 2.$ P(n): $a_n = 3 \cdot 7^{n-1}$ for all natural numbers. Let Step I We observe P(2) is true. $a_2 = 3 \cdot 7^{2-1} = 3 \cdot 7^1 = 21$ is true. For n = 2, As $a_1 = 3, a_k = 7a_{k-1}$ $a_2 = 7 \cdot a_{2-1} = 7 \cdot a_1$ \Rightarrow $a_2 = 7 \times 3 = 21$ $[:: a_1 = 3]$ \Rightarrow Step II Now, assume that P(n) is true for n = k. $P(k): a_k = 3 \cdot 7^{k-1}$ Step III Now, to prove P(k + 1) is true, we have to show that P(k + 1): $a_{k+1} = 3 \cdot 7^{k+1-1}$ $a_{k+1} = 7 \cdot a_{k+1-1} = 7 \cdot a_k$ $= 7 \cdot 3 \cdot 7^{k-1} = 3 \cdot 7^{k-1+1}$

So, P(k + 1) is true, whenever p(k) is true. Hence, P(n) is true.

Q. 18 A sequence b_0 , b_1 , b_2 ,... is defined by letting $b_0 = 5$ and $b_k = 4 + b_{k-1}$, for all natural numbers k. Show that $b_n = 5 + 4n$, for all natural number n using mathematical induction.

Sol. Consider the given statement, $P(n): b_n = 5 + 4n$, for all natural numbers given that $b_0 = 5$ and $b_k = 4 + b_{k-1}$ *Step* I P(1) is true.

$$P(1): b_1 = 5 + 4 \times 1 = 9$$

72

As $b_{0} = 5, b_{1} = 4 + b_{0} = 4 + 5 = 9$ Hence, P(1) is true. Step II Now, assume that P(n) is true for n = k. $P(k) : b_{k} = 5 + 4k$ Step III Now, to prove P(k + 1) is true, we have to show that $\therefore \qquad P(k + 1) : b_{k+1} = 5 + 4(k + 1)$ $b_{k+1} = 4 + b_{k+1-1}$ $= 4 + b_{k}$ = 4 + 5 + 4k = 5 + 4(k + 1)

So, by the mathematical induction P(k + 1) is true whenever P(k) is true, hence P(n) is true.

Q. 19 A sequence d_1, d_2, d_3, \dots is defined by letting $d_1 = 2$ and $d_k = \frac{d_{k-1}}{k}$, for all natural numbers, $k \ge 2$. Show that $d_n = \frac{2}{n!}$, for all $n \in N$.

Sol. Let
$$P(n): d_n = \frac{2}{n!}, \forall n \in N$$
, to prove $P(2)$ is true.
Step I $P(2): d_2 = \frac{2}{2!} = \frac{2}{2 \times 1} = 1$

As, given

 \Rightarrow

 \Rightarrow

$d_{1} = 2$ $d_{k} = \frac{d_{k-1}}{k}$ $d_{2} = \frac{d_{1}}{2} = \frac{2}{2} = 1$

Hence, P(2) is true.

Step II Now, assume that P(k) is true.

$$P(k): d_k = \frac{2}{k!}$$

Step III Now, to prove that P(k + 1) is true, we have to show that $P(k + 1) : d_{k+1} = \frac{2}{(k+1)!}$

$$d_{k+1} = \frac{d_{k+1-1}}{k} = \frac{d_k}{k}$$
$$= \frac{2}{k!k} = \frac{2}{(k+1)!}$$

So, P(k + 1) is true. Hence, P(n) is true.

Q. 20 Prove that for all $n \in N$

$$\cos\alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \dots + \cos[\alpha + (n - 1)\beta]$$
$$= \frac{\cos\left[\alpha + \left(\frac{n - 1}{2}\right)\beta\right]\sin\left(\frac{n\beta}{2}\right)}{\sin\frac{\beta}{2}}$$

Thinking Process

To prove this, use the formula $2 \cos A \sin B = \sin(A + B) - \sin(A - B)$ and

$$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right) \cdot \sin\left(\frac{A-B}{2}\right)$$

NCERT Exemplar (Class XI) Solutions

Sol. Let $P(n): \cos\alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \dots + \cos[\alpha + (n-1)\beta]$ $= \frac{\cos\left[\alpha + \left(\frac{n-1}{2}\right)\beta\right]\sin\left(\frac{n\beta}{2}\right)}{\sin\frac{\beta}{2}}$

Step I We observe that P(1)

$$P(1):\cos\alpha = \frac{\cos\left[\alpha + \left(\frac{1-1}{2}\right)\right]\beta\sin\frac{\beta}{2}}{\sin\frac{\beta}{2}} = \frac{\cos(\alpha + 0)\sin\frac{\beta}{2}}{\sin\frac{\beta}{2}}$$
$$\cos\alpha = \cos\alpha$$

Hence, P(1) is true.

Step II Now, assume that P(n) is true for n = k.

$$P(k):\cos\alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \dots + \cos[\alpha + (k-1)\beta]$$
$$= \frac{\cos\left[\alpha + \left(\frac{k-1}{2}\right)\right]\beta\sin\frac{k\beta}{2}}{\sin\frac{\beta}{2}}$$

Step III Now, to prove P(k + 1) is true, we have to show that $P(k + 1) : \cos \alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + ... + \cos[\alpha + (k - 1)\beta]$

$$+\cos[\alpha + (k+1-1)\beta] = \frac{\cos\left(\alpha + \frac{k\beta}{2}\right)\sin(k+1)\frac{\beta}{2}}{\frac{\sin\beta}{2}}$$

LHS =
$$\cos\alpha + \cos(\alpha + \beta) + \cos(\alpha + 2\beta) + \dots + \cos[\alpha + (k-1)\beta] + \cos(\alpha + k\beta)$$

 $\cos[\alpha + (k-1)\beta]\sin^{k\beta}$

$$= \frac{\cos\left[\alpha + \left(\frac{1}{2}\right)\beta\right]\sin\frac{2}{2}}{\sin\frac{\beta}{2}} + \cos(\alpha + k\beta)$$

$$= \frac{\cos\left[\alpha + \left(\frac{k-1}{2}\right)\beta\right]\sin\frac{k\beta}{2} + \cos(\alpha + k\beta)\sin\frac{\beta}{2}}{\sin\frac{\beta}{2}}$$

$$= \frac{\sin\left(\alpha + \frac{k\beta}{2} - \frac{\beta}{2} + \frac{k\beta}{2}\right) - \sin\left(\alpha + \frac{k\beta}{2} - \frac{\beta}{2} - \frac{k\beta}{2}\right) + \sin\left(\alpha + k\beta + \frac{\beta}{2}\right) - \sin\left(\alpha + k\beta - \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$

$$= \frac{\sin\left(\alpha + k\beta + \frac{\beta}{2}\right) - \sin\left(\alpha - \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$

$$= \frac{2\cos\frac{1}{2}\left(\alpha + \frac{\beta}{2} + k\beta + \alpha - \frac{\beta}{2}\right)\sin\frac{1}{2}\left(\alpha + \frac{\beta}{2} + k\beta - \alpha + \frac{\beta}{2}\right)}{2\sin\frac{\beta}{2}}$$

$$= \frac{\cos\left(\frac{2\alpha + k\beta}{2}\right)\sin\left(\frac{k\beta + \beta}{2}\right)}{\sin\frac{\beta}{2}} = \frac{\cos\left(\alpha + \frac{k\beta}{2}\right)\sin(k + 1)\frac{\beta}{2}}{\sin\frac{\beta}{2}} = \text{RHS}$$

So, P(k + 1) is true. Hence, P(n) is true.

Q. 21 Prove that $\cos\theta \cos 2\theta \cos 2^2\theta \dots \cos 2^n - 1\theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$, $\forall n \in N$. Sol. Let $P(n): \cos\theta \cos 2\theta \dots \cos 2^{n-1}\theta = \frac{\sin 2^n \theta}{2^n \sin \theta}$ $Step I \text{ For } n = 1, P(1): \cos\theta = \frac{\sin 2^n \theta}{2^1 \sin \theta}$ $= \frac{\sin 2^n \theta}{2\sin \theta} = \frac{2\sin \theta \cos \theta}{2\sin \theta} = \cos \theta$ which is true. Step II Assume that P(n) is true, for n = k. $P(k): \cos\theta \cdot \cos 2\theta \cdot \cos 2^2\theta \dots \cos 2^{k-1}\theta = \frac{\sin 2^k \theta}{2^k \sin \theta} \text{ is true.}$ Step III To prove P(k+1) is true. $P(k+1): \cosh \cdot \cos 2\theta \cdot \cos 2^2\theta \dots \cos 2^{k-1}\theta \cdot \cos 2^k \theta$ $= \frac{\sin 2^k \theta \cdot \cos 2^k \theta}{2\cdot 2^k \sin \theta} = \frac{\sin 2^k \theta}{2\cdot 2^k \sin \theta}$ which is true. So, P(k+1) is true. Hence, P(n) is true.**Q.** 22 Prove that, $\sin\theta + \sin 2\theta + \sin 3\theta + \ldots + \sin n\theta = \frac{\frac{\sin n\theta}{2} \sin \frac{(n+1)}{2}\theta}{\sin \frac{\theta}{2}}$,

for all $n \in N$.

Thinking Process

To use the formula of $2 \sin A \sin B = \cos(A - B) - \cos(A + B)$ and

$$\cos A - \cos B = 2\sin \frac{A+B}{2} \cdot \sin \frac{B-A}{2} also \cos(-\theta) = \cos \theta.$$

Sol. Consider the given statement
$$P(n): \sin \theta + \sin 2\theta + \sin 3\theta + .$$

$$\sin 2\theta + \sin 3\theta + \dots + \sin n\theta$$
$$= \frac{\sin \frac{n}{2} \theta \sin \frac{(n+1)\theta}{2}}{\sin \frac{\theta}{2}}, \text{ for all } n \in N$$

Step I We observe that P(1) is

$$P(1):\sin\theta = \frac{\sin\frac{\theta}{2}\cdot\sin\frac{(1+1)}{2}\theta}{\sin\frac{\theta}{2}} = \frac{\sin\frac{\theta}{2}\cdot\sin\theta}{\sin\frac{\theta}{2}}$$
$$\sin\theta = \sin\theta$$

Hence, P(1) is true.

75

Step II Assume that P(n) is true, for n = k.

$$P(k):\sin\theta + \sin 2\theta + \sin 3\theta + \dots + \sin k\theta$$
$$= \frac{\sin\frac{k\theta}{2}\sin\left(\frac{k+1}{2}\right)\theta}{\sin\frac{\theta}{2}} \text{ is true.}$$

Step III Now, to prove P(k + 1) is true.

P(k + 1): sin θ + sin 2 θ + sin 3 θ + ...+ sin $k\theta$ + sin $(k + 1)\theta$

$$=\frac{\sin\frac{(k+1)\theta}{2}\sin\left(\frac{k+1+1}{2}\right)\theta}{\sin\frac{\theta}{2}}$$

 $LHS = \sin \theta + \sin 2 \theta + \sin 3 \theta + \dots + \sin k \theta + \sin(k+1) \theta$

$$= \frac{\sin\frac{k\theta}{2}\sin\left(\frac{k+1}{2}\right)\theta}{\sin\frac{\theta}{2}} + \sin(k+1)\theta = \frac{\sin\frac{k\theta}{2}\sin\left(\frac{k+1}{2}\right)\theta + \sin(k+1)\theta \cdot \sin\frac{\theta}{2}}{\sin\frac{\theta}{2}}$$
$$= \frac{\cos\left[\frac{k\theta}{2} - \left(\frac{k+1}{2}\right)\theta\right] - \cos\left[\frac{k\theta}{2} + \left(\frac{k+1}{2}\right)\theta\right] + \cos\left[(k+1)\theta - \frac{\theta}{2}\right] - \cos\left[(k+1)\theta + \frac{\theta}{2}\right]}{2\sin\frac{\theta}{2}}$$
$$= \frac{\cos\frac{\theta}{2} - \cos\left(k\theta + \frac{\theta}{2}\right) + \cos\left(k\theta + \frac{\theta}{2}\right) - \cos\left(k\theta + \frac{3\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$
$$= \frac{\cos\frac{\theta}{2} - \cos\left(k\theta + \frac{3\theta}{2}\right)}{2\sin\frac{\theta}{2}} = \frac{2\sin\frac{1}{2}\left(\frac{\theta}{2} + k\theta + \frac{3\theta}{2}\right) \cdot \sin\frac{1}{2}\left(k\theta + \frac{3\theta}{2} - \frac{\theta}{2}\right)}{2\sin\frac{\theta}{2}}$$
$$= \frac{\sin\left(\frac{k\theta + 2\theta}{2}\right) \cdot \sin\left(\frac{k\theta + \theta}{2}\right)}{\sin\frac{\theta}{2}} = \frac{\sin(k+1)\frac{\theta}{2} \cdot \sin(k+1+1)\frac{\theta}{2}}{\sin\frac{\theta}{2}}$$

So, P(k + 1) is true, whenever P(k) is true. Hence, P(n) is true.

Q. 23 Show that
$$\frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$$
 is a natural number, for all $n \in N$.

• Thinking Process

Here, use the formula $(a + b)^5 = a^5 + 5ab^4 + 10a^2b^3 + 10a^3b^2 + 5a^4b + b^5$ and $(a + b)^3 = a^3 + b^3 + 3ab(a + b)$

Sol. Consider the given statement $P(n): \frac{n^5}{5} + \frac{n^3}{3} + \frac{7n}{15}$ is a natural number, for all $n \in N$. Step I We observe that P(1) is true. $P(1): \frac{(1)^5}{5} + \frac{1^3}{3} + \frac{7(1)}{15} = \frac{3+5+7}{15} = \frac{15}{15} = 1$, which is a natural number. Hence, P(1) is true. Step II Assume that P(n) is true, for n = k. $P(k): \frac{k^5}{5} + \frac{k^3}{3} + \frac{7k}{15}$ is natural number.

Step III Now, to prove
$$P(k + 1)$$
 is true.

$$\frac{(k+1)^{3}}{5} + \frac{(k+1)^{3}}{3} + \frac{7(k+1)}{15}$$

$$= \frac{k^{5} + 5k^{4} + 10k^{3} + 10k^{2} + 5k + 1}{5} + \frac{k^{3} + 1 + 3k(k+1)}{3} + \frac{7k + 7}{15}$$

$$= \frac{k^{5} + 5k^{4} + 10k^{3} + 10k^{2} + 5k + 1}{5} + \frac{k^{3} + 1 + 3k^{2} + 3k}{3} + \frac{7k + 7}{15}$$

$$= \frac{k^{5}}{5} + \frac{k^{3}}{3} + \frac{7k}{15} + \frac{5k^{4} + 10k^{3} + 10k^{2} + 5k + 1}{5} + \frac{3k^{2} + 3k + 1}{3} + \frac{7k + 7}{15}$$

$$= \frac{k^{5}}{5} + \frac{k^{3}}{3} + \frac{7k}{15} + \frac{k^{4} + 2k^{3} + 2k^{2} + k + k^{2} + k + \frac{1}{5} + \frac{1}{3} + \frac{7}{15}$$

$$= \frac{k^{5}}{5} + \frac{k^{3}}{3} + \frac{7k}{15} + k^{4} + 2k^{3} + 3k^{2} + 2k + 1$$
, which is a natural number

So, P(k + 1) is true, whenever P(k) is true. Hence, P(n) is true.

Q. 24 Prove that
$$\frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{2n} > \frac{13}{24}$$
, for all natural numbers $n > 1$.

Sol. Consider the given statement

$$P(n): \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{13}{24}$$
, for all natural numbers $n > 1$.

Step I We observe that, P(2) is true,

$$P(2): \frac{1}{2+1} + \frac{1}{2+2} > \frac{13}{24}.$$
$$\frac{\frac{1}{3} + \frac{1}{4} > \frac{13}{24}}{\frac{4+3}{12} > \frac{13}{24}}$$
$$\frac{\frac{7}{12} > \frac{13}{24}}{\frac{7}{12} > \frac{13}{24}}, \text{ which is true.}$$

Hence, P(2) is true.

Step II Now, we assume that *P*(*n*) is true,

For n = k,

$$P(k): \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} > \frac{13}{24}$$

Step III Now, to prove P(k + 1) is true, we have to show that P(k + 1) = 1 + 1 + 1 + 1 + 13

$$P(k+1): \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} + \frac{1}{2(k+1)} > \frac{13}{24}$$
Given,

$$\frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} > \frac{13}{24}$$

$$\frac{1}{k+1} + \frac{1}{k+2} + \frac{1}{2k} + \frac{1}{2(k+1)} > \frac{13}{24} + \frac{1}{2(k+1)}$$

$$\frac{13}{24} + \frac{1}{2(k+1)} > \frac{13}{24}$$

$$\therefore \qquad \frac{1}{k+1} + \frac{1}{k+2} + \dots + \frac{1}{2k} + \frac{1}{2(k+1)} > \frac{13}{24}$$

So, P(k + 1) is true, whenever P(k) is true. Hence, P(n) is true.

Q. 25 Prove that number of subsets of a set containing *n* distinct elements is 2^n , for all $n \in N$.

Sol. Let *P* (*n*) : Number of subset of a set containing *n* distinct elements is 2^n , for all *n* ∈ *N*. Step I We observe that *P*(1) is true, for *n* = 1. Number of subsets of a set contain 1 element is $2^1 = 2$, which is true. Step II Assume that *P*(*n*) is true for *n* = *k*. *P*(*k*): Number of subsets of a set containing *k* distinct elements is 2^k , which is true. Step III To prove *P*(*k* + 1) is true, we have to show that *P*(*k* + 1): Number of subsets of a set containing (*k* + 1) distinct elements is 2^{k+1} . We know that, with the addition of one element in the set, the number of subsets become double. ∴ Number of subsets of a set containing (*k* + 1) distinct elements = $2 \times 2^k = 2^{k+1}$. So, *P*(*k* + 1) is true. Hence, *P*(*n*) is true.

Objective Type Questions

O. 26 If $10^n + 3 \cdot 4^{n+2} + k$ is divisible by 9, for all $n \in N$, then the least positive integral value of k is (a) 5 (b) 3 (c) 7 (d) 1 **Sol.** (a) Let $P(n): 10^n + 3 \cdot 4^{n+2} + k$ is divisible by 9, for all $n \in N$. For n = 1, the given statement is also true $10^1 + 3 \cdot 4^{1+2} + k$ is divisible by 9. $= 10 + 3 \cdot 64 + k = 10 + 192 + k$ ÷ = 202 + kIf (202 + k) is divisible by 9, then the least value of k must be 5. 202 + 5 = 207 is divisible by 9 ... $\frac{207}{9} = 23$ \Rightarrow Hence, the least value of k is 5. **Q.** 27 For all $n \in N$, $3 \cdot 5^{2n+1} + 2^{3n+1}$ is divisible by (a) 19 (b) 17 (c) 23 (d) 25 **Sol.** (b, c) Given that, $3 \cdot 5^{2n+1} + 2^{3n+1}$ For n = 1. $3 \cdot 5^{2(1)+1} + 2^{3(1)+1}$ $= 3 \cdot 5^3 + 2^4$ = 3×125 + 16 = 375 + 16 = 391 Now. $391 = 17 \times 23$ which is divisible by both 17 and 23.

Q. 28 If $x^n - 1$ is divisible by x - k, then the least positive integral value of k is

(a) 1 (b) 2 (c) 3 (d) 4

Sol. Let $P(n) : x^n - 1$ is divisible by (x - k). For n = 1, $x^1 - 1$ is divisible by (x - k). Since, if x - 1 is divisible by x - k. Then, the least possible integral value of k is 1.

Fillers

Q. 29 If $P(n) : 2n < n!, n \in N$, then P(n) is true for all $n \ge$.

Sol. Given that, P(n) : 2n < n!, $n \in N$

	,	
For $n = 1$,	2 < !	[false]
For $n = 2$,	2×2<2!4<2	[false]
For <i>n</i> = 3,	2 × 3 < 3!	
	6 < 3!	
	6<3×2×1	
	(6 < 6)	[false]
For $n = 4$,	2 × 4 < 4!	
	8<4×3×2×1	
	(8 < 24)	[true]
For <i>n</i> = 5,	2 × 5 < 5!	
	$10 < 5 \times 4 \times 3 \times 2 \times 1$	
	(10 < 120)	[true]
Hence, P(n) is fo	r all $n \ge 4$.	

True/False

Q. 30 Let P(n) be a statement and let $P(k) \Rightarrow P(k + 1)$, for some natural number k, then P(n) is true for all $n \in N$.

Sol. *False* The given statement is false because *P*(1) is true has not been proved.