TRANSPORT PHENOMENA

2.220 (a) The fraction of gas molecules which traverses distances exceeding the mean free path without collision is just the probability to traverse the distance $s = \lambda$ without collision.

$$P = e^{-1} = \frac{1}{e} = 0.37$$

(b) This probability is

$$P = e^{-1} - e^{-2} = 0.23$$

2.221 From the formula

$$\frac{1}{\eta} = e^{-\Delta t/\lambda} \text{ or } \lambda = \frac{\Delta l}{\ln \eta}$$
2.222 (a) Let $P(t)$ = probability of no collision in the interval $(0, t)$. Then

OF

$$P(t+dt) = P(t) (1 - \alpha dt)$$

$$\frac{dP}{dt} = -\alpha P(t) \text{ or } P(t) = e^{-\alpha t}$$

where we have used P(0) = 1

(b) The mean interval between collision is also the mean interval of no collision. Then

$$\langle t \rangle = \frac{\int\limits_{0}^{\infty} t e^{-\alpha t} dt}{\int\limits_{0}^{\infty} e^{-\alpha t} dt} = \frac{1}{\alpha} \frac{\Gamma(2)}{\Gamma(1)} = \frac{1}{\alpha}$$

2.223 (a)
$$\lambda = \frac{1}{\sqrt{2} \pi d^2 n} = \frac{kT}{\sqrt{2} \pi d^2 p}$$

$$= \frac{1.38 \times 10^{-23} \times 273}{\sqrt{2} \pi (0.37 \times 10^{-9})^2 \times 10^5} = 6.2 \times 10^{-8} \text{ m}$$

$$\tau = \frac{\lambda}{\langle v \rangle} = \frac{6.2 \times 10^{-8}}{454} s = .136 \text{ n s}$$

$$\lambda = 6.2 \times 10^6 \,\mathrm{m}$$

(b)
$$\eta = 1.36 \times 10^4 \text{ s} = 3.8 \text{ hours}$$

2.224 The mean distance between molecules is of the order

$$\left(\frac{22\cdot4\times10^{-3}}{6\cdot0\times10^{23}}\right)^{1/3} = \left(\frac{224}{6}\right)^{1/3}\times10^{-9} \text{ meters } \approx 3\cdot34\times10^{-9} \text{ meters}$$

This is about 18.5 times smaller than the mean free path calculated in 2.223 (a) above.

2.225 We know that the Vander Waal's constant b is four times the molecular volume. Thus

$$b = 4N_A \frac{\pi}{6} d^3 \quad \text{or} \quad d = \left(\frac{3b}{2\pi N_A}\right)^{1/3}$$
$$\lambda = \left(\frac{kT_0}{\sqrt{2}\pi p_0}\right) \left(\frac{2\pi N_A}{3b}\right)^{2/3}$$

Hence

SO.

or.

The volocity of sound in N_2 is $\sqrt{\frac{\gamma p}{n}} = \sqrt{\frac{\gamma RT}{M}}$

$$\frac{1}{v} = \sqrt{\frac{\gamma R T_0}{M}} = \frac{R T_0}{\sqrt{2} \pi d^2 p_0 N_A}$$

$$v = \pi d^2 p_0 N_A \sqrt{\frac{2\gamma}{MR T_0}}$$

$$kT$$

2.227 (a)
$$\lambda > l$$
 if $p < \frac{kT}{\sqrt{2} \pi d^2 l}$
Now

2.229 (a) $\lambda = \frac{1}{\sqrt{2}\pi d^2\pi}$

Now
$$\frac{kT}{\sqrt{2} \pi d^2 l}$$
 for O_2 of O is 0.7 Pa.
(b) The corresponding n is obtained by dividing by kT and is 1.84×10^{20} per $m^3 = 1.84^{14}$ per c.c. and the corresponding mean distance is $\frac{l}{n^{1/3}}$.

$$= \frac{10^{-2}}{(0.184)^{1/3} \times 10^5} = 1.8 \times 10^- \, \text{m} \approx 0.18 \, \mu\text{m}.$$
2.228 (a) $v = \frac{1}{\tau} = \frac{1}{\lambda/\langle v \rangle} = \frac{\langle v \rangle}{\lambda}$

 $= \sqrt{2} \pi d^2 n < v > = .74 \times 10^{10} \text{ s}^{-1} \text{ (see 2.223)}$

(b) Total number of collisions is
$$\frac{1}{2}nv = 1.0 \times 10^{29} \text{ s cm}^{-3}$$

Note, the factor $\frac{1}{2}$. When two molecules collide we must not count it twice.

Note, the factor
$$\frac{1}{2}$$
. When two molecules collide we must not count it twice.

process. $v = \frac{\langle v \rangle}{\Delta} = \frac{\sqrt{\frac{8RT}{M\pi}}}{\sqrt{T}} \alpha \sqrt{T}$

(b)
$$\lambda = \frac{1}{\sqrt{2} \pi d^2} \frac{kT}{p} \alpha T$$
 for an isobaric process.

d is a constant and n is a constant for an isochoric process so λ is constant for an isochoric

 $v = \frac{\langle v \rangle}{\lambda} \alpha \frac{\sqrt{T}}{T} = \frac{1}{\sqrt{T}}$ for an isobaric process.

(a) In an isochoric process λ is constant and $v \propto \sqrt{T} \propto \sqrt{pV} \propto \sqrt{p} \propto \sqrt{n}$

(b) $\lambda = \frac{kT}{\sqrt{2} \pi d^2 n}$ must decrease *n* times in an isothermal process and *v* must increase

n times because $\langle v \rangle$ is constant in an isothermal process.

2.231 (a)
$$\lambda \alpha \frac{1}{n} \Rightarrow \frac{1}{N/V} = \frac{V}{N}$$

$$\lambda \alpha V$$
 and $\nu \alpha \frac{T^{1/2}}{V}$

 $T^{1/2} \propto V^{-1/5}$ Thus $v \propto V^{-6/5}$

But in an adiabatic process
$$\left(\gamma = \frac{7}{5} \text{ here}\right)$$

$$TV^{\gamma-1}$$
 = constant so $TV^{2/5}$ = constant

(b)
$$\lambda \alpha \frac{T}{p}$$

But
$$p\left(\frac{T}{p}\right)^{\tau} = \text{constant or } \frac{T}{p} \alpha p^{-1/\gamma} \text{ or } T \alpha p^{1-1/\gamma}$$

Thus $\lambda \alpha p^{-1/\gamma} = p^{-5/\gamma}$

$$v = \frac{\langle v \rangle}{\lambda} \alpha \frac{p}{\sqrt{T}} \alpha p^{1/2} + \frac{1}{2\gamma} = p^{\frac{\gamma+1}{2\gamma}} = p^{6/7}$$

$$TV^{2/5}$$
 = constant or $V \propto T^{-5/2}$

$$v \propto \frac{T^{1/2}}{V} \propto T^3$$

2.232 In the polytropic process of index
$$n$$

$$pV^n = \text{constant}, TV^{n-1} = \text{constant} \text{ and } p^{1-n}T^n = \text{constant}$$

$$pV'' = \text{constant}, TV''$$

SO

$$v \propto \frac{T^{1/2}}{V} = V^{\frac{1-n}{2}}V^{-1} = V^{\frac{-n+1}{2}}$$

$$T = T = n-1$$

(b)
$$\lambda \alpha \frac{T}{p}$$
, $T^n \alpha p^{n-1}$ or $T \alpha p^{1-\frac{1}{n}}$

$$v = \frac{\langle v \rangle}{2}$$

$$v = \frac{\langle v \rangle}{\lambda} \alpha \frac{p}{\sqrt{T}} \alpha p^{1 - \frac{1}{2} + \frac{1}{2n}} = p^{\frac{n+1}{2n}}$$

 $\lambda \alpha p^{-1/n}$

(c)
$$\lambda \alpha \frac{T}{p}$$
, $p \alpha T^{\frac{n}{n-1}}$

$$\lambda \alpha T^{1 - \frac{n}{n1}} = T^{-\frac{1}{n-1}} = T^{\frac{1}{1-n}}$$

$$\nu \alpha \frac{p}{\sqrt{T}} \alpha T^{\frac{n}{n-1} - \frac{1}{2}} = T^{\frac{n+1}{2(n-1)}}$$

2.233 (a) The number of collisions between the molecules in a unit volume is

$$\frac{1}{2}nv = \frac{1}{\sqrt{2}}\pi d^2 n^2 < v > \alpha \frac{\sqrt{T}}{V^2}$$

This remains constant in the poly process pV^{-3} = constant Using (2.122) the molar specific heat for the polytropic process

$$pV^{\alpha}$$
 = constant,

is

$$C = R\left(\frac{1}{\gamma - 1} - \frac{1}{\alpha - 1}\right)$$

Thus

$$C = R\left(\frac{1}{\gamma - 1} + \frac{1}{4}\right) = R\left(\frac{5}{2} + \frac{1}{4}\right) = \frac{11}{4}R$$

It can also be written as $\frac{1}{4}R(1+2i)$ where i=5

(b) In this case $\frac{\sqrt{T}}{V}$ = constant and so pV^{-1} = constant

so

$$C = R\left(\frac{1}{\gamma - 1} + \frac{1}{2}\right) = R\left(\frac{5}{2} + \frac{1}{2}\right) = 3R$$

It can also be written as $\frac{R}{2}(i+1)$

2.234 We can assume that all molecules, incident on the hole, leak out. Then,

$$-dN = -d(nV) = \frac{1}{4}n < v > S dt$$

or

$$dn = -n \frac{dt}{4v/S < v >} = -n \frac{dt}{\tau}$$

Integrating

$$n = n_0 e^{-t/\tau}$$
. Hence $\langle v \rangle = \sqrt{\frac{8RT}{\pi M}}$

2.235 If the temperature of the compartment 2 is η times more than that of compartment 1, it must contain $\frac{1}{\eta}$ times less number of molecules since pressure must be the same when the big hole is open. If M = mass of the gas in 1 than the mass of the gas in 2 must be $\frac{M}{\eta}$. So immediately after the big hole is closed.

$$n_1^0 = \frac{M}{mV}, \quad n_2^0 = \frac{M}{mV\eta}$$

where m = mass of each molecule and n_1^0 , n_2^0 are concentrations in 1 and 2. After the big hole is closed the pressures will differ and concentration will become n_1 and n_2 where

$$n_1 + n_2 = \frac{M}{m V \eta} (1 + \eta)$$

On the other hand

$$n_1 < v_1 > = n_2 < v_2 > \text{ i.e. } n_1 = \sqrt{\eta} n_2$$

$$n_2(1+\sqrt{\eta}) = \frac{m}{mV\eta}(1+\eta) = n_2^0(1+\eta)$$

So

$$n_2 = n_2^0 \frac{1+\eta}{1+\sqrt{\eta}}$$

2.236 We know

$$\eta = \frac{1}{3} < v > \lambda \rho = \frac{1}{3} < v > \frac{1}{\sqrt{2} \pi d^2} m \alpha \sqrt{T}$$

Thus η changing α times implies T changing α^2 times.

On the other hand

$$D = \frac{1}{3} < v > \lambda = \frac{1}{3} \sqrt{\frac{8kT}{\pi m}} \frac{kT}{\sqrt{2} \pi d^2 p}$$

Thus D changing β times means $\frac{T^{3/2}}{p}$ changing β times

So p must change $\frac{\alpha^3}{\beta}$ times

2.237
$$D \propto \frac{\sqrt{T}}{n} \propto V \sqrt{T}$$
, $\eta \propto \sqrt{T}$

(a) D will increase n times

 η will remain constant if T is constant

(b)
$$D \propto \frac{T^{3/2}}{p} \propto \frac{(p V)^{3/2}}{p} = p^{1/2} V^{3/2}$$

$$\eta \alpha \sqrt{pV}$$

Thus D will increase $n^{3/2}$ times, η will increase $n^{1/2}$ times, if p is constant

2.238 $D \alpha V \sqrt{T}$, $\eta \alpha \sqrt{T}$

In an adiabatic process

$$TV^{\gamma-1}$$
 = constant, or $T \propto V^{1-\gamma}$

Now V is decreased $\frac{1}{n}$ times. Thus

$$D \propto V^{\frac{3-\gamma}{2}} = \left(\frac{1}{n}\right)^{\frac{3-\gamma}{2}} = \left(\frac{1}{n}\right)^{4/5}$$
$$\eta \propto \text{of } V^{\frac{1-\gamma}{2}} = \left(\frac{1}{n}\right)^{-1/5} = n^{1/5}$$

So D decreases $n^{4/5}$ times and η increase $n^{1/5}$ times.

2.239 (a) $D \propto V \sqrt{T} \propto \sqrt{pV^3}$

Thus D remains constant in the process pV^3 = constant So polytropic index n = 3

(b) $\eta \alpha \sqrt{T} \alpha \sqrt{pV}$

So n remains constant in the isothermal process

$$pV = \text{constant}, n = 1, \text{here}$$

(c) Heat conductivity $\kappa = \eta C_V$

and C_{ν} is a constant for the ideal gas

Thus n = 1 here also,

2.240
$$\eta = \frac{1}{3} \sqrt{\frac{8 \, kT}{\pi \, m}} \frac{m}{\sqrt{2} \, \pi \, d^2} = \frac{2}{3} \sqrt{\frac{m \, kT}{\pi^3}} \frac{1}{d^2}$$

or $d = \left(\frac{2}{3 \, \eta}\right)^{1/2} \left(\frac{m \, kT}{\pi^3}\right)^{1/4} = \left(\frac{2}{3 \times 18 \cdot 9} \times 10^6\right)^{1/2} \left(\frac{4 \times 8 \cdot 31 \times 273 \times 10^{-3}}{\pi^3 \times 36 \times 10^{46}}\right)^{1/4}$
 $= 10^{-10} \left(\frac{2}{3 \times 18 \cdot 9}\right)^{1/2} \left(\frac{4 \times 83 \cdot 1 \times 273}{\pi^3 \times 36}\right)^{1/4} \approx 0.178 \, \text{nm}$

2.241 $\kappa = \frac{1}{3} < v > \lambda \rho c_V$

$$= \frac{1}{3} \sqrt{\frac{8 \, kT}{m \, \pi}} \, \frac{1}{\sqrt{2} \, \pi \, d^2 \, n} \, mn \, \frac{C_V}{M}$$

 $\left(C_{v}\right)$ is the specific heat capacity which is $\frac{C_{v}}{M}$. Now C_{v} is the same for all monoatomic gases such as He and A. Thus

$$\kappa \propto \frac{1}{\sqrt{M} d^{2}}$$

$$\frac{\kappa_{He}}{\kappa_{A}} = 8.7 = \frac{\sqrt{M_{A}} d_{A}^{2}}{\sqrt{M_{H_{e}} d_{H_{e}}^{2}}} = \sqrt{10} \frac{d_{A}^{2}}{d_{H_{e}}^{2}}$$

$$\frac{d_{A}}{d_{H_{e}}} = \sqrt{\frac{8.7}{\sqrt{10}}} = 1.658 \approx 1.7$$

2.242 In this case

or

$$N_1 \frac{r_2^2 - r_1^2}{r_1^2 r_2^2} = 4 \pi \eta \omega$$

or
$$N_1 \frac{2R\Delta R}{R^4} \approx 4\pi \eta \omega$$
 or $N_1 = \frac{2\pi \eta \omega R^3}{\Delta R}$

To decrease N_1 , n times η must be decreased n times. Now η does not depend on pressure until the pressure is so low that the mean free path equals, say, $\frac{1}{2}\Delta R$. Then the mean free path is fixed and η decreases with pressure. The mean free path equals $\frac{1}{2}\Delta R$ when

$$\frac{1}{\sqrt{2} \pi d^2 n_0} = \Delta R \ (n_0 = \text{concentration})$$

Corresponding pressure is
$$p_0 = \frac{\sqrt{2} kT}{\pi d^2 \Lambda R}$$

The sought pressure is n times less

$$p = \frac{\sqrt{2} kT}{\pi d^2 n \Delta R} = 70.7 \times \frac{10^{-23}}{10^{-18} \times 10^{-3}} \approx 0.71 \text{ Pa}$$

The answer is qualitative and depends on the choice $\frac{1}{2}\Delta R$ for the mean free path.

2.243 We neglect the moment of inertia of the gas in a shell. Then the moment of friction forces on a unit length of the cylinder must be a constant as a function of r.

So,
$$2 \pi r^3 \eta \frac{d\omega}{dr} = N_1$$
 or $\omega(r) = \frac{N_1}{4 \pi \eta} \left(\frac{1}{r_1^2} - \frac{1}{r^2}\right)$

and $\omega = \frac{N_1}{4 \dot{\pi} \eta} \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right)$ or $\eta = \frac{N_1}{4 \pi \omega} \left(\frac{1}{r_1^2} - \frac{1}{r_2^2} \right)$

2.244 We consider two adjoining layers. The angular velocity gradient is $\frac{\omega}{h}$. So the moment of the frictional force is

$$N = \int_{0}^{a} r \cdot 2 \pi r dr \cdot \eta r \frac{\omega}{h} = \frac{\pi \eta a^{4} \omega}{2h}$$

2.245 In the ultrararefied gas we must determine η by taking $\lambda = \frac{1}{2}h$. Then

$$\eta = \frac{1}{3} \sqrt{\frac{8kT}{m\pi}} \times \frac{1}{2} h \times \frac{mp}{kT} = \frac{1}{3} \sqrt{\frac{2M}{\pi RT}} hp$$

$$N = \frac{1}{3} \omega a^4 p \sqrt{\frac{\pi M}{2RT}}$$

so,

Take an infinitesimal section of length dx and apply Poiseuilles equation to this. Then

$$\frac{dV}{dt} = \frac{-\pi a^4}{8\eta} \frac{\partial p}{\partial x}$$

From the formula

$$pV = RT \cdot \frac{m}{M}$$

$$pdV = \frac{RT}{M}dm$$

or $\frac{dm}{dt} = \mu = -\frac{\pi a^4 M}{8 n RT} \frac{p dp}{dx}$

This equation implies that if the flow is isothermal then $p \frac{dp}{dx}$ must be a constant and so

equals $\frac{\left|p_2^2 - p_1^2\right|}{2l}$ in magnitude.

Thus,
$$\mu = \frac{\pi \, a^4 M}{16 \, \eta \, R \, T} \frac{|p_2^2 - p_1^2|}{l}$$

2.247 Let T = temperature of the interface.

Then heat flowing from left = heat flowing into right in equilibrium.

Thus,
$$\kappa_1 \frac{T_1 - T}{l_1} = \kappa_2 \frac{T - T_2}{l_2}$$
 or $T = \frac{\left(\frac{\kappa_1 T_1}{l_1} + \frac{\kappa_2 T_2}{l_2}\right)}{\left(\frac{\kappa_1}{l_1} + \frac{\kappa_2}{l_2}\right)}$

2.248 We have

or

$$\kappa_1 \frac{T_1 - T}{l_1} = \kappa_2 \frac{T - T_2}{l_2} = \kappa \frac{T_1 - T_2}{l_1 + l_2}$$
or using the marrians result

or using the previous result

$$\frac{\kappa_{1}}{l_{1}} \left(T_{1} - \frac{\frac{\kappa_{1} T_{1}}{l_{1}} + \frac{\kappa_{2} T_{2}}{l_{2}}}{\frac{\kappa_{1}}{l_{1}} + \frac{\kappa_{1}}{l_{2}}} \right) = \kappa \frac{T_{1} - T_{2}}{l_{1} + l_{2}}$$

$$\frac{\kappa_{1}}{l_{1}} \frac{\frac{\kappa_{2}}{l_{2}} (T_{1} - T_{2})}{\frac{\kappa_{1}}{l_{1}} + \frac{\kappa_{2}}{l_{2}}} = \kappa \frac{T_{1} - T_{2}}{l_{1} + l_{2}} \quad \text{or} \quad \kappa = \frac{l_{1} + l_{2}}{\frac{l_{1}}{l_{1}} + \frac{l_{2}}{l_{2}}}$$

2.249 By definition the heat flux (per unit area) is

$$\dot{Q} = -K \frac{dT}{dx} = -\alpha \frac{d}{dx} \ln T = \text{constant} = +\alpha \frac{\ln T_1/T_2}{l}$$

Integrating

 $\ln T = \frac{x}{l} \ln \frac{T_2}{T_1} + \ln T_1$

where T_1 = temperature at the end x = 0

So
$$T = T_1 \left(\frac{T_2}{T_1} \right)^{x/l} \text{ and } \dot{Q} = \frac{\alpha \ln T_1 / T_2}{l}$$

2.250 Suppose the chunks have temperatures T_1 , T_2 at time t and $T_1 - dT_1$, $T_2 + dT_2$ at time dt + t.

Then
$$C_1 dT_1 = C_2 dT_2 = \frac{\kappa S}{l} (T_1 - T_2) dt$$

Thus
$$d \Delta T = -\frac{\kappa S}{l} \left(\frac{1}{C_1} + \frac{1}{C_2} \right) \Delta T dt$$
 where $\Delta T = T_1 - T_2$

Hence
$$\Delta T = (\Delta T)_0 e^{-t/\tau}$$
 where $\frac{1}{\tau} = \frac{\kappa s}{l} \left(\frac{1}{C_1} + \frac{1}{C_2}\right)$

2.251
$$\dot{Q} = \kappa \frac{\partial T}{\partial x} = -A\sqrt{T} \frac{\partial T}{\partial x}$$

$$= -\frac{2}{3}A \frac{\partial T^{3/2}}{\partial x}, (A = \text{constant})$$
$$= \frac{2}{3}A \frac{(T_1^{3/2} - T_2^{3/2})}{I}$$

Thus

Then

$$T^{3/2} = \text{constant} - \frac{x}{l} \left(T_1^{3/2} - T_2^{3/2} \right)$$

or using

$$T = T_1$$
 at $x = 0$

$$T^{3/2} = T_1^{3/2} + \frac{x}{l} \left(T_2^{3/2} - T_1^{3/2} \right) \text{ or } \left(\frac{T}{T_1} \right)^{3/2} = 1 + \frac{x}{l} \left(\left(\frac{T_2}{T} \right)^{3/2} - 1 \right)$$

$$T = T_1 \left[1 + \frac{x}{l} \left\{ \left(\frac{T_2}{T_1} \right)^{3/2} - 1 \right\} \right]^{2/3}$$

2.252
$$\kappa = \frac{1}{3} \sqrt{\frac{8RT}{\pi M}} \frac{1}{\sqrt{2} \pi d^2 n} mn \frac{R^{\frac{i}{2}}}{M} = \frac{R^{3/2} i T^{3/2}}{3\pi^{3/2} d^2 \sqrt{M} N_A}$$

Then from the previous problem

$$q = \frac{2iR^{3/2}(T_2^{3/2} - T_1^{3/2})}{9\pi^{3/2}d^2\sqrt{M}N.l}, i = 3 \text{ here.}$$

2.253 At this pressure and average temparature =
$$27^{\circ}C = 300K = T = \frac{(T_1 + T_2)}{2}$$

$$\lambda = \frac{1}{\sqrt{2} \pi d^2 p} = 2330 \times 10^{-5} \text{m} = 23.3 \text{mm} >> 5.0 \text{mm} = l$$

The gas is ultrathin and we write $\lambda = \frac{1}{2}l$ here

Then
$$q = \kappa \frac{dT}{dx} = \kappa \frac{T_2 - T_1}{t}$$

where
$$\kappa = \frac{1}{3} < v > \times \frac{1}{2} l \times \frac{MP}{RT} \times \frac{R}{v-1} \times \frac{1}{M} = \frac{p < v >}{6T(v-1)} l$$

and
$$q = \frac{p < v >}{6T(v-1)} (T_2 - T_1)$$

where
$$\langle v \rangle = \sqrt{\frac{8RT}{M\pi}}$$
. We have used $T_2 - T_1 \ll \frac{T_2 + T_1}{2}$ here.

2.254 In equilibrium
$$2\pi r \kappa \frac{dT}{dr} = -A = \text{constant}$$
. So $T = B - \frac{A}{2\pi \kappa} \ln r$

But $T = T_1$ when $r = R_1$ and $T = T_2$, when $r = R_2$.

From this we find $T = T_1 + \frac{T_2 - T_1}{\ln \frac{R_2}{R_1}} \ln \frac{r}{r_1}$

2.255 In equilibrium $4\pi r^2 \kappa \frac{dT}{dr} = -A = \text{constant}$

$$T = B + \frac{A}{4\pi\kappa} \frac{1}{r}$$

Using $T = T_1$ when $r = R_1$ and $T = T_2$ when $r = R_2$

$$T = T_1 + \frac{T_2 - T_1}{\frac{1}{R_2} - \frac{1}{R_1}} \left(\frac{1}{r} - \frac{1}{R_1} \right)$$

2.256 The heat flux vector is $-\kappa$ grad T and its divergence equals w. Thus

$$\nabla^2 T = -\frac{w}{\kappa}$$

or $\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial T}{\partial r} \right) = -\frac{w}{\kappa}$ in cylindrical coordinates.

or $T = B + A \ln r - \frac{\omega}{2r} r^2$

Since T is finite at r = 0, A = 0. Also $T = T_0$ at r = R

so $B = T_0 + \frac{w}{4\kappa} R^2$

Thus $T = T_0 + \frac{w}{4\kappa} (R^2 - r^2)$

r here is the distance from the axis of wire (axial radius).

2.257 Here again

$$\nabla^2 T = -\frac{w}{\kappa}$$

So in spherical polar coordinates,

$$\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) = -\frac{w}{\kappa} \text{ or } r^2 \frac{\partial T}{\partial r} = -\frac{w}{3\kappa} r^3 + A$$

or $T = B - \frac{A}{r} - \frac{w}{6\kappa}r^2$

Again A = 0 and $B = T_0 + \frac{w}{6\kappa}R^2$

so finally $T = T_0 + \frac{w}{6\kappa} (R^2 - r^2)$