

Series &RQPS/S

SET-2

प्रश्न-पत्र कोड Q.P. Code 56/S/2

रोल नं.				
Roll No.				

परीक्षार्थी प्रश्न-पत्र कोड को उत्तर-पुस्तिका के मुख-पृष्ठ पर अवश्य लिखें।

Candidates must write the Q.P. Code on the title page of the answer-book.

नोट

*

- कृपया जाँच कर लें कि इस प्रश्न-पत्र में मृद्रित (I) (I)पृष्ठ 23 हैं।
- (II) कृपया जाँच कर लें कि इस प्रश्न-पत्र में (II) 33 प्रश्न हैं।
- ा (III) प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए (III) Q.P. Code given on the right hand प्रश्न-पत्र कोड को परीक्षार्थी उत्तर-पस्तिका के मुख-पृष्ठ पर लिखें।
- (IV) कृपया प्रश्न का उत्तर लिखना शुरू करने से (IV) Please write down the serial पहले, उत्तर-पुस्तिका में प्रश्न का क्रमांक अवश्य लिखें।
 - (V) इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का (V) समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढेंगे और इस अवधि के दौरान वे उत्तर-पस्तिका पर कोई उत्तर नहीं लिखेंगे।

NOTE

Please check that this question paper contains 23 printed pages.

Please check that this question paper contains 33 questions.

side of the question paper should be written on the title page of the answer-book by the candidate.

number of the question in the answer-book before attempting it.

15 minute time has been allotted to this question paper. question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 the students will a.m., read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक) CHEMISTRY (Theory)

निर्धारित समय - ३ घण्टे अधिकतम अंक • 70

 $Time\ allowed: 3\ hours$ Maximum Marks: 70

सामान्य निर्देश:

निम्नलिखित निर्देशों को ध्यानपूर्वक पिंढ़ए और उनका पालन कीजिए :

- (i) इस प्रश्न-पत्र में 33 प्रश्न हैं । **सभी** प्रश्न अनिवार्य हैं ।
- (ii) यह प्रश्न-पत्र **पाँच** खण्डों में विभाजित है **खण्ड क, ख, ग, घ** एवं **ङ** ।
- (iii) **खण्ड क** प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 1 अंक का
- (iv) **खण्ड ख** प्रश्न संख्या **17** से **21** तक अति लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न **2** अंकों का है ।
- (v) खण्ड ग प्रश्न संख्या 22 से 28 तक लघु-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 3 अंकों का है ।
- (vi) खण्ड घ प्रश्न संख्या 29 तथा 30 केस-आधारित प्रश्न हैं । प्रत्येक प्रश्न 4 अंकों का है ।
- (vii) खण्ड ङ प्रश्न संख्या 31 से 33 दीर्घ-उत्तरीय प्रकार के प्रश्न हैं । प्रत्येक प्रश्न 5 अंकों का है ।
- (viii) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। यद्यपि, खण्ड क के अतिरिक्त अन्य सभी खण्डों के कुछ प्रश्नों में आंतरिक विकल्प का चयन दिया गया है।
- (ix) ध्यान दें कि दृष्टिबाधित परीक्षार्थियों के लिए अलग प्रश्न-पत्र है।
- (x) कैल्कुलेटर का उपयोग **वर्जित** है।

खण्ड क

प्रश्न संख्या 1 से 16 तक बहुविकल्पीय प्रकार के 1 अंक के प्रश्न हैं।

 $16 \times 1 = 16$

- 1. निम्नलिखित में से सर्वाधिक स्थायी संकुल है:
 - (A) $Na_2[Na(CN)_5(NO)]$
 - (B) $K_3[Fe(CN)_6]$
 - (C) $[Cr(NH_3)_6]^{3+}$
 - (D) $Na_2[Ni(EDTA)]$
- 2. यदि ऐमीनों को गैसीय प्रावस्था में उनकी क्षारकीय सामर्थ्य के घटते हुए क्रम में व्यवस्थित किया जाए, तो सही क्रम होगा:
 - (A) $(CH_3)_3N > (CH_3)_2NH > CH_3NH_2 > NH_3$
 - (B) $NH_3 > CH_3NH_2 > (CH_3)_2NH > (CH_3)_3N$
 - (C) $CH_3NH_2 > (CH_3)_3N > (CH_3)_2NH > NH_3$
 - (D) $(CH_3)_2NH > (CH_3)_3N > CH_3NH_2 > NH_3$

·//·//

General Instructions:

Read the following instructions carefully and follow them:

- (i) This question paper contains 33 questions. All questions are compulsory.
- (ii) This question paper is divided into five sections Section A, B, C, D and E.
- (iii) **Section** A questions number 1 to 16 are multiple choice type questions. Each question carries 1 mark.
- (iv) Section B questions number 17 to 21 are very short answer type questions. Each question carries 2 marks.
- (v) **Section C** questions number **22** to **28** are short answer type questions. Each question carries **3** marks.
- (vi) **Section D** questions number **29** and **30** are case-based questions. Each question carries **4** marks.
- (vii) **Section E** questions number 31 to 33 are long answer type questions. Each question carries 5 marks.
- (viii) There is no overall choice given in the question paper. However, an internal choice has been provided in few questions in all the sections except Section A.
- (ix) Kindly note that there is a separate question paper for Visually Impaired candidates.
- (x) Use of calculators is **not** allowed.

SECTION A

Questions no. 1 to 16 are Multiple Choice type Questions, carrying 1 mark each. $16 \times 1 = 16$

- 1. The most stable complex among the following is:
 - (A) $Na_2[Na(CN)_5(NO)]$
 - (B) $K_3[Fe(CN)_6]$
 - (C) $[Cr(NH_3)_6]^{3+}$
 - (D) Na₂[Ni(EDTA)]
- **2.** If amines are arranged in decreasing order of their basic strength in gaseous phase, then the correct order will be:
 - (A) $(CH_3)_3N > (CH_3)_2NH > CH_3NH_2 > NH_3$
 - (B) $NH_3 > CH_3NH_2 > (CH_3)_2NH > (CH_3)_3N$
 - (C) $CH_3NH_2 > (CH_3)_3N > (CH_3)_2NH > NH_3$
 - (D) $(CH_3)_2NH > (CH_3)_3N > CH_3NH_2 > NH_3$

- 3. लिगन्ड की प्रबलता पर विचार करके, निम्नलिखित में से किसके द्वारा निम्नतम उत्तेजन ऊर्जा प्रेक्षित की जाएगी ?
 - (A) $[Co(H_2O)_6]^{3+}$
 - (B) $[Co(NH_3)_6]^{3+}$
 - (C) $[Co(CN)_6]^{3-}$
 - (D) $[CoCl_6]^{3-}$
- **4.** Sn^{4+}/Sn^{2+} युग्म का मानक इलेक्ट्रोड विभव +0.15 V और Cr^{3+}/Cr युग्म के लिए -0.73 V है। इन दोनों युग्मों को जोड़कर एक वैद्युतरासायनिक सेल बनाया गया। रेडॉक्स अभिक्रिया स्वत: प्रवर्तित होती है। सेल विभव होगा:
 - (A) + 0.88 V
 - (B) + 0.58 V
 - (C) -0.88 V
 - (D) -0.58 V
- 5. वह रासायनिक परीक्षण जो एथेनेमीन और ऐनिलीन के बीच विभेदन के लिए प्रयुक्त की जा सकती है, है:
 - (A) हैलोफॉर्म परीक्षण
 - (B) टॉलेन परीक्षण
 - (C) ऐज़ो रंजक परीक्षण
 - (D) हिन्सबर्ग परीक्षण
- **6.** निकैल के प्रतिचुम्बकीय संकुल $[Ni(CN)_4]^{2-}$ की ज्यामिति है :
 - (A) चतुष्फलकीय
 - (B) अष्टफलकीय
 - (C) वर्ग समतलीय
 - (D) विकृत अष्टफलकीय

- 3. Considering the strength of the ligand, the lowest excitation energy will be observed in:
 - (A) $[Co(H_2O)_6]^{3+}$
 - (B) $[\text{Co}(\text{NH}_3)_6]^{3+}$
 - (C) $[Co(CN)_6]^{3-}$
 - (D) $[CoCl_6]^{3-}$
- 4. The standard electrode potential for $\mathrm{Sn^{4+}/Sn^{2+}}$ couple is + 0.15 V and for $\mathrm{Cr^{3+}/Cr}$ couple is 0.73 V. These two couples are connected to make an electrochemical cell. The redox reaction is spontaneous. The cell potential will be :
 - (A) + 0.88 V
 - (B) + 0.58 V
 - (C) -0.88 V
 - (D) -0.58 V
- 5. The chemical test which can be used to distinguish between ethanamine and aniline is:
 - (A) Haloform test
 - (B) Tollens' test
 - (C) Azo dye test
 - (D) Hinsberg test
- **6.** The geometry of diamagnetic nickel complex $[Ni(CN)_4]^{2-}$ is:
 - (A) Tetrahedral
 - (B) Octahedral
 - (C) Square planar
 - (D) Distorted octahedral

7. डाइमेथिल ईथर के विरचन के लिए विलियम्सन संश्लेषण है एक :

- (A) इलेक्ट्रॉनरागी प्रतिस्थापन
- (B) S_N1 अभिक्रिया
- (C) इलेक्ट्रॉनरागी योगज
- (D) S_N2 अभिक्रिया

8. Fe^{2+} , Co^{2+} , Cr^{3+} , Ni^{2+} में से उच्चतम चुम्बकीय आधूर्ण दर्शाने वाला है :

- (A) Fe^{2+}
- (B) Co^{2+}
- (C) Cr^{3+}
- (D) Ni^{2+}

[परमाणु क्रमांक : Cr = 24, Fe = 26, Co = 27, Ni = 28]

9. संकुल [Co(NH₃)₅(NO₂)]Cl₂ का आइ.यू.पी.ए.सी. नाम है :

- (A) पेन्टाऐम्मीननाइटाइटो-O-कोबाल्ट(III) क्लोराइड
- (B) पेन्टाऐम्मीननाइट्राइटो-N-कोबाल्ट(III) क्लोराइड
- (C) पेन्टाऐम्मीननाइट्रो-कोबाल्ट(III) क्लोराइड
- (D) पेन्टाऐम्मीननाइट्राइटो-कोबाल्ट(II) क्लोराइड

10. निम्नलिखित में से कौन-सा ऐल्डॉल संघनन **नहीं** करता है ?

- (A) CH₃CHO
- (B) CH₃COCH₃
- (C) CH₃CH₂CHO
- (D) C_6H_5CHO

- 7. Williamson's synthesis of preparing dimethyl ether is a/an:
 - (A) electrophilic substitution
 - (B) $S_N 1$ reaction
 - (C) electrophilic addition
 - (D) S_N 2 reaction
- 8. Out of Fe^{2+} , Co^{2+} , Cr^{3+} , Ni^{2+} , the one which shows highest magnetic moment is:
 - (A) Fe^{2+}
 - (B) Co²⁺
 - (C) Cr^{3+}
 - (D) Ni^{2+}

[Atomic number : Cr = 24, Fe = 26, Co = 27, Ni = 28]

- 9. The IUPAC name of the complex $[Co(NH_3)_5(NO_2)]Cl_2$ is:
 - (A) Pentaamminenitrito-O-cobalt(III) chloride
 - (B) Pentaamminenitrito-N-cobalt(III) chloride
 - (C) Pentaamminenitro-cobalt(III) chloride
 - (D) Pentaaminenitrito-cobalt(II) chloride
- **10.** Which of the following does *not* undergo Aldol condensation?
 - (A) CH₃CHO
 - (B) CH₃COCH₃
 - (C) CH₃CH₂CHO
 - (D) C_6H_5CHO

- 11. किसी रासायनिक अभिक्रिया A → B के लिए, यह प्रेक्षित किया गया कि जब A की सांद्रता को चार गुना किया गया, तो अभिक्रिया वेग दुगुना हो गया। अभिक्रिया की कोटि है:
 - (A) 2
 - (B) 1
 - (C) 1/2
 - (D) शून्य
- **12.** (CH₃)₃ C CH₂Br का सही आइ.यू.पी.ए.सी. नाम है :
 - (A) 2,2-डाइमेथिल-2 ब्रोमोप्रोपेन
 - (B) 1-ब्रोमो-2,2,2-ट्राइमेथिलएथेन
 - (C) 2-ब्रोमो-1,1,1-ट्राइमेथिलएथेन
 - (D) 1-ब्रोमो-2,2-डाइमेथिलप्रोपेन

प्रश्न संख्या 13 से 16 के लिए, दो कथन दिए गए हैं — जिनमें एक को अभिकथन (A) तथा दूसरे को कारण (R) द्वारा अंकित किया गया है । इन प्रश्नों के सही उत्तर नीचे दिए गए कोडों (A), (B), (C) और (D) में से चुनकर दीजिए ।

- (A) अभिकथन (A) और कारण (R) दोनों सही हैं और कारण (R), अभिकथन (A) की सही व्याख्या करता है।
- (B) अभिकथन (A) और कारण (R) दोनों सही हैं, परन्तु कारण (R), अभिकथन (A) की सही व्याख्या *नहीं* करता है।
- (C) अभिकथन (A) सही है, परन्तु कारण (R) ग़लत है।
- (D) अभिकथन (A) ग़लत है, परन्तु कारण (R) सही है।
- 13. अभिकथन (A) : ताप में वृद्धि के साथ वेग स्थिरांक बढ़ जाता है।
 - कारण (R) : किसी पदार्थ के तापमान में वृद्धि द्वारा सिक्रयण ऊर्जा से अधिक ऊर्जा प्राप्त संघट्ट करने वाले अणुओं की संख्या के मान में वृद्धि होती है।
- **14.** अभिकथन (A) : Cu^{2+} आयोडाइड ज्ञात नहीं है।
 - कारण (R): Cu^{2+} , I^- को आयोडीन में ऑक्सीकृत करने की प्रबल प्रवृत्ति रखता है।

- 11. For a chemical reaction, $A \rightarrow B$, it was observed that the rate of reaction doubles when the concentration of A is increased four times. The order of the reaction is :
 - (A) 2
 - (B) 1
 - (C) 1/2
 - (D) Zero
- 12. The correct IUPAC name of $(CH_3)_3 C CH_2Br$ is :
 - (A) 2,2-Dimethyl-2-bromopropane
 - (B) 1-Bromo-2,2,2-trimethylethane
 - (C) 2-Bromo-1,1,1-trimethylethane
 - (D) 1-Bromo-2,2-dimethylpropane

For Questions number 13 to 16, two statements are given — one labelled as Assertion (A) and the other labelled as Reason (R). Select the correct answer to these questions from the codes (A), (B), (C) and (D) as given below.

- (A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of the Assertion (A).
- (B) Both Assertion (A) and Reason (R) are true, but Reason (R) is *not* the correct explanation of the Assertion (A).
- (C) Assertion (A) is true, but Reason (R) is false.
- (D) Assertion (A) is false, but Reason (R) is true.
- **13.** Assertion (A): Rate constant increases with increase in temperature.
 - Reason (R): Increasing the temperature of the substance increases the fraction of molecules, which collide with energies greater than activation energy.
- **14.** Assertion (A): Cu^{2+} iodide is not known.
 - Reason (R): Cu^{2+} has strong tendency to oxidise I⁻ to iodine.

15. अभिकथन (A) : माल्टोस एक अपचायी शर्करा है।

कारण (R): माल्टोस, ग्लूकोस की दो इकाइयों से निर्मित होता है जिसमें एक ग्लूकोस इकाई

का C-1 दूसरी ग्लूकोस इकाई के C-4 के साथ जुड़ा रहता है।

NHCOCH₃ **16.** अभिकथन (A) : ऐनिलीन की अपेक्षा ऐसीटेनिलाइड () कम क्षारकीय होता है।

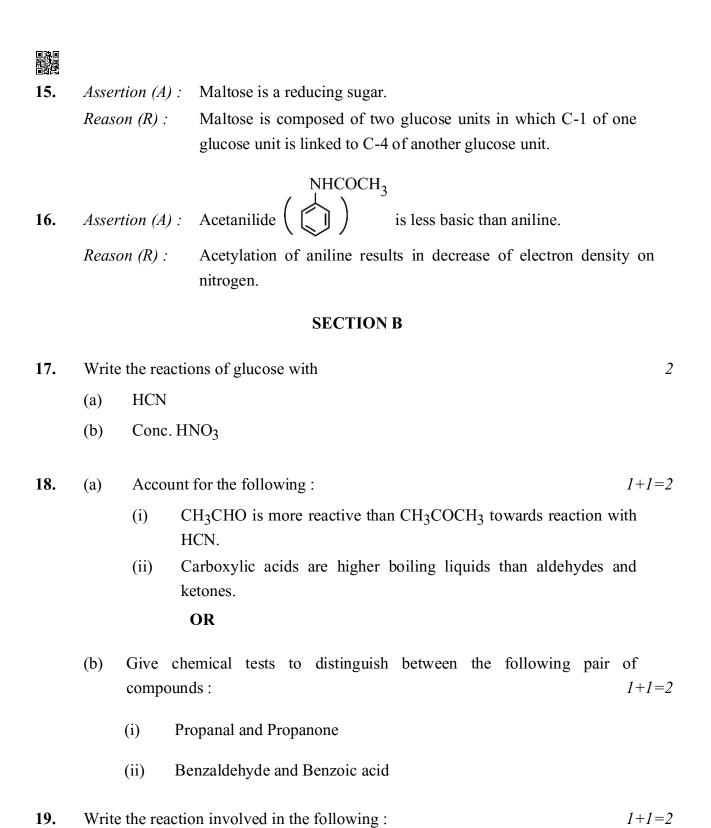
कारण (R): ऐनिलीन के ऐसीटिलन के कारण नाइट्रोजन पर इलेक्ट्रॉन घनत्व कम हो जाता है।

खण्ड ख

- 17. ग्लुकोस की निम्नलिखित के साथ अभिक्रियाएँ लिखिए :
 - (ক) HCN
 - (ख) सांद्र HNO3
- 18. (क) निम्नलिखित के लिए कारण दीजिए :

1+1=2

2


- (i) CH₃COCH₃ की अपेक्षा HCN के साथ अभिक्रिया के प्रति CH₃CHO अधिक अभिक्रियाशील है।
- (ii) ऐल्डिहाइडों और कीटोनों की तुलना में कार्बोक्सिलिक अम्ल उच्चतर क्वाथी द्रव हैं।
- (ख) निम्नलिखित युगलों के यौगिकों के मध्य विभेद करने के लिए रासायनिक परीक्षण दीजिए : 1+1=2
 - (i) प्रोपेनैल और प्रोपेनोन

अथवा

- (ii) बेन्ज़ैल्डिहाइड और बेन्ज़ोइक अम्ल
- 19. निम्नलिखित में सिम्मिलित अभिक्रिया लिखिए:

1+1=2

- (क) राइमर-टीमन अभिक्रिया
- (ख) कोल्बे अभिक्रिया

56/S/2 11 P.T.O.

Reimer-Tiemann reaction

Kolbe's reaction

(a)

(b)

- **20.** किसी अम्ल का तापीय अपघटन प्रथम कोटि की अभिक्रिया है जिसका किसी निश्चित ताप पर वेग स्थिरांक 2.3×10^{-3} s⁻¹ है। इस अम्ल की प्रारंभिक मात्रा के तीन-चौथाई के अपघटन में लगने वाले समय का परिकलन कीजिए। ($\log 4 = 0.6021$, $\log 2 = 0.301$)
- **21.** निम्नलिखित प्रत्येक अभिक्रिया के लिए मुख्य मोनोहैलो उत्पाद की संरचना बनाइए : 1+1=2

$$(\mathfrak{F}) \qquad \qquad \underbrace{\mathsf{CH}_2\mathsf{CH}_3}_{\mathsf{O}_2\mathsf{N}} \qquad \underbrace{\mathsf{Br}_2, \, \mathfrak{S}^{\mathsf{N}}}_{\mathsf{U}^{\mathsf{T}}\mathsf{l}} \ \mathfrak{S}^{\mathsf{N}} \ \mathfrak{S}^{\mathsf$$

खण्ड ग

- 22. क्या होता है जब : (कोई *तीन*)
 - (क) CH₃MgBr को साइक्लोहैक्सेनोन के साथ अभिक्रियित करके तत्पश्चात जल-अपघटन किया जाता है
 - (ख) फ़ीनॉल को CS_2 की उपस्थित में Br_2 के साथ अभिक्रियित किया जाता है
 - (ग) बेन्ज़ीन डाइऐज़ोनियम क्लोराइड को H2O के साथ अभिक्रियित किया जाता है
 - (घ) ऐनिसोल को HI के साथ अभिक्रियित किया जाता है
- 23. निम्नलिखित रासायनिक अभिक्रिया द्वारा सुक्रोस का जल-अपघटन होता है:

$$C_{12}H_{22}O_{11} + H_2O$$
 (आधिक्य) $\xrightarrow{H^+}$ $C_6H_{12}O_6 + C_6H_{12}O_6$ उपर्युक्त अभिक्रिया के आधार पर, लिखिए :

1+1+1=3

^

2

- (क) वेग नियम समीकरण
- (ख) अभिक्रिया की आण्विकता तथा कोटि
- (ग) आप ऐसी अभिक्रियाओं को क्या कहते हैं?

20. The thermal decomposition of an acid is a first order reaction with a rate constant of 2.3×10^{-3} s⁻¹ at a certain temperature. Calculate how long it will take for three-fourths of the initial quantity of acid to decompose.

$$(\log 4 = 0.6021, \log 2 = 0.301)$$

2

21. Draw the structures of major monohalo products in each of the following reactions: 1+1=2

(a)
$$O_2N$$
 CH_2CH_3 Br_2 , heat or $UV \text{ light}$

(b)
$$CH_3 + HI \longrightarrow$$

SECTION C

22. What happens when : (any *three*)

3

- (a) CH₃MgBr is treated with cyclohexanone followed by hydrolysis
- (b) Phenol is treated with Br₂ in the presence of CS₂
- (c) Benzene diazonium chloride is treated with H₂O
- (d) Anisole is treated with HI
- **23.** Hydrolysis of sucrose takes place by the chemical reaction :

$$C_{12}H_{22}O_{11} + H_2O \text{ (excess)} \xrightarrow{H^+} C_6H_{12}O_6 + C_6H_{12}O_6$$

Based on the above reaction, write:

1+1+1=3

- (a) Rate law equation
- (b) Molecularity and order of reaction
- (c) What do you call such reactions?

24. निम्नलिखित के लिए कारण दीजिए :

- 3
- (क) तृतीयक-ब्यूटिल ब्रोमाइड की तुलना में n-ब्यूटिल ब्रोमाइड का क्वथनांक उच्चतर होता है।
- (ख) ऐल्किल हैलाइड जल में अविलेय हैं।
- (ग) क्लोरोबेन्ज़ीन की तुलना में साइक्लोहेक्सिल क्लोराइड का द्विध्रुव आधूर्ण उच्चतर होता है।
- 25. निम्नलिखित के लिए विश्वसनीय व्याख्या दीजिए :

1+1+1=3

3

3

- (क) ऐरोमैटिक ऐमीनों के डाइऐज़ोनियम लवण स्थायी होते हैं।
- (ख) ऐनिलीन फ़्रीडेल-क्राफ्ट्स अभिक्रिया प्रदर्शित नहीं करती।
- (ग) ऐनिलीन नाइट्रोकरण द्वारा यथेष्ट मात्रा में मेटा उत्पाद देती है।
- **26.** $100~\rm g$ जल में $2~\rm g~MgSO_4$ (मोलर द्रव्यमान = $120~\rm g/mol$) घोलकर बने विलयन के, यह मानते हुए कि $MgSO_4$ का पूर्णत: वियोजन हो गया है, क्वथनांक का उन्नयन परिकलित कीजिए। [जल के लिए $K_b = 0.52~\rm K~kg~mol^{-1}$]
- 27. $60~{\rm cm^{-1}}$ सेल स्थिरांक वाले सेल में $0.05~{\rm M}$ KOH विलयन के कॉलम का वैद्युत प्रतिरोध $5.4 \times 10^3~{\rm ohm}$ है। इसकी प्रतिरोधकता, चालकता तथा मोलर चालकता का परिकलन कीजिए।
- **28.** (क) संकुल $[Mn(Br)_2(Cl)_2]^{2-}$ के ज्यामितीय समावयव बनाइए।
 - (ख) ${
 m d}^4$ आयन का इलेक्ट्रॉनिक विन्यास दीजिए जब ${
 m \Delta}_{
 m o}$ < ${
 m P}$ है।
 - (ग) $[\text{CoF}_6]^{3-}$ का विलयन रंगीन है जबिक $[\text{Ni}(\text{CN})_4]^{2-}$ रंगहीन है । व्याख्या कीजिए । [परमाणु क्रमांक: Co = 27, Ni = 28] I+I+I=3

24. Account for the following:

3

- (a) n-butyl bromide has higher boiling point than t-butyl bromide.
- (b) Alkyl halides are insoluble in water.
- (c) Cyclohexyl chloride possesses higher dipole moment than chlorobenzene.
- **25.** Give plausible explanation for the following:

1+1+1=3

- (a) Diazonium salts of aromatic amines are stable.
- (b) Aniline does not undergo Friedel-Crafts reaction.
- (c) Aniline on nitration gives a substantial amount of meta product.
- Calculate elevation of the boiling point of solution when 2 g of MgSO₄ (molar mass = 120 g/mol) was dissolved in 100 g of water, assuming MgSO₄ undergoes complete dissociation. [K_b for water = 0.52 K kg mol⁻¹]

3

27. The electrical resistance of a column of 0.05 M KOH solution of cell constant 60 cm^{-1} is 5.4×10^3 ohm. Calculate its resistivity, conductivity and molar conductivity.

3

- **28.** (a) Draw the geometrical isomers of the complex $[Mn(Br)_2(Cl)_2]^{2-}$.
 - (b) Give the electronic configuration of d^4 ion when $\Delta_o < P$.
 - (c) Solution of $[CoF_6]^{3-}$ is coloured whereas $[Ni(CN)_4]^{2-}$ is colourless. Explain. [Atomic number : Co = 27, Ni = 28] 1+1+1=3

खण्ड घ

निम्नलिखित प्रश्न केस-आधारित प्रश्न हैं। केस को ध्यानपूर्वक पढ़िए और दिए गए प्रश्नों के उत्तर दीजिए।

- 29. अनादर्श विलयनों में अणुसंख्य गुणधर्मों में राउल्ट नियम से विचलनों का कारण आण्विक स्तर पर अन्योन्यिक्रियाओं की प्रकृति में स्थित है। विलेय विलायक, विलेय विलेय तथा विलायक विलायक के बीच अन्योन्यिक्रियाओं में अंतर के कारण ये गुणधर्म राउल्ट नियम से विचलन दर्शाते हैं। कुछ द्रव मिश्रित करने पर स्थिरक्वाथी बनाते हैं जो ऐसे द्विघटकीय मिश्रण हैं, जिनका द्रव व वाष्प प्रावस्था में संघटन समान होता है तथा यह एक स्थिर ताप पर उबलते हैं। ऐसे प्रकरणों में, घटकों को प्रभाजी आसवन द्वारा अलग नहीं किया जा सकता। स्थिरक्वाथी दो प्रकार के होते हैं, जिन्हें न्यूनतम क्वथनांकी स्थिरक्वाथी तथा अधिकतम क्वथनांकी स्थिरक्वाथी कहते हैं। उपर्युक्त अनुच्छेद के आधार पर, निम्नलिखित प्रश्नों के उत्तर दीजिए:
 - (क) एथेनॉल जल मिश्रण के प्रभाजी आसवन द्वारा शुद्ध एथेनॉल विरचित नहीं किया जा सकता। टिप्पणी कीजिए।
 - (ख) क्लोरोफॉर्म और ऐसीटोन का मिश्रण आदर्श व्यवहार से विचलन क्यों दर्शाता है?
 - (ग) (i) किसी निश्चित ताप पर शुद्ध बेन्ज़ीन का वाष्प दाब 1.25 atm है। जब 60 g बेन्ज़ीन (M = 78 g mol⁻¹) में किसी अवाष्पशील, विद्युत अनपघट्य विलेय के 1.2 g को मिलाया जाता है, तो विलयन का वाष्प दाब 1.237 atm हो जाता है। अवाष्पशील विलेय का मोलर द्रव्यमान परिकलित कीजिए।

अथवा

(ग) (ii) बेन्ज़ीन का क्वथनांक $353.23~\rm K$ है। $1.80~\rm g$ अवाष्पशील विलेय को $90~\rm g$ बेन्ज़ीन में घोलने पर विलयन का क्वथनांक बढ़कर $354.11~\rm K$ हो जाता है। विलेय के मोलर द्रव्यमान का परिकलन कीजिए। बेन्ज़ीन के लिए $\rm K_b$ का मान $2.53~\rm K~kg~mol^{-1}$ है।

2

^

1

1

SECTION D

The following questions are case-based questions. Read the case carefully and answer the questions that follow.

29. The cause for deviation from Raoult's law in the colligative properties of non-ideal solutions lie in the nature of interactions at the molecular level. These properties show deviations from Raoult's law due to difference in interactions between solute – solvent, solute – solute and solvent – solvent. Some liquids on mixing, form azeotropes which are binary mixtures having the same composition in liquid and vapour phase and boil at a constant temperature. In such cases, it is not possible to separate the components by fractional distillation. There are two types of azeotropes called minimum boiling azeotrope and maximum boiling azeotrope.

Based on the above passage, answer the following questions:

- (a) Pure ethanol cannot be prepared by fractional distillation of ethanol water mixture. Comment.
- (b) Why does a mixture of chloroform and acetone show deviation from ideal behaviour?
- (c) (i) The vapour pressure of pure benzene at a certain temperature is 1.25 atm. When 1.2 g of non-volatile, non-electrolyte solute is added to 60 g of benzene (M = 78 g mol⁻¹), the vapour pressure of the solution becomes 1.237 atm. Calculate the molar mass of the non-volatile solute.

OR

(c) (ii) The boiling point of benzene is 353.23 K. When 1.80 g of a non-volatile solute was dissolved in 90 g of benzene, the boiling point is raised to 354.11 K. Calculate the molar mass of the solute. K_b for benzene is 2.53 K kg mol⁻¹.

2

2

1

1

56/S/2 17 P.T.O.

30.

कोशिका के नाभिक में उपस्थित वे कण जो आनुवंशिकता के लिए उत्तरदायी होते हैं, गुणसूत्र कहलाते हैं। ये प्रोटीन एवं एक अन्य प्रकार के जैवअणु न्यूक्लीक अम्लों से मिलकर बने होते हैं। ये मुख्यत: दो प्रकार के होते हैं, DNA और RNA। न्यूक्लीक अम्लों के जल-अपघटन से एक पेन्टोस शर्करा, फ़ॉस्फ़ोरिक अम्ल तथा नाइट्रोजन युक्त विषमचक्रीय यौगिक प्राप्त होते हैं। न्यूक्लीक अम्लों के कई प्रकार्य होते हैं, जैसे कोशिका उत्पत्ति, आनुवंशिक सूचना का संचय एवं संसाधन, प्रोटीन संश्लेषण तथा ऊर्जा कोशिकाओं का उत्पादन। यद्यपि उनके प्रकार्य भिन्न हो सकते हैं अपितु केवल कुछ मूलभूत आण्विक संरचना में अंतर के साथ RNA और DNA की संरचनाएँ काफी कुछ समान होती हैं।

उपर्युक्त सूचना के आधार पर, निम्नलिखित प्रश्नों के उत्तर दीजिए :

- (क) DNA के दो कार्य लिखिए।
- (ख) क्या उत्पाद निर्मित होंगे, जब ऐडेनीन युक्त DNA से प्राप्त न्यूक्लिओटाइड का जल-अपघटन किया जाता है ?

1

1

2

2

3

2

(ग) (i) न्यूक्लीक अम्ल क्या होते हैं ? न्यूक्लिओटाइड और न्यूक्लिओसाइड में क्या अंतर है ?

अथवा

(ग) (ii) DNA और RNA के बीच एक समानता और एक अंतर दीजिए।

खण्ड ङ

- 31. (क) (i) रासायनिक समीकरण की सहायता से व्याख्या कीजिए जब :
 - (I) ऐसीटोन को सेमीकार्बाज़ाइड के साथ अभिक्रियित किया जाता है।
 - (II) बेन्ज़ैल्डिहाइड के दो अणुओं को सांद्र NaOH के साथ अभिक्रियित किया जाता है।
 - (III) ब्यूटेन-2-ओन को Zn/Hg और सांद्र HCl के साथ अभिक्रियित किया जाता है।
 - (ii) निम्नलिखित को उनके अम्लीय सामर्थ्य के बढ़ते हुए क्रम में व्यवस्थित कीजिए :
 - (I) CH₃CH₂CH₂COOH, BrCH₂CH₂CH₂COOH, CH₃CHBrCH₂COOH, CH₃CHBrCOOH
 - (II) बेन्ज़ोइक अम्ल, 4-मेथॉक्सीबेन्ज़ोइक अम्ल, 4-नाइट्रोबेन्ज़ोइक अम्ल, 3,4-डाइनाइट्रोबेन्ज़ोइक अम्ल

^

अथवा

30. The particles in the nucleus of the cell, responsible for heredity, are called chromosomes which are made up of proteins and another type of biomolecules called nucleic acids. These are mainly of two types, DNA and RNA. Nucleic acids on hydrolysis yield a pentose sugar, phosphoric acid and nitrogen containing heterocyclic compound. Nucleic acids have a very diverse set of functions, such as cell creation, the storage and processing of genetic information, protein synthesis and the generation of energy cells. Although their functions may differ, the structure of DNA and RNA are very similar, with only a few fundamental differences in their molecular make-up.

Based on the above information, answer the following questions:

(a) Write two functions of DNA.

1

1

2

2

3

2

(b) What products will be formed when a nucleotide from DNA containing Adenine is hydrolyzed?

(c) (i) What are nucleic acids? What is the difference between nucleotide and nucleoside?

OR

(c) (ii) Give one similarity and one difference between DNA and RNA.

SECTION E

31. (a) (i) Explain with the help of chemical reaction when:

(I) Acetone is treated with semicarbazide.

- (II) Two molecules of benzaldehyde are treated with conc. NaOH.
- (III) Butan-2-one is treated with Zn/Hg and conc. HCl.
- (ii) Arrange the following in the increasing order of their acidic strength:
 - (I) CH₃CH₂CH₂COOH, BrCH₂CH₂CH₂COOH, CH₃CHBrCH₂COOH, CH₃CHBrCOOH
 - (II) Benzoic acid, 4-Methoxybenzoic acid, 4-Nitrobenzoic acid, 3,4-Dinitrobenzoic acid

OR

(ख) (i) निम्नलिखित अभिक्रिया अनुक्रम में A, B, C और D उत्पादों की पहचान कीजिए :

$$CH_3CHO \xrightarrow{[O]} A \xrightarrow{PCl_5} B$$

$$D \xleftarrow{Zn - Hg} C$$

$$CH_3CHO \xrightarrow{CH_3)_2Cd} C$$

(ii) आप निम्नलिखित रूपांतरणों को किस प्रकार संपन्न करेंगे ?

 $3\times 1=3$

2

- (I) प्रोपेनोन से प्रोपीन
- (II) बेन्ज़ोइक अम्ल से बेन्ज़ैल्डिहाइड
- (III) एथेनैल से ब्यूट-2-ईनैल
- **32.** किन्हीं **पाँच** प्रश्नों के उत्तर दीजिए :

 $5 \times 1 = 5$

3

2

- (क) Cu⁺ जलीय विलयन में अस्थायी है। टिप्पणी कीजिए।
- (ख) Cr^{2+} और Fe^{2+} में से कौन-सा प्रबलतर अपचायक है और क्यों ?
- (ग) लैन्थेनॉयड आकुंचन की तुलना में एक तत्त्व से दूसरे तत्त्व के बीच ऐक्टिनॉयड आकुंचन अधिक होता है। क्यों ?
- (घ) अम्लीय माध्यम में KMnO₄ ऑक्सीकारक की भाँति कार्य करता है। इसके समर्थन में आयनिक समीकरण लिखिए।
- (ङ) प्रथम संक्रमण श्रेणी में कौन-सी धातु बहुधा +1 ऑक्सीकरण अवस्था दर्शाती है ?
- (च) संक्रमण धातुएँ और उनके यौगिक अच्छे उत्प्रेरक होते हैं। औचित्य दीजिए।
- (छ) स्कैन्डियम कोई रंगीन आयन नहीं बनाता, फिर भी इसे संक्रमण तत्त्व माना जाता है। क्यों ?
- 33. (क) (i) सीसा संचायक बैटरी किस प्रकार की बैटरी है ? ऐनोड तथा कैथोड अभिक्रियाएँ और समग्र अभिक्रिया लिखिए जब सीसा संचायक बैटरी से धारा ली जाती है।
 - (ii) $AgNO_3$ विलयन में से 1.5~A~ की धारा प्रवाहित करने पर कैथोड पर 1.5~g~ चाँदी निक्षेपित करने में लगने वाले समय का परिकलन कीजिए।

[Ag का मोलर द्रव्यमान = 108 g mol^{-1} , $1 \text{ F} = 96500 \text{ C mol}^{-1}$]

अथवा

(b) (i) Identify the products A, B, C and D in the following sequence of reactions:

 $CH_{3}CHO \xrightarrow{[O]} A \xrightarrow{PCl_{5}} B$ $CH_{3}CHO \xrightarrow{[O]} A \xrightarrow{PCl_{5}} B$ $CH_{3}CHO \xrightarrow{CH_{3}} C$ $CH_{3}CHO \xrightarrow{PCl_{5}} B$ $CH_{3}CHO \xrightarrow{CH_{3}} C$ $CH_{3}CHO \xrightarrow{PCl_{5}} B$ $CH_{3}CHO \xrightarrow{CH_{3}} C$

- (ii) How will you bring about the following conversions? $3 \times 1 = 3$
 - (I) Propanone to Propene
 - (II) Benzoic acid to Benzaldehyde
 - (III) Ethanal to But-2-enal
- **32.** Attempt any *five* of the following :

 $5\times1=5$

3

2

2

- (a) Cu⁺ is not stable in aqueous solution. Comment.
- (b) Out of Cr^{2+} and Fe^{2+} , which one is a stronger reducing agent and why?
- (c) Actinoid contraction is greater from element to element than lanthanoid contraction. Why?
- (d) KMnO₄ acts as an oxidising agent in acidic medium. Write the ionic equation to support this.
- (e) Name the metal in the first transition series which exhibits +1 oxidation state most frequently.
- (f) Transition metals and their compounds are good catalysts. Justify.
- (g) Scandium forms no coloured ions, yet it is regarded as a transition element. Why?
- 33. (a) (i) What type of battery is the lead storage battery? Write the anode and the cathode reactions and the overall reaction occurring in a lead storage battery when current is drawn from it.
 - (ii) Calculate the time to deposit 1.5 g of silver at cathode when a current of 1.5 A was passed through the solution of AgNO₃. [Molar mass of Ag = 108 g mol^{-1} , $1 \text{ F} = 96500 \text{ C mol}^{-1}$]

OR

- (ख) (i) आयनों के स्वतंत्र अभिगमन का कोलराउश नियम लिखिए। 298 K पर NH₄Cl, NaOH और NaCl विलयनों की अनंत तनुता पर मोलर चालकताएँ क्रमश: 110, 100 और $105~{\rm S~cm^2~mol^{-1}}$ हैं। NH₄OH विलयन की मोलर चालकता परिकलित कीजिए।
- 3

2

(ii) 25° C पर निम्नलिखित सेल के लिए ΔG° परिकलित कीजिए :

$$Zn\left(s\right) \mid Zn^{2+}(aq)\mid Cu^{2+}\left(aq\right) \mid Cu\left(s\right)$$

दिया गया है :
$$E_{Zn^{2+}/Zn}^{\circ} = -0.76 \text{ V}$$

$$E_{Cu}^{\circ}^{2+}/Cu} = +0.34 \text{ V}$$

$$1 \text{ F} = 96500 \text{ C mol}^{-1}$$

·//·/

- (b) (i) State Kohlrausch's law of independent migration of ions. Molar conductivity at infinite dilution for NH₄Cl, NaOH and NaCl solution at 298 K are 110, 100 and 105 S cm² mol⁻¹ respectively. Calculate the molar conductivity of NH₄OH solution.
 - (ii) Calulate ΔG° of the following cell at 25°C:

3

Zn (s) | Zn²⁺(aq) || Cu²⁺ (aq) | Cu (s)
Given:
$$E_{Zn}^{\circ}{}^{2+}/Z_{n} = -0.76 \text{ V}$$

 $E_{Cu}^{\circ}{}^{2+}/C_{u} = +0.34 \text{ V}$
1 F = 96500 C mol⁻¹

Marking Scheme
Strictly Confidential
(For Internal and Restricted use only)
Senior Secondary School Supplementary Examination, July-2024
SUBJECT NAME: CHEMISTRY SUBJECT CODE:043 PAPER CODE: 56/S/2

Gene	eral Instructions: -
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark(√) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (✓) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-
8	If a question does not have any parts, marks must be awarded in the left-hand margin and
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.

12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours every day and evaluate 20 answer books per day in main subjects and 25 answer books per day in other subjects (Details are given in Spot Guidelines).
13	 Ensure that you do not make the following common types of errors committed by the Examiner in the past: - Giving more marks for an answer than assigned to it. Wrong totalling of marks awarded on an answer. Wrong transfer of marks from the inside pages of the answer book to the title page. Wrong question wise totalling on the title page. Leaving answer or part thereof unassessed in an answer book. Wrong totalling of marks of the two columns on the title page. Wrong grand total. Marks in words and figures not tallying/not same. Wrong transfer of marks from the answer book to online award list. Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
14	 Half or a part of answer marked correct and the rest as wrong, but no marks awarded. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as cross (X) and awarded zero (0) Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totalling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totalled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners are once again reminded that they must ensure that evaluation is carried out strictly as per value points for each answer as given in the Marking Scheme.

अंकन योजना 2024 रसायन विज्ञान (सैद्धांतिक)- **043** op code 56/8/2

Q.No.	मूल्य बिंदु	Mark
	खंड क	
1.	(D)	+
2.	(A)	$\frac{1}{1}$
3.	(D)	1
4.	(A)	1
5.	(C)	$+\frac{1}{1}$
6.	(C)	1
7.	(D)	1
8. 9.	(A)	1
10.	(B) (D)	1
11.	(C)	1
12.	(D)	11
13.	(A)	1
14.	(A)	1 1
15.	(B)	1
16.	(A)	1
	खंड ख	1
17.	(ক)	
	(42)	
	CN CN	·
	CHO CH OH	
	$(CHOH)_4 \xrightarrow{HCN} (CHOH)_4$	1
	СН,ОН СН,ОН	
	(অ)	
	CHO COOH CONC. HNO₃	
	$(CHOH)_4 \xrightarrow{COHOC} (CHOH)_4$	1
	CH₂OH COOH	
-	CH ₂ OH . COOH	
18.	$(\overline{\Phi})$	
	(і) СН₃СНО में कार्बोनिल कार्बन की अधिक इलेक्ट्रॉनरागी प्रकृति है और СН₃СОСН₃ की तुलना में	
	कम त्रिविम बाधा है।	1
		1
	(ii) कार्बोक्सिलिक अम्लों में अंतराआणविक हाइड्रोजन बंध के कारण / द्वितय निर्माण के कारण।	•
	अथवा	
	(অ)	
	$\dot{ m (i)}$ दोनों यौगिकों में $ m NaOH + I_2$ को अलग-अलग मिलाएँ और गर्म करें। प्रोपेनोन $ m CHI3$ का पीला	1 1
	अवक्षेप बनाएगा जबिक प्रोपेनल नहीं बनाएगा।	1 1

	$_{ m (ii)}$ दोनों यौगिकों में $_{ m NaHCO_3}$ को अलग-अलग मिलाएँ। बेंजोइक एसिड $_{ m CO_2}$ का तेज़ बुदबुदाहट	1
	देगा जबकि बेंजाल्डिहाइड नहीं देगा।	
	(अथवा कोई अन्य उपयुक्त रासायनिक परीक्षण)	
19.	(の) ONa ⁺ OH	
	уча Уча	
	$\begin{array}{c} \begin{array}{c} \text{CHCl}_3 + \text{aq NaOH} \end{array} \end{array} \longrightarrow \begin{array}{c} \begin{array}{c} \text{CHO} \\ \text{H}^+ \end{array} \end{array}$	1
		•
	(অ) OH ONa OH	
	l l l l l l cooµ	
	$ \underbrace{\text{NaOH}}_{\text{NaOH}} \qquad \underbrace{\text{(i) CO}_{2}}_{\text{(ii) H'}} \qquad \underbrace{\text{COOH}}_{\text{COOH}} $	1
20.	$k = \frac{2.303}{1000} \log \frac{[R]_0}{[R]}$	1/2
		1/2
	$t = \frac{2.303}{k} \log \frac{[R]_0}{[R]_0/4}$	
	$t = \frac{\frac{2.303}{2.3 \times 10^{-3}} \log 4}{\frac{2.303}{2.3 \times 10^{-3}} \log 0.6021}$	
	$t = \frac{2.3 \times 10^{-3}}{2.303} \log 0.6021$	1/2
	$\begin{array}{c} 2.3 \times 10^{-3} & 105 & 0.0021 \\ + - 602 & 0.0021 \end{array}$	1/2
21.	$t = 602 \text{ s}$ $(\overline{\Phi})$	<u> </u>
	CH(Br)CH ₃	1
		1
	O_2 N \bigcirc	
	CH ₃	1
	20 VS 3) .	
22.	(ず)	
	O H ₃ C OH	
	1 CH ₃ MgBr	1 x 3
	/1- मेथिल साइक्लोहेक्सेनॉल बनता है	
	(ख)	
	OH OH	
	Br ₂ in CS ₂	
	ं / o तथा p- ब्रोमोफीनॉल बनते हैं	
	N ₂ cî OH	
	$+ H_2O \longrightarrow $	
	/ फीनॉल/ बेन्जीनॉल बनता है	
		<u> </u>

23. (क) Rate = k [C ₁₂ H ₂₂ O ₁₁] / फीनॉल तथा मेथिलआयोडाइड बनते हैं 23. (क) Rate = k [C ₁₂ H ₂₂ O ₁₁] / फीनॉल तथा मेथिलआयोडाइड बनते हैं 24. (ग) छदा प्रथम कोटि = 1 // ₅ +½ 1 (क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं 1 (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम उर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्तोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्व आधूर्ण होता है, जबिक क्लोरोबेंजीन में 1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्व आधूर्ण होता है तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्व आधूर्ण होता है तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्व आधूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-C। बंध की लंबाई छोटी होती है। 25. (क) ऐरोमेटिक ऐमीन के डाइऐजोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। 1 (ा) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 1 26. ΔΤ₅=ίK₅ m i=2 ΔΤ₅=2 x 0.52 x 2/120 X 1000/1000 11 1 = 0.17 K 15 = 373.15 +0.17 /373 +0.17			
23. (क) Rate = k [C ₁₂ H ₂₂ O ₁₁] 1 (ख) आण्विकता = 2 तथा कोटि = 1 (ग) छद्म प्रथम कोटि 1 24. (क) बुहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंिक ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्तोहेन्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विधुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विधुव आघूर्ण होता है / साइक्लोहेन्सिल क्लोराइड में कृ² संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विधुव आघूर्ण होता है तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विधुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में कृ2संकरित कार्बन तथा C-C। बंध की लंबाई छोटी होती है। 25. (क) ऐरोमेटिक ऐमीन के डाइऐजोनियम लवणों के अनुनाद स्थिरीकरण के कारण। (ख) ऐनिलिन लुईस अम्ल निर्जल A Cl₃ के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निर्कष्य करने वाला है। 1 26. ΔT♭=ikь m i = 2 ΔT♭=2 x 0.52x 2/2 x 1000/100 1/2 2000			
23. (क) Rate = k [C12H22O11] (ख) आण्विकता = 2 तथा कोटि = 1 (ग) छद्य प्रथम कोटि 24. (क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते / ऐल्किल हैलाइड जल के 'साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -। प्रभाव के कारण उच्च द्विध्व आधूर्ण होता है, जबिक क्लोरोबेंजीन में -। तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्व आधूर्ण होता है, साइक्लोहेक्सिल क्लोराइड में क्रp² संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्व आधूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्व आधूर्ण होता है, जबिक क्लोरोबेंजीन में इp2संकरित कार्बन तथा C-C। बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐजोनियम लवणों के अनुनाद स्थिरीकरण के कारण। (ख) ऐनिलिन लुईस अपल निर्जल AIC1₃ के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 26. △Ть=їКь т і= 2 △Ть=2 x 0.52x 2/120 X 1000 1/100 1/2 1000 1/2 1		` '	
23. (क) Rate = k [C ₁₂ H ₂₂ O ₁₁] (ख) आण्विकता = 2 तथा कोटि = 1 (ग) छद्म प्रथम कोटि 24. (क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते / ऐित्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विश्व आघूर्ण होता है, जबिक क्लोरोईजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विश्व आघूर्ण होता है / साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विश्व आघूर्ण होता है / साइक्लोहेक्सिल क्लोराइड में केच कर्चन कर्म विद्युत ऋणात्मक होता है तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विश्व आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-C। बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। 26. ΔТь=IKь m i= 2 ΔΤb= 2 x 0.52 x ½ 100 / 100		OH OH	
23. (क) Rate = k [C ₁₂ H ₂₂ O ₁₁] (ख) आण्विकता = 2 तथा कोटि = 1 (ग) छद्म प्रथम कोटि 24. (क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते / ऐित्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विश्व आघूर्ण होता है, जबिक क्लोरोईजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विश्व आघूर्ण होता है / साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विश्व आघूर्ण होता है / साइक्लोहेक्सिल क्लोराइड में केच कर्चन कर्म विद्युत ऋणात्मक होता है तथा C-C। बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विश्व आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-C। बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। 26. ΔТь=IKь m i= 2 ΔΤb= 2 x 0.52 x ½ 100 / 100		+ HI + CH-I	
23. (क) Rate = k [C ₁₂ H ₂₂ O ₁₁] (ख) आण्विकता = 2 तथा कोटि = 1 (ग) छद्म प्रथम कोटि 24. (क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐत्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्व आपूर्ण होता है, जबिक क्लोरोबेंजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्व आपूर्ण होता है, साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्व आपूर्ण होता है, साइक्लोहेक्सिल क्लोराइड में क्रियामस्वरूप उच्च द्विध्व आपूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-CI बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्व आपूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-CI बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिनयम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 26. Δ T _b =iK _b m i = 2 Δ T _b = 2 x 0.52x $\frac{2}{120}$ X $\frac{1000}{100}$ = 0.17 K T _b = 373.15 +0.17/373 +0.17		/ फीनॉल तथा मेथिलआयोडाइड बनते हैं	
(क) अण्विकता = 2 तथा कोटि = 1 (ग) छद्रा प्रथम कोटि 24. (क) ब्रह्मद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते / ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है/ साइक्लोहेक्सिल क्लोराइड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-Cı बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp²संकरित कार्बन तथा C-Cı बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐजोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICl₃ के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो नि।क्केय करने वाला है। 26. ΔТ₅=іК₅ m i = 2 ΔΤ₅=ίK₅ m i = 2 ΔΤ₅=2 x 0.52 x ½ 120 X 1000 1000 11 12 12 12 12 12 12 12 12 12 12 12 12			
(ग) छद्म प्रथम कोटि 24. (क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्व आघूर्ण होता है, जबकि क्लोरोबेजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्व आघूर्ण होता है/ साइक्लोहेक्सिल क्लोराइड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-CI बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप अधूर्ण होता है, जबिक क्लोरोबेजीन में sp²संकरित कार्बन तथा C-CI बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। 26. Δ T _b =IK _b m i = 2 Δ T _b =2 x 0.52x $\frac{2}{120}$ X $\frac{1000}{100}$ = 0.17 K T _b =373.15 +0.17/373 +0.17	23.	(Φ) Rate = k [C ₁₂ H ₂₂ O ₁₁]	1
(ग) छद्र प्रथम कोटि 24. (क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल ब्रोमाइड की तुलना में अधिक मजबूत वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है/ साइक्लोहेक्सिल क्लोराइड में किन ना प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है तथा C-CI बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-CI बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। 26. △Т₅=іК₅ m i = 2 △Т₅= 2 x 0.52 x 2/120 X 1000/100 1 1/2 = 0.17 K T₅ = 373.15 +0.17 / 373 +0.17		(ख) आण्विकता = 2 तथा कोटि = 1	1/, 1//
वान्डरवाल्स बल होते हैं। (ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है/ साइक्लोहेक्सिल क्लोराइड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-C1 बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp² संकरित कार्बन तथा C-C1 बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। (ख) ऐनिलिन लुईस अम्ल निर्जल AIC13 के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रेय करने वाला है। 26. $\Delta T_b = iK_b m$ $i = 2$ $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ $= 0.17 \text{ K}$ $T_b = 373.15 + 0.17 / 373 + 0.17$		(ग) छद्म प्रथम कोटि	
(ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -1 प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है, जबकि क्लोरोबेंजीन में -1 तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है तथा C-C1 बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है तथा C-C1 बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-C1 बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। (ख) ऐनिलिन लुईस अम्ल निर्जल AIC13 के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रेय करने वाला है। 26. $\Delta T_b = 1 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ = 0.17 K $\frac{1}{2} \times 0.70 \times $	24.	(क) बृहद पृष्ठ क्षेत्र के कारण n- ब्यूटिल ब्रोमाइड में t- ब्यूटिल) ब्रोमाइड की तुलना में अधिक मजबूत	1
ऊर्जा मुक्त होती है क्योंिक ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -! प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में -! तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है / साइक्लोहेक्सिल क्लोराइड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-CI बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-CI बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। 1 (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रेय करने वाला है। 1 26. $\Delta T_b = iK_b m$ i = 2 $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ 1 1 = 0.17 K 1/2 T _b = 373.15 + 0.17 / 373 + 0.17 1		वान्डरवाल्स बल होते हैं।	
ऊर्जा मुक्त होती है क्योंिक ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल हैलाइड जल के साथ हाइड्रोजन बंध बनाने में असमर्थ होते हैं। (ग) साइक्लोहेक्सिल क्लोराइड में केवल -! प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में -! तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है / साइक्लोहेक्सिल क्लोराइड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-CI बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-CI बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। 1 (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रेय करने वाला है। 1 26. $\Delta T_b = iK_b m$ i = 2 $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ 1 1 = 0.17 K 1/2 T _b = 373.15 + 0.17 / 373 + 0.17 1		(ख) जब ऐल्किल हैलाइड और जल के अणुओं के बीच नए आकर्षण स्थापित होते हैं तो कम	1
(ग) साइक्लोहेक्सिल क्लोराइंड में केवल -! प्रभाव के कारण उच्च द्विध्रुव आघूर्ण होता है, जबिंक क्लोरोबेंजीन में -! तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है/ साइक्लोहेक्सिल क्लोराइंड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-C! बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिंक क्लोरोबेंजीन में sp²संकरित कार्बन तथा C-C! बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। (ख) ऐनिलिन लुईस अम्ल निर्जल AIC!₃ के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 26. $\Delta T_b = iK_b m$ $i = 2$ $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ $= 0.17 K$ $T_b = 373.15 + 0.17 / 373 + 0.17$		ऊर्जा मुक्त होती है क्योंकि ये जल में मूल हाइड्रोजन बंध जितने मजबूत नहीं होते /ऐल्किल	
क्लोरोबेंजीन में -I तथा +R दोनों प्रभाव होते हैं, जिसके परिणामस्वरूप निम्न द्विध्रुव आघूर्ण होता है/ साइक्लोहेक्सिल क्लोराइड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-Cl बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-Cl बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AlCl₃ के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रेय करने वाला है। 26. ∆T _b =iK _b m ½			
साइक्लोहेक्सिल क्लोराइड में sp³ संकरित कार्बन कम विद्युत ऋणात्मक होता है तथा C-CI बंध की लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-CI बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। (ख) ऐनिलिन लुईस अम्ल निर्जल AICI₃ के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 1 26. $\Delta T_b = iK_b m$ $i = 2$ $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ $= 0.17 K$ $T_b = 373.15 + 0.17 / 373 + 0.17$		्रा) त्राञ्चताहाक्त्रत क्वाराइड म कवल -। प्रभाव के कारण उच्च द्विध्रुव आधूण होता है, जेबाक क्लोगेकेंजीन में । तथा +p टोनों प्रधात होते हैं जिसके प्रीमाणपुरुष्ट्रा टिए टिश्ट अपूर्ण होता है।	1
लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विध्रुव आघूर्ण होता है, जबिक क्लोरोबेंजीन में sp2संकरित कार्बन तथा C-CI बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। (ख) ऐनिलिन लुईस अम्ल निर्जल AICI3 के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 1 26. $\Delta T_b = iK_b m$ $i = 2$ $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ $= 0.17 K$ $T_b = 373.15 + 0.17 / 373 + 0.17$		साइक्लोहेक्सिल क्लोराइ.ड में en³ संकरित कार्बन कम विदयत ऋणात्मक होता है तथा C.C.) तंश की	
sp2संकरित कार्बन तथा C-Cl बंध की लंबाई छोटी होती है। 25. (क) ऐरोमैटिक ऐमीन के डाइऐज़ोनियम लवणों के अनुनाद स्थिरीकरण के कारण। 1 (ख) ऐनिलिन लुईस अम्ल निर्जल AlCl3 के साथ लवण बनाता है। 1 (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 1 26. $\Delta T_b = iK_b m$ ½ $i = 2$ $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ 1 $= 0.17 \ K$ 1/2 $T_b = 373.15 + 0.17 / 373 + 0.17$ 1		लंबाई अधिक होती है, जिसके परिणामस्वरूप उच्च द्विधव आघर्ण होता है, जबकि क्लोरोबेंजीन में	
(स) ऐसिनिल पुईस अम्ल निर्जल AICI $_3$ के साथ लवण बनाता है। (ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। 1 26. $\Delta T_b = iK_b m$ $i = 2$ $\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ $= 0.17 K$ $T_b = 373.15 + 0.17 / 373 + 0.17$		sp2संकरित कार्बन तथा C-Cl बंध की लंबाई छोटी होती है।	
(ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। $ $	25.		1
(ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रिय करने वाला है। $ $		ात, गेरिनिय नरीम शान विर्यन काला के माथ नमाम न मन है।	1
26. $ \Delta T_b = iK_b \text{ m} $ $ i = 2 $ $ \Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100} $ $ = 0.17 K $ $ T_b = 373.15 + 0.17 / 373 + 0.17 $		(ख) रामाराम सुइस अम्स ामजल AIC13 के साथ लवेण बनाता है।	1
$ \begin{vmatrix} i = 2 \\ \Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100} \\ = 0.17 K \\ T_b = 373.15 + 0.17 / 373 + 0.17 \end{vmatrix} $		(ग) ऐनिलिनियम आयन के निर्माण के कारण जो निष्क्रेय करने वाला है।	1
$\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$ $= 0.17 K$ $T_b = 373.15 + 0.17 / 373 + 0.17$	26.		1/2
$T_b = 373.15 + 0.17 / 373 + 0.17$			1
		· ·	/2
1 = 373.37 K / 373.17 K		$\begin{vmatrix} 1_b = 3/3.15 + 0.17/3/3 + 0.17 \\ = 373.32 \text{ K} / 373.17 \text{ K} \end{vmatrix}$	
27. प्रतिरोधकताः	27.		<u>l</u>
$\rho = R \frac{A}{I} \qquad \qquad 1/2$			1/2
$\rho = \frac{5.4 \times 10^3}{600}$			
' 60		[' 60	1/2
$ ho=0.09~\mathrm{x}~10^3~\Omega~\mathrm{cm}~\mathrm{or}~90~\Omega~\mathrm{cm}$ ्यालकता			1/2
$k = 1/\rho$, , ,
= 1/90		= 1/90	1/4
		_	
पोन जनम			1/2
मोलर चालकताः $A = {}^{k} \times 1000 \text{ S} \text{ cm}^{2} \text{ mol}^{-1}$		1 6	
मोलर चालकताः $ \Lambda_{\rm m} = \frac{k}{c} X 1000 \text{Scm}^2 \text{mol}^{-1} $ $ = \frac{0.011}{0.05} X 1000 $		1 0,011 17 4 0 0 0	1

.

	$= 220 \ \Omega^{-1} \text{cm}^2 \text{mol}^{-1} \text{or } 220 \ \text{Scm}^2 \text{mol}^{-1}$	
28.	(ক)	
	—	
	CI Br CI	
	Mn Mn	1/2, 1/2
	CI Br CI Br	
	Cis isomer trans isomer]
	(ख) $t_{2g}^3 e_g^1$	1
	$(7) [CoF_6]^{3-}$ में चार अयुग्मित इलेक्ट्रॉनों की उपस्थिति के कारण d-d संक्रमण होता है जबकि	1 1
	[Ni(CN)4] ²⁻ में कोई अयुग्मित इलेक्ट्रॉन नहीं होता है।	• •
	रवर्षे प्र	
29.	(क) एथेनॉल -जल स्थिरकाथी मिश्रण बनाते हैं	1
	(ख) क्लोरोफॉर्म और एसीटोन के बीच हाइड्रोजन बंध बनने के कारण।	1
	$(T)^{p^0-p} - w - w_2 M_1$	1/2
-	$(7) (i) \frac{P^0 - P}{P^0} = x_2 = \frac{w_2}{M_2} x_{\frac{M_1}{W_1}}$	
	$\frac{1.25 - 1.237}{1.25} = \frac{1.2}{M_2} \times \frac{78}{60}$	
		1/2
	$M_2 = \frac{1.2}{M_2} \times \frac{78}{60} \times \frac{1.25}{0.013}$	1 1
	$M_2 = 150 \; \mathrm{g \; mol^{-1}}$ (गलत या कोई इकाई न होने पर ½ अंक काट लिए जाएं)	·
	अथवा	1/2
	(\P) (i) $\Delta T_b = 354.11 \text{ K} - 353.23 \text{ K} = 0.88 \text{ K}$	
	$2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}$	1/2
	25 5 22	1 1
20	M ₂ = 57.5 g mol ⁻¹ ≈ 58 g mol ⁻¹ (गलत या कोई इकाई न होने पर ½ अंक काट लिए जाएं) (क) सूचना संग्रहित करना तथा लक्षणों को एक्र पीढ़ी से दूसरी पीढ़ी में स्थानांतरित करना (अथवा	1
30.	(क) सूचना संग्राहत करना तथा लवाणां का एक पाढ़ा सं दूसरा पाढ़ा म स्यागातारत फरना (अपया	
	कोई अन्य उपयुक्त जिलाभी (ख) डीऑक्सीराइबोज शर्करा, एडेनिन तथा फॉस्फोरिक अम्ल।	1
·	(ग) (i) न्यक्लियोटाइड का बहलक जो आनवंशिकता के लिए उत्तरदायी है।	1+1
	न्यक्लियोसाइड नाइटोजन यक्त क्षारक तथा शर्करा से बना होता है जबकि न्युक्लियोटाइड नाइट्रॉजन	
	युक्त क्षारक, शर्करा तथा फॉस्फोरिक अम्ल से बना होता है।	
	अथवा	1+1
	(ग) (ii) समानता- दोनों न्यूक्लिक अम्ल हैं तथा कोशिका के नाभिक में पाए जाते हैं।	
	अंतर- डीएनए में द्विरज्जुक होता है जबिक आरएनए एकल रज्जुक होता है। (अथवा कोई अन्य उपयुक्त समानता तथा अंतर)	
	व्याप्त देश	
31.	((
. 31.	$\begin{pmatrix} (47)(1) \\ (1) \end{pmatrix}$	
		1

	$ \begin{array}{c} $	1
,		ŀ
	2 CHO.+ Conc. NaOH $\xrightarrow{\Delta}$ CH ₂ OH + COONa	1
	(III)	
	$CH_3COCH_2CH_3 \xrightarrow{Zn-Hg} CH_3CH_2CH_2CH_3$	1
	(ii)	f
	(I) CH ₃ CH ₂ COOH <brch<sub>2CH₂CH₂COOH <ch<sub>3CH(Br)CH₂COOH < CH₃CH₂CH(Br)COOH</ch<sub></brch<sub>	1
	(II) ^{4-मेथॉक्सी बेन्जोइक अम्ल} बेन्जोइक अम्लः ८ 4-नाइट्रोबेन्जोइक अम्लः ८	1
	3.4-डाईनाइट्रोबेन्जोइक अम्ल	
	अथवा	†
	(ख) (i) A = CH₃COOH/ एथेनॉइक अम्ल / ऐसीटिक अम्ल B = CH₃COCI / एसिटिल क्लोराइड	½ x 4
	C = CH3COCH3/ प्रोपेनोन / एसीटोन	
	D = CH ₃ CH ₂ CH ₃ / प्रोपेन	
	$ \begin{array}{c c} (ii) & & \\ \hline & (I) & & \\ \end{array} $	
	$CH_{3}COCH_{3} \xrightarrow{LiAlH_{4}} H_{3}C \xrightarrow{CH-CH_{3}} \xrightarrow{H_{2}SO_{4}(Conc.)} H_{3}C \xrightarrow{CH=CH_{2}}$	1
	(II) COOH COCI CHO	
	$\frac{SOCl_2}{Pd - BaSO_4}$	1
	(III)	
,	2 CH ₃ -CHO $\stackrel{\text{dil. NaOH}}{\longleftarrow}$ CH ₃ -CH-CH ₂ -CHO $\stackrel{\Delta}{\longrightarrow}$ CH ₃ -CH=CH-CHO	1
	• OH	
22	(अथवा कोई अन्य उपयुक्त विधि)	
32.	(क) जलीय विलयन में Cu ⁺ , Cu और Cu ²⁺ में असमानुपातित होता है।	
	(ख) Cr^{2+} , जलीय अवस्था में t_{2g}^3 अधिक स्थायी है।	
ĺ	(ग) लैन्थेनॉयडों में 4f इलेक्ट्रॉनों की तुलना में ऐक्टिनॉयडों में 5f इलेक्ट्रॉनों के अपेक्षाकृत कम परिरक्षण प्रभाव के कारण।	
	(a) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1 25
	(द) मार्ग्य / Cu	1 x 5
	(च) परिवर्तनशील ऑक्सीकरण अवस्था के कारण / अधिक पृष्ठ क्षेत्र / संकुल निर्माण।	
	(छ) अपनी मूल अवस्था में a कक्षक अपूर्ण रूप से भरित होने के कारण।	
	(कोई पांच)	
	,	

33.	(क) (i) संचायक बैटरिया / सेल	1
	ऐनोड- Pb(s) + SO ₄ ²⁻ (aq) → PbSO ₄ (s) + 2e	1/2
	कैयोड− PbO₂(s) + SO₄²⁻(aq) + 4H⁺(aq) + 2e⁻ → PbSO₄ (s) + 2H₂O (l)	1/2
	समग्र सेल अभिक्रिया	
	Pb(s)+PbO ₂ (s)+2H ₂ SO ₄ (aq) \rightarrow 2PbSO ₄ (s) + 2H ₂ O(l)	'
	(ii) कैथोड अभिक्रिया : Ag ⁺ (aq) + e ⁻ → Ag (s)	
	108 ग्राम Ag की आवश्यकता = 96500 C	
	1.5 ग्राम Ag की आवश्यकता = $\frac{96500}{108}$ x $\frac{1.5}{1}$	1/2
	108 1 = 1340. 27 C	1/2
	$t = \frac{Q}{I} = \frac{1340.27}{1.5}$	1/2
	$t = \frac{1.5}{I} = 1.5$ = 893.51 s or 14.85 min.	1/2
	— 893.31 \$ 01 14.83 mm. अथवा	
	(অ)	
	(i) किसी वैद्युतअपघट्य की सीमांत मोलर चालकता को उसके ऋणायन और धनायन के अलग-	1
·	अलग योगदोन के योग के रूप में दर्शाई जा सकती है.	'
	$\Lambda_{(NH4OH)} = \Lambda_{NH_4Cl} + \Lambda_{NaOH} - \Lambda_{NaCl}$	1
	$= 110 + 100 - 105 \text{ S cm}^2 \text{ mol}^{-1}$	1/
	$= 105 \text{ S cm}^2 \text{ mol}^{-1} /$	1/2
	(संख्यात्मक भाग के लिए 2 अंक दिए जाएंगे) $(ii) E_{cell} = E^0$ कैथोड $-E^0$ ऐनोड	1/2
	(11) E _{cell} — E कथाड - E एनाड =0.34 - (-0.76 V)	
	$= 1.10 \mathrm{V}$	1/2
	$\Delta_i G^{\circ} = -nFE_{(ii \rightleftharpoons i)}^{\circ}$	1/2
	= -2 x 96500 x 1.10	1/2
	=-212,300 J mol ⁻¹ or -212. 3 kJ mol ⁻¹	1/2

Marking Scheme
Strictly Confidential
(For Internal and Restricted use only)
Senior Secondary School Supplementary Examination, July-2024
SUBJECT NAME: CHEMISTRY SUBJECT CODE:043 PAPER CODE: 56/S/2

General Instructions: -

<u>Och</u>	erai instructions
1	You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully.
2	"Evaluation policy is a confidential policy as it is related to the confidentiality of the examinations conducted, Evaluation done and several other aspects. Its' leakage to public in any manner could lead to derailment of the examination system and affect the life and future of millions of candidates. Sharing this policy/document to anyone, publishing in any magazine and printing in News Paper/Website etc may invite action under various rules of the Board and IPC."
3	Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and due marks be awarded to them. In class-XII, while evaluating two competency-based questions, please try to understand given answer and even if reply is not from marking scheme but correct competency is enumerated by the candidate, due marks should be awarded.
4	The Marking scheme carries only suggested value points for the answers. These are in the nature of Guidelines only and do not constitute the complete answer. The students can have their own expression and if the expression is correct, the due marks should be awarded accordingly.
5	The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. If there is any variation, the same should be zero after deliberation and discussion. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
6	Evaluators will mark($$) wherever answer is correct. For wrong answer CROSS 'X" be marked. Evaluators will not put right (\checkmark) while evaluating which gives an impression that answer is correct and no marks are awarded. This is most common mistake which evaluators are committing.
7	If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totalled up and written in the left-hand margin and encircled. This may be followed strictly.
8	If a question does not have any parts, marks must be awarded in the left-hand margin and encircled. This may also be followed strictly.
9	If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out with a note "Extra Question".
10	No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
11	A full scale of marks 70 has to be used. Please do not hesitate to award full marks if the answer deserves it.

12	Every everying has to personally de evaluation work for full working hours in a 9 hours
12	Every examiner has to necessarily do evaluation work for full working hours i.e., 8 hours
	every day and evaluate 20 answer books per day in main subjects and 25 answer books per
40	day in other subjects (Details are given in Spot Guidelines).
13	Ensure that you do not make the following common types of errors committed by the
	Examiner in the past: - Giving more marks for an answer than assigned to it.
	Wrong totalling of marks awarded on an answer.
	 Wrong transfer of marks from the inside pages of the answer book to the title page.
	Wrong question wise totalling on the title page.
	 Leaving answer or part thereof unassessed in an answer book.
	 Wrong totalling of marks of the two columns on the title page.
	Wrong grand total.
	Marks in words and figures not tallying/not same.
	 Wrong transfer of marks from the answer book to online award list.
	 Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is
	correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect
	answer.)
	 Half or a part of answer marked correct and the rest as wrong, but no marks awarded.
14	While evaluating the answer books if the answer is found to be totally incorrect, it should be
	marked as cross (X) and awarded zero (0) Marks.
15	Any un assessed portion, non-carrying over of marks to the title page, or totalling error
	detected by the candidate shall damage the prestige of all the personnel engaged in the
	evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned,
	it is again reiterated that the instructions be followed meticulously and judiciously.
16	The Examiners should acquaint themselves with the guidelines given in the "Guidelines for
	spot Evaluation" before starting the actual evaluation.
17	Every Examiner shall also ensure that all the answers are evaluated, marks carried over to
	the title page, correctly totalled and written in figures and words.
18	The candidates are entitled to obtain photocopy of the Answer Book on request on payment
	of the prescribed processing fee. All Examiners/Additional Head Examiners/Head Examiners
	are once again reminded that they must ensure that evaluation is carried out strictly as per
	value points for each answer as given in the Marking Scheme.
	I compare the control of the control

MARKING SCHEME 2024

CHEMISTRY (Theory)- 043 QP CODE 56/S/2

Q.No.	Value points	Mark
	SECTION A	
1.	(D)	1
2.	(A)	1
3.	(D)	1
4.	(A)	1
5.	(C)	1
6.	(C)	1
7.	(D)	1
8.	(A)	1
9.	(B)	1
10.	(D)	1
11.	(C)	1
12.	(D)	1
13.	(A)	1
14.	(A)	1
15.	(B)	1
16.	(A)	1
	SECTION B	
17.	(a)	
	$\begin{array}{ccc} CHO & CH < OH \\ (CHOH)_4 & \xrightarrow{HCN} & (CHOH)_4 \end{array}$	1
	CH ₂ OH CH ₂ OH (b) CHO COOH CHO Conc. HNO₃ (CHOH)₄ CHOH)₄ CH₂OH COOH	1
18.		-
10.	 (a) (i) In CH₃CHO carbonyl carbon is more electrophilic and has less steric hinderance than CH₃COCH₃. (ii) Due to intermolecular hydrogen bonding in carboxylic acids / due to dimer formation. 	1
	OR	<u> </u>
	(b) (i) Add NaOH + I ₂ to both the compounds separately and heat. Propanone will form yellow precipitate of CHI ₃ whereas propanal will not.	1
	(ii) Add NaHCO ₃ to both the compounds separately. Benzoic acid will give the brisk effervescence of CO ₂ while benzaldehyde does not.	1
	(Or any other suitable chemical test)	

19. (a)	
OH Ō Na ⁺ OH	
CHCl ₃ + aq NaOH CHO	
	1
(b)	
OH ONA OH	
$ \underbrace{\text{NaOH}}_{\text{NaOH}} \qquad \underbrace{\text{(i) CO}_{2}}_{\text{(ii) H}} \qquad \underbrace{\text{COOH}}_{\text{COOH}} $	
	1 1/2
$K \equiv \frac{1}{t} \log \frac{1}{t}$	/2
$t = \frac{2.303}{\log \frac{[R]_0}{R}}$	1/2
$k = [R]_0/4$ 2.303	
$t = \frac{1}{2.3 \times 10^{-3}} \log 4$	17
$t = \frac{\frac{2.303}{k} \log \frac{[R]_0}{[R]_0/4}}{t = \frac{2.303}{2.3 \times 10^{-3}} \log 4}$ $t = \frac{\frac{2.303}{2.3 \times 10^{-3}} \log 0.6021$	1/2
t = 602 s	1/2
21. (a)	
CH(Br)CH ₃	1
O_2N	
(b)	
CH ₃	1`
gramion a	
SECTION C 22. (a)	
22. (a) H ₃ C OH	
$\frac{1. \text{CH}_3 \text{MgBr}}{2. \text{H}_3 \text{O}^+}$	
/ 1-Methylcyclohexanol is formed.	
(b)	
OH OH OH	
Br /o and n huamanhanal is formed	
/o and p-bromophenol is formed.	
, т ₂ сī он	
$+ H_2O \longrightarrow$	
/ Phenol / Benzenol is formed.	
(d)	
OCH ₃ OH	1 v 2
+HI++CH ₃ I	1 x 3
/ Phenol and iodomethane /Phenol and Methyl	

23.	(a) Rate = $k [C_{12}H_{22}O_{11}]$	1
	(b) Molecularity = 2 and order = 1	1/2 +1/2
	(c) Pseudo first order reaction.	1
24.	(a) n-butyl bromide has larger surface area hence stronger van der Waal forces as compared to t-	1
	butyl bromide.	
	(b) Less energy is released when new attractions are set up between the alkyl halide and the	1
	water molecules as these are not as strong as the original hydrogen bonds in water / Alkyl	1
	halides are unable to form hydrogen bond with water.	
	(c) Cyclohexyl chloride has higher dipole moment due —I effect only while chlorobenzene has both	
	I and +R effect that results in lower dipole moment / sp³hybridised carbon in cyclohexyl chloride	1
	is less electronegative and C-Cl bond length is longer resulting into a higher dipole moment as	1
25	compared to chlorobenzene having sp ² hybridised carbon and shorter C-Cl bond length.	1
25.	(a) Due to resonance stabilisation of diazonium salts of aromatic amines.	1
	(b) Aniline forms salt with Lewis acid anhydrous AlCl₃.(c) Due to the formation of anilinium ion which is deactivating.	1
26.	(c) Due to the formation of anilinium ion which is deactivating. $\Delta T_b = iK_b m$	1/2
20.	i = 2	72
	$\Delta T_b = 2 \times 0.52 \times \frac{2}{120} X \frac{1000}{100}$	1
	= 0.17 K	1/2
	$T_b = 373.15 + 0.17 / 373 + 0.17$	
	= 373.32 K / 373.17 K	1
27.	$R^{=}\rho \frac{l}{A}$	
	$A \rightarrow A$	
	Resistivity:	
	$ ho = R \frac{A}{l}$	1/2
	$\rho = \frac{5.4 \ X \ 10^3}{60}$	
	$\rho = 0.09 \times 10^3 \Omega \text{ cm or } 90 \Omega \text{ cm}$	1/2
	Conductivity:	
	$k = 1/\rho$	1/2
	= 1/90	
	$k = 0.011 \ \Omega^{-1} \ \text{cm}^{-1}$ or $0.011 \ \text{S cm}^{-1}$	1/2
	Molar Conductivity	,-
	$\Lambda_{\rm m} = \frac{k}{c} X 1000$	1/2
	$= \frac{0.011}{0.05} X \ 1000$	
	$= 220 \ \Omega^{-1} \text{cm}^2 \ \text{mol}^{-1} \text{or} \ 220 \ \text{S} \ \text{cm}^2 \text{mol}^{-1}$	1/2
28.	(a)	
	—2- — 2-	
	Cl Br Br, Cl	
	Mn Mn	1/- 1/
	Rr.	1/2, 1/2
	CI Br	
	Cis isomer trans isomer	
	(b) $t_{2g}^3 e_g^1$	1

whereas in [Ni(CN) ₄] ² there is no unpaired electrons. SECTION D 29. (a) Ethanol-water forms azeotropic mixture. (b) Due to the formation of hydrogen bond between chloroform and acetone. (c) (i) $\frac{P^0-P}{P^0} = x_2 = \frac{w_2}{M_2} x \frac{M_1}{w_1}$ $\frac{1.25-1.237}{1.25} = \frac{1.2}{M_2} x \frac{78}{60}$ $M_2 = \frac{1.2}{M_2} x \frac{78}{60} x \frac{1.25}{0.013}$ $M_2 = 150 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ OR (c) (i) The elevation (ΔT_0) in the boiling point = 354.11 K - 353. 23 K = 0.88 K $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ 30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E 31. (a) (i)	11 11 12 12 11 11 11 12 12
29. (a) Ethanol-water forms azeotropic mixture. (b) Due to the formation of hydrogen bond between chloroform and acetone. (c) (i) $\frac{P^0-P}{P^0} = x_2 = \frac{w_2}{M_2} \frac{x_M}{x_M}$ $\frac{1.25-1.237}{1.25} = \frac{1.2}{M_2} \frac{x_0^{28}}{x_0^{20}} \times \frac{1.25}{0.013}$ $M_2 = \frac{1.2}{M_2} \frac{x_0^{28}}{x_0^{20}} \times \frac{1.25}{0.013}$ $M_2 = 150 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ OR (c) (i) The elevation (ΔT_b) in the boiling point = 354.11 K - 353. 23 K = 0.88 K $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ 30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference)	1
(b) Due to the formation of hydrogen bond between chloroform and acetone. (c) (i) $\frac{P^0-P}{P^0} = x_2 = \frac{w_2}{M_2} x \frac{M_1}{w_1}$ $\frac{1.25-1.237}{1.25} = \frac{1.2}{M_2} x \frac{78}{60}$ $M_2 = \frac{1.2}{M_2} x \frac{78}{60} x \frac{1.25}{0.013}$ $M_2 = 150 \text{ g mol}^{-1}$ (Deduct ½ marks for incorrect or no unit) OR (c) (i) The elevation (ΔT_b) in the boiling point = 354.11 K - 353. 23 K = 0.88 K $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1}$ (Deduct ½ marks for incorrect or no unit) 30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference)	1
(c) (i) $\frac{P^0-P}{P^0} = x_2 = \frac{w_2}{M_2} x \frac{M_1}{w_1}$ $\frac{1.25-1.237}{1.25} = \frac{1.2}{M_2} x \frac{78}{60}$ $M_2 = \frac{1.2}{M_2} x \frac{78}{60} x \frac{1.25}{0.013}$ $M_2 = 150 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ OR (c) (i) The elevation (ΔT_b) in the boiling point = 354.11 K - 353. 23 K = 0.88 K $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ 30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference)	/2 /2 1 1 1
$\frac{1.25-1.237}{1.25} = \frac{1.2}{M_2} \times \frac{78}{60}$ $M_2 = \frac{1.2}{M_2} \times \frac{78}{60} \times \frac{1.25}{0.013}$ $M_2 = 150 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ OR (c) (i) The elevation (ΔT_b) in the boiling point = 354.11 K - 353. 23 K = 0.88 K $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ 230. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference)	/2 1 1 1
$M_2 = \frac{1.2}{M_2} \times \frac{78}{60} \times \frac{1.25}{0.013}$ $M_2 = 150 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ OR $(c) (i) \text{ The elevation } (\Delta T_b) \text{ in the boiling point } = 354.11 \text{ K} - 353.23 \text{ K} = 0.88 \text{ K}$ $M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = \frac{57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ $M_3 = 67.5 \text{ mol}^{-1} \approx 67$	1 /2 1 /2
M ₂ = 150 g mol ⁻¹ (Deduct ½ marks for incorrect or no unit) OR (c) (i) The elevation (ΔT _b) in the boiling point = 354.11 K − 353. 23 K = 0.88 K M ₂ = 2.53 K kg mol ⁻¹ × 1.8 g × 1000 g kg ⁻¹ O.88 K × 90 g M ₂ = 57.5 g mol ⁻¹ ≈ 58 g mol ⁻¹ (Deduct ½ marks for incorrect or no unit) 30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	1 /2 1 /2
OR (c) (i) The elevation (ΔT _b) in the boiling point = 354.11 K − 353. 23 K = 0.88 K $ M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}} $ $ M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{(Deduct ½ marks for incorrect or no unit)}} $ 30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	/2 1 /2
(c) (i) The elevation (ΔT _b) in the boiling point = 354.11 K − 353. 23 K = 0.88 K	1 /2
$M_2 = \frac{2.53 \text{ K kg mol}^{-1} \times 1.8 \text{ g} \times 1000 \text{ g kg}^{-1}}{0.88 \text{ K} \times 90 \text{ g}}$ $M_2 = 57.5 \text{ g mol}^{-1} \approx 58 \text{ g mol}^{-1} \text{ (Deduct } \frac{1}{2} \text{ marks for incorrect or no unit)}$ 30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	1 /2
M ₂ = 57.5 g mol ⁻¹ ≈ 58 g mol ⁻¹ (Deduct ½ marks for incorrect or no unit) (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	/2
M ₂ = 57.5 g mol ⁻¹ ≈ 58 g mol ⁻¹ (Deduct ½ marks for incorrect or no unit) (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	/2
30. (a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	
(a) To store information and to transfer traits from one generation to another (or any other suitable function). (b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	1
(b) Deoxyribose sugar, Adenine and phosphoric acid. (c) (i) The polymer of nucleotides which are responsible for heredity. Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	
Nucleoside is made up of nitrogenous bases and sugar whereas nucleotide is made up of nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	1
nitrogenous bases, sugar and phosphoric acid. OR (c) (ii) Similarity: Both are nucleic acids and are found in the nucleus of the cell. Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	ı 1
(c) (ii) Similarity : Both are nucleic acids and are found in the nucleus of the cell. Difference : DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	F1
Difference: DNA has a double strand while RNA is single stranded. (or any other suitable similarity and difference) SECTION E	
(or any other suitable similarity and difference) SECTION E	+1
SECTION E	
31. (a) (i)	
H ₃ C, O H ₃ C, O	
$C = O + H_2N - NH - C - NH_2 \longrightarrow C = N-NH - C - NH_2$	1
H ₃ C /	
(II)	
2 CHO + Conc. NaOH $\xrightarrow{\Delta}$ CH ₂ OH + COONa	1
(III)	
$CH_3COCH_2CH_3 \xrightarrow{Zn-Hg} CH_3CH_2CH_2CH_3$	1
(ii)	•
(I) CH ₃ CH ₂ CCOOH < BrCH ₂ CH ₂ CCOOH < CH ₃ CH(Br)CH ₂ COOH < CH ₃ CH ₂ CH(Br)COOH	1
(II) 4-Methoxybenzoic acid < Benzoic acid<4-Nitrobenzoic acid < 3,4-Dinitrobenzoic acid	
OR	ı
(b)	<u> </u>

B = CH ₃ COCl / Ethanoyl chloride / Acetyl chloride C = CH ₃ COCH ₃ / Propanone / Acetone D = CH ₃ CH ₂ CH ₃ / Propane	½ x 4
_	
(ii)	
(I)	
$CH_3COCH_3 \xrightarrow{\text{LiAlH}_4} H_3C \xrightarrow{\text{CH}-\text{CH}_3} \xrightarrow{\text{H}_2SO_4(Conc.)} H_3C \xrightarrow{\text{Heat}} H_3C \xrightarrow{\text{CH}=\text{CH}_2} OH$	1
COOH COCI CHO	
$\frac{SOCl_2}{Pd - BaSO_4}$	1
(III)	
2 CH ₃ -CHO $\stackrel{\text{dil. NaOH}}{\longleftarrow}$ CH ₃ -CH-CH ₂ -CHO $\stackrel{\Delta}{\longrightarrow}$ CH ₃ -CH=CH-CHO	1
ÓН	
(Or any other suitable method	1)
(a) Cu ⁺ in aqueous solution undergoes disproportionation to Cu and Cu ²⁺ .	
(b) Cr^{2+} ; due to greater stability of t_{2g}^{3} in aqueous state. (c) Due to relatively poor shielding effect of 5f electrons in actinoids than 4f electrons in	
lanthanoids.	
$(d) \text{ MnO}_4^- + 8\text{H}^+ + 5\text{e}^- \rightarrow \text{Mn}^{2+} + 4\text{H}_2\text{O}$	1 x 5
(e) Copper / Cu	1 X J
(f) Due to variable oxidation state / provide greater surface area / complex formation.	
(g) Due to incompletely filled d orbital in its ground state.	
33. (a) (i) Secondary cell /Battery	1
At anode: $Pb(s) + SO_4^{2-}(aq) \longrightarrow PbSO_4(s) + 2e^-$	1/2
At cathode: $PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O(l)$	1/2
overall reaction $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) \longrightarrow 2PbSO_4(s) + 2H_2O(l)$	1
(ii) Reaction at Cathode: Ag ⁺ (aq) + e ⁻ → Ag (s)	
108 g of Ag required = 96500 C	
1.5 g of Ag required $=\frac{96500}{108} \times \frac{1.5}{1}$	1/-
108 1 = 1340. 27 C	1/2
Time = $\frac{Q}{I} = \frac{1340.27}{1.5}$, -
	1/2
= 893.51 s or 14.85 min. OR	1/2
(b)	
(i) Limiting molar conductivity of an electrolyte can be represented as the sum of the	1
individual contributions of the anion and cation of the electrolyte.	
$\Lambda_{NH_4 OH}^{o} = \Lambda_{NH_4Cl}^{o} + \Lambda_{NaOH}^{o} - \Lambda_{NaCl}^{o}$	1
$= 110 + 100 - 105 \text{ S cm}^2 \text{ mol}^{-1}$	1/2
$= 110 + 100 - 103 \text{ S cm}^{-1} \text{ mol}^{-1} /$ $= 105 \text{ S cm}^{2} \text{ mol}^{-1} /$	1/2
(2 marks to be awarded for attempting the numerical part)	
(ii) $E_{\text{cell}} = E^0_{\text{cathode}} - E^0_{\text{anode}}$	1/2

	= 0.34 - (-0.76 V) $= 1.10 V$	1/2
Δ_r	$G^{\circ} = -nFE_{cell}^{\circ}$ = -2 x 96500 x 1.10 =-212,300 J mol ⁻¹ or -212. 3 kJ mol ⁻¹	1/2