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2.7 TRANSPORT PHENOMENA

2.220

2221

2222

2.223

224

2.225

{a) The fraction of gas molecules which traverses distances exceeding the mean free path
without collision is just the probability to traverse the distance s = A without collision.

Thus Pe=elu %- 0-37

(b) This probability is
P=el_e?=023
From the formula
1 e 2 or Am AL
n Inm
(a) Let P(f) = probability of no collision in the interval (0, ¢). Then

P(+d)=P(1)(1-od)
or %,- -aP({) or P(hw e™*f
where we have used-P(0)= 1
(b) The mean interval between collision is also the mean interval of no collision. Then

fte"'“dt

0
<> = =

fe-'"dt

0
1 kT
a) A -

@ V2 nd?n \ffndzp
. 138 x 10”2 x 273
V2 % (037x107° )2 x 10°
¢ -6-2x10's

T v 454

R j=
=
S
]
=R s

=-62x10"%m

s= 136ns

A=62x10°m
(®) m=136x10*s= 3-8 hours
The mean distance between molecules is of the order
-3 M
[22-4 x 10 ] - (224

14
o 221 x10™ " meters = 334 x 10~ meters
60x 10 6

This is about 18.5 times smaller than the mean free path calculated in 2.223 (a) above.
We know that the Vander Waal’s constant b is four times the molecular volume. Thus

13
I:a--éu\",‘ig—d3 or d-( 3b )

2xN,

273
kT, 2
Hence A= ( 0 ] ( ENA)
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2.226

2227

2.228

2.229

2230

The volecity of sound in N, is

1 /'}_p_ - /IRT

P M
50, !‘_- “/YRTU - —-—.5...1:9.._.._
v \/E:tdzpoNA

M

or, v=nd p,N, V;I%,;

R kT

) A>»lif pg———n

@ P ]
k

T
Now ——— for O, of Ois 0-7Pa.
V2 ndti 2

(b) The corresponding n is obtained by dividing by kT and is 1-84 x 10% per
Y g by P

m = 1-8414per c.c. and the corresponding mean distance is 1

'
-2
- 18x10"m ~ 018 .
(0-184)° x 10
1 1 <y >
@ v= T Mev> A

=V2rdin<ws>= 74x 107! (see 2.223)
(b) Total number of collisions is

—1~nv w 1:0x10®%sem ™2

2
Note, the factor -;— When two molecules collide we must not count it twice,
1
a} A= omrmeeee
@ V2 nd%n

d is a constant and » is a constant for an isochoric process so A is constant for an isochoric
process.

8RT
<v > M=z
ve o= Y aVT
1 kT
A= — o T for an isobaric process.
®) V2 md®p P
<y > ﬁ 1

V= % o T - ﬁ for an isobaric process.

(a) In an isochoric process A is constant and

va VT aV PV o \/E avn
(b) A= \&_ku-——%g— must decrease n times in an isothermal process and v must increase
T P -

n times because <v > is constant in an isothermal process.
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2231 (2) Aate>—ioa

2232

14
n N/V'N

12

Thus AoV and vaTT

But in an adiabatic process (y - %here)

TV'-la constant so ZVY> = constant

or T2 av-Y* ThusvavV-%°
T
ra=
(b) 7
' T
But p(‘“‘ = constant or —ap~ ! or Tapl-¥
P p
Thus rop Ve p=7
1 b h2 3
s v> P vty o H o 67
(c) AaV
But TV = constant or Vo T~ %2
Thus Aa T2

vozz‘?-—cc]'3

In the polytropic process of index n

pV" = constant, TV" ! = constant and p1 =" T" = constant
@ raV
172 l-n -+l

T T2 el 2
va_V vV 14 v

1
(b) Aa%, T ap®! or Tap'n

$0 hap~ It
<> p 11,1 nsl
V= e a 2 2nm 2n
Py Vf P P

T :1
Aa=, pal"
© 7P

280
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2.233

2234

2235

(a) The number of collisions between the molecules in a unit volume is

1 1 2.2
—nym= nd“n"<v>a
32

2 Vi

This remains constant in the poly process pV'3 = constant
Using (2.122) the molar specific heat for the polytropic process
pV® = constant,

. 1
is C= R(‘lna 1)

1 1 S 1 11
o - rfy o) f5ed)- 2a

It can also be written as %R (1+2i) where i=35

(b) In this case g- constant and so pV "' = constant

'1 5 1
50 Cm R(Y—l 2) R(—-o——)-SR

It can also be written as %(i +1)

We can assume that all molecules, incident on the hole, leak out. Then,

—dN= -d(nV)= %n<v>Sdt

or dnm - &
4v/S <v> <
a -/t _ 8RT
Integrating n=n,e” " . Hence <v>= M

If the temperature of the compartment 2 is 7 times more than that of compartment 1, it
must contain % times less number of molecules since pressure must be the same when
the big hole is open. If M = mass of the gas in 1 than the mass of the gas in 2 must be
%‘. So immediately after the big hole is closed.

where m = mass of each molecule and n‘; s ng are concentrations in 1 and 2. After the
big hole is closed the pressures will differ and concentration will become n; and n, where

M
ny+ny= m(l +n)
On the other hand
m <Yy >= py > e = \/rTnz



261

Thus m (V)= ST+ = i +m)
1+
so Ve
2236 We know

1 1
n= 5'<v>lp- Tev>

V_ dzmuﬁ

Thus v} changing o times implies T changing o times.
On the other hand
SIcT kT
D= = <V > L - .a
3 m V2 nd? p
Thus D changing § times means -;—- changing § times
3

So p must change 2 times

B

2.237 Da‘/”—?avﬁ, n=vVT

(a) D will increase n times
n will remain constant if T is constant

®) pal (PV)S'2 - p Iy

navpV
Thus D will increase n>? times, 7 will increase n 172 times, if p is constant

2238 paVVT, naVvT
In an adiabatic process

TV'" !~ constant, or T V=

Now V is decreased % times, Thus

3 _21
DaVii- (—1—) - (l]
n n

L
naofV 2 -(;) w n'”?

; ; Vs,
So D decreases n*times and 7 increase n” "times.

2239 (@) DaVVT aVpv?

Thus D remains constant in the process pV3 = constant
So polytropic index n = 3

®) naVT aVpV
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So 1 remains constant in the 1sothermal process
pV = constant, n= 1, here

(c) Heat conductivity k = 1 C,,

and C, is a constant for the ideal gas

Thus n= 1 bere also,
‘_1_ 8 kT m___ 2,/mkl 1
220 N3V am Vixa? 3Y @ &

174
o ae (2) (A 2 (4x831x273x 107
3 x° 3x189 n° x 36 x 10%

112 174
_wf 2 4x831x273 _
10 (3 <189 [ 36 ) (0-178 nm
2241 x= %<v>?~pcv
1. /3 1 Cy
-\ —— =———mn—
3V mr Vaad?a M
C
C\ is the specific heat capacity which is _ﬁ}v_) Now C,, is the same for all monoatomic
gases such as He and A. Thus
1
Ko
;M d?
NYaPL 2
Kire M, d, vio d,
or —-8-7-7—1—- 10 =5
Ka My dy dy
dy 37
— = \f— = 1658w 17
dy V1o
2.242 In this case
N =" 4
=4xnw
R
3
or Nl%;ﬂ-fin:nm or Nl--z-—lt—%l‘;)—R

Ta decrease N, n times 7 must be decreased » times. Now 1) does not depend on pressure

until the pressure is so low that the mean frec path equals, say, %AR Then the mean free

path is fixed and 71 decreases with pressure. The mean free path cquals %AR when

1

—=——m= AR (n,= concentration}
Vardin AR
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224

2.245

2.246

263

Corresponding pressure is p, _‘LZ—_EZ_
O xd’AR
The sought prcssure\/ji n times less
2kT 10°%2
- ————u TO7 x — = (71 P:
P Xd®nAR 10-%x 103 )

The answer is qualitative and depends on the choice %AR for the mean free path.

We neglect the moment of inertia of the gas in a shell. Then the moment of friction forces
on a unit length of the cylinder must be a constant as a function of »

N o101

So, 2nr31r| =N, or m(r)=:”t—n( —;5)
and oo (L 1) M o1y
BEE A " e P

We consider two adjoining layers. The angular velocity gradient is % Sc the moment of

the frictional force is

a
4

. O DKL a8
N fr 2xrdr nry o
0

In the ultrararefied gas we must determine m by taking A = %h. Then

LB 1, mp_ M
==3 oo 2" iT 3 <RT P

Loat \/ﬂ
50, N-3map RT

Take an infinitesimal section of length dx and apply Poiseuilles equation to this. Then

av _ -nat 3p

dt 8 ax
From the formula pV= RT- 1%

pdV = %dm
or dm _ - na' M pdp

dt  "'T T8qRT dx

This equation implies that if the flow is isothermal then p d must be a constant and so

dx
|72-7|
equals in magnitude,

21

4 2 2
 ma'M |p-pi]
’I‘hUS, u= 16T\RT‘ ! T




264

2.247 Let T = temperature of the interface.
Then heat flowing from left = heat flowing into right in equilibrium.

x, I, +K2T2)

T-T T-T, L L
Thus, x, = K, or T=
L ) ¥1 %
s i
L 4
2.248 We have
L,-T T-T, T,-T,
Y A A A A
or using the previcus result
T kT
+
1 2 b I-T,
=T, - = K
1 N K L+l
hoh
21,-1
K 7;(1‘ ) 7,-T, L+l
* LK K -Klﬁ"z o s L b
hH 4 E:+-'.‘-2‘
2.249 By definition the beat flux (per unit area) is
. 4ar d nT,/T,
Q—-de=—adxlnT= constant =+ o ]
. x, I
Integrating Inf=-ln=—+InT;
[

where 7, = temperature at the end x= 0

- (5 ! 6. ATV,
So T= 1 Tl ani Q = !
2.250 Suppose the chunks have temperatures T, T, at time ¢ and T, -dT,, T, +dT, at time
dr+t.
Then C,dTy= CydTy= 2T, - Ty dr
Thus dAT = kS L,L AT dt where AT= T, - T,
e ¢,

o L_ks(l 1
Hence AT = (AT), e where " 7 ( e + Cz)
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: aT aT
2251 Q= xkT—= -AVT —
Q= ox ax
3/2
= ..-§— agx , (A = constant )

( T3/2 3/2 )
I

T3 - constanl—%(Tf/z-Tg/z)

Thus
or using T=T1, atx=10
- 32
32 _ gy X 3/2 Ty _q.x I _ ]
7%= T} (r )or(Tl) “:\ T) 1’
L 23
. 372
T—Tl 1+7 [T:l*] -1
J
RL
14/8RT 1 2 R¥ir?
2252 k= ¥ =L = mn = ——
37 mM V2adln M 32324°VMN,
Then from the previous problem
2R3/2(T3/2 T3/2)
q= 32 g2 , i= 3 here
VM N, !
T, +T,
2.253 At this pressure and average temparature = 27°C = 300K = T-LL-;;-—Z)
= 2330 x 10 °m = 23-3mm > > 5-0mm = |
\/_:rdz
The gas is ultrathin and we write A = “-Iherc
7,-T
Then g= Ki—f- K 2I L
1 1, MP R 1 p<v>
il == “Ix==
where K <V > X IXRTXY A 6T (y- 1)1
<y>
d - -
an q 6T(y-1)(T2 T)
T+ T,
22 here.

8RT . We have used T, -7, << >

where <VP>m
M
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2.254 In equilibrium 2mr ¢ 4T _ _ 4 - constant. So T= B-=2—Inr
dr 2nx

But = 7, when r= R, and F= T,. when r=R,.

Tz'Tl r

ln-r—
2 1

lﬂR—l

From this we find T= T, +

2.255 In equilibrium 4nr%« % = - A= constant

I‘-19+--"—‘-—l
dme r

Using T= T, when r= R, and T= T, when r= R,,

T,-T
Te T+ (l-—i)

1 _1ir R
R, R
2.256 The heat flux vector is — k grad T and its divergence equals w. Thus
Vire -2
K
or 13 r Ty ¥ in cylindrical coordinates.
r or ar K
w 2
T=B+Alnr-—
or + nr Tx r
Since T is finite at r = 0,A = 0. Also T= T}, atr= R
W n2
so B=Ty+ ER
W,p2_,2
Tw Ty+—(R*-
Thus ot 4K( r<)

r here is the distance from the axis of wire (axial radius).
2.257 Here again

vira ¥
K

So in spherical polar coordinates,

1o( 20T\ _w 29T W3
r 6r(r ar)— Korr or 3Kr +4
or T-p-A_¥ 2
r 6k
Again A=0and ).ra=11,+-6‘1";}z2

so finally T= T°+6l:)c_(R2_r2)



