7. Factorization

Exercise 7.1

1. Question

Find the greatest common factor (GCF/HCF) of the following polynomials

 $2x^2$ and $12x^2$

Answer

The numerical coefficients of given numerical are 2, 12

Greatest common factor of 2, 12 is 2

Common literals appearing in given numerical is x

Smallest power of x in two monomials = 2

Monomials of common literals with smallest power= x^2

Hence, the greatest common factor = $2x^2$

2. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

```
6x^3y and 18x^2y^3
```

Answer

The numerical coefficients of given numerical are 6,18

Greatest common factor of 6, 18 is 6

Common literals appearing in given numerical are x and y

Smallest power of x in both monomials = 2

Smallest power of y in both monomials = 1

Binomials of common literals with smallest power= x^2y

Hence, the greatest common factor = $6x^2y$

3. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

 $7x,21x^2 \mbox{ and } 14xy^2$

Answer

The numerical coefficients of given numerical are 7, 21, 14 Greatest common factor of 7, 21, 14 is 7 Common literals appearing in given numerical are x and y Smallest power of x in three monomials = 1 Smallest power of y in three monomials = 0 Monomials of common literals with smallest power= x Hence, the greatest common factor = 7x

4. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

The numerical coefficients of given numerical are 42 and 63. Greatest common factor of 42, 63 is 21. Common literals appearing in given numerical are x, y and z Smallest power of x in two monomials = 2 Smallest power of y in two monomials = 1 Smallest power of z in two monomials = 1 Monomials of common literals with smallest power = x^2yz

Hence, the greatest common factor = $21x^2yz$

5. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

 $12ax^2$, $6a^2x^3$ and $2a^3x^5$

Answer

The numerical coefficients of given numerical are 12, 6, 2

Greatest common factor of 12, 6, 2 is 2.

Common literals appearing in given numerical are a and x

Smallest power of x in three monomials = 2

Smallest power of a in three monomials = 1

Monomials of common literals with smallest power= ax²

Hence, the greatest common factor = $2ax^2$

6. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

 $9x^2,\!15x^2y^3,\!6xy^2$ and $21x^2y^5$

Answer

The numerical coefficients of given numerical are 9, 15, 16, 21 Greatest common factor of 9, 15, 16, 21 is 3. Common literals appearing in given numerical are x and y Smallest power of x in four monomials = 1 Smallest power of y in four monomials = 0 Monomials of common literals with smallest power= x Hence, the greatest common factor = 3x**7. Question**

Find the greatest common factor (GCF/HCF) of the following polynomials:

 $4a^{2}b^{3}, -21a^{3}b, 18a^{4}b^{3}$

Answer

The numerical coefficients of given numerical are 4, -12, 18.

Greatest common factor of 4, -12, 18 is 2. Common literals appearing in given numerical are a and b Smallest power of a in three monomials = 2 Smallest power of b in three monomials = 1 Monomials of common literals with smallest power= $a^{2}b$ Hence, the greatest common factor = $2a^{2}b$

8. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

$6x^2y^2, -9xy^3, 3x^3y^2 \\$

Answer

The numerical coefficients of given numerical are 6, 9, 3 Greatest common factor of 6, 9, 3 is 3. Common literals appearing in given numerical are x and y Smallest power of x in three monomials = 1 Smallest power of y in three monomials = 2 Monomials of common literals with smallest power= xy^2 Hence, the greatest common factor = $3xy^2$

9. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

$a^{2}b^{3}, a^{3}b^{2}$

Answer

The numerical coefficients of given numerical are 0

Common literals appearing in given numerical are a and b

Smallest power of a in two monomials = 2

Smallest power of b in two monomials = 2

Monomials of common literals with smallest power= the greatest common factor = a^2b^2

10. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

 $36a^2b^2c^4, 54a^4c^2, 90a^4b^2c^2$

Answer

The numerical coefficients of given numerical are 36, 54, 90 Greatest common factor of 36, 54, 90 is 18. Common literals appearing in given numerical are a, b and c Smallest power of a in three monomials = 2 Smallest power of b in three monomials = 0 Smallest power of c in three monomials = 2 Monomials of common literals with smallest power= a^2c^2 Hence, the greatest common factor = $18a^2c^2$

11. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

x³, yx²

Answer

The numerical coefficients of given numerical are 0 Common literals appearing in given numerical are x and y Smallest power of x in two monomials = 2 Smallest power of y in two monomials = 0 Monomials of common literals with smallest power= x^2 Hence, the greatest common factor = x^2

12. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

15a³, - 54a², -150a

Answer

The numerical coefficients of given numerical are 15, -45, -150

Greatest common factor of 15, -45, -150 is 15.

Common literals appearing in given numerical is smallest power of a in three monomials = 1

Monomials of common literals with smallest power= a

Hence, the greatest common factor = 15a

13. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

2x³ y², -10x² y³, 14xy

Answer

The numerical coefficients of given numerical are 2, 10, 14.

Greatest common factor of 2, 10, 14 is 2.

Common literals appearing in given numerical are x and y

Smallest power of x in three monomials = 1

Smallest power of y in three monomials = 1

Monomials of common literals with smallest power= xy

Hence, the greatest common factor = 2xy

14. Question

Find the greatest common factor (GCF/HCF) of the following polynomials:

14x³ y⁵, -10x⁵ y³, 12x²y²

Answer

The numerical coefficients of given numerical are 14, 10, 2.

Greatest common factor of 14, 10, 2 is 2.

Common literals appearing in given numerical are x and y

Smallest power of x in three monomials = 2

Smallest power of y in three monomials = 2

Monomials of common literals with smallest power= x^2y^2

Hence, the greatest common factor = $2x^2y^2$

15. Question

Find the greatest common factor of the terms in each of the following expressions:

5a⁵ + 10a⁵ - 15a²

Answer

The highest common factor of three terms = $5a^2$

 $=5a^{2}(a^{2} + 2a - 3)$

16. Question

Find the greatest common factor of the terms in each of the following expressions:

 $2xyz + 3x^2y + 4y^2$

Answer

The highest common factor of three terms = y

Therefore,

 $= y(2xz + 3x^2 + 4y)$

17. Question

Find the greatest common factor of the terms in each of the following expressions:

 $3a^2b^2 + 4b^2c^2 + 12a^2b^2c^2$

Answer

The highest common factor of three terms = b^2

Therefore,

 $5a^{2}b^{2} + 4b^{2}c^{2} + 12a^{2}b^{2}c^{2} = b^{2}(3a^{2} + 4c^{2} + 12a^{2}c^{2})$

Exercise 7.2

1. Question

Factorize the following:

3x – 9

Answer

Greatest common factor of the two terms namely 3x and -9 of expression 3x - 9 is 3

 $3x = 3 \times x$ and $-9 = 3 \times (-3)$

3x - 9 = 3(x - 3)

2. Question

Factorize the following:

 $5x - 15x^2$

Greatest common factor of the two terms namely 5x and $-15x^2$ of expression 5x - $15x^2$ is 5x - $15x^2$

5x = 5x(1) and $-15x^2 = 5x(-3x)$

 $5x - 15x^2 = 5x(1 - 3x)$

3. Question

Factorize the following:

 $20a^{12}b^2 - 15a^8b^4$

Answer

Greatest common factor of the two terms namely 20a12b2 and -15a8b4 of expression 20a12b2 - 15a8b4 is 5a8b2

20a12b2 = 5a8b2 (4a4) and $-15a8b^4 = 5a^8b^2$ ($-3b^2$)

 $20a^{12}b^2 - 15a^8b^4 = 5a^8b^2 (4a^4 - 3b^2) = 5a^8b^2((2a)^2 - (b\sqrt{3})^2) = 5a^8b^2(2a + b\sqrt{3})(2a - b\sqrt{3})$

4. Question

Factorize the following:

 $72x^6y^7 - 96x^7y^6$

Answer

Greatest common factor of the two terms namely $72x^6y^7$ and - $96x^7y^6$ of expression $72x^6y^7$ - $96x^7y^6$ is $24x^6y^6$

 $72x^{6}y^{7} = 24x^{6}y^{6}$ (3y) and $-96x^{7}y^{6} = 24x^{6}y^{6}(-4x)$

 $72x^6y^7 - 96x^7y^6 = 24x^6y^6 (3y - 4y)$

5. Question

Factorize the following:

 $20x^3 - 40x^2 + 80x$

Answer

Greatest common factor of the two terms namely $20x^3$, $-40x^2$ and 80x of expression $20x^3 - 40x^2 + 80x$ is 20x

 $20x^3 - 40x^2 + 80x = 20x(x^2 - 2x + 4)$

6. Question

Factorize the following:

 $2x^3y^2 - 4x^2y^3 + 8xy^4 \\$

Answer

Greatest common factor of the two terms namely $2x^3y^2$, - $4x^2y^3$, - $8xy^4$ of expression $2x^3y^2$ - $4x^2y^3$ - $8xy^4$ is $2xy^2$

 $2x^{3}y^{2} - 4x^{2}y^{3} - 8xy^{4} = 2xy^{2}(x^{2} - 2xy + 4y)$

7. Question

Factorize the following:

 $10m^{3}n^{2} + 15m^{4}n - 20m^{2}n^{3}$

Answer

Greatest common factor of the two terms namely $10m^3n^2$, $15m^4n$, - $20m^2n^3$ of expression $10m^3n^2 + 15m^4n - 20m^2n^3$ is $5mn^2$

 $10m^{3}n^{2} + 15m^{4}n - 20m^{2}n^{3} = 5mn^{2}(2mn + 3m^{2} - 4n)$

8. Question

Factorize the following:

 $2a^4b^4 - 3a^3b^5 + 4a^2b^5$

Answer

Greatest common factor of the two terms namely $2a^4b^4$, - $3a^3b^5$, $4a^2b^5$ of expression $2a^4b^4$ - $3a^3b^5$ + $4a^2b^5$ is a^2b^4

 $2a^4b^4 - 3a^3b^5 + 4a^2b^5 = a^2b^4 (2a^2 - 3ab + 4b)$

9. Question

Factorize the following:

 $28a^2 + 14a^2b^2 - 21a^4$

Answer

Greatest common factor of the two terms namely $28a^2$, $14a^2b^2$, - $21a^4$ of expression $28a^2 + 14a^2b^2$ - $21a^4$ is $7a^2$

 $28a^2 + 14a^2b^2 - 21a^4 = 7a^2(4 + 2b^2 - 3a^2)$

10. Question

Factorize the following:

 $a^4b - 3a^2b^2 - 6ab^3$

Answer

Greatest common factor of the two terms namely a^4b , - $3a^2b^2$, - $6ab^3$ of expression a^4b - $3a^2b^2$ - $6ab^3$ is ab

 $a^{4}b - 3a^{2}b^{2} - 6ab^{3} = ab (a^{3} - 3ab - 6ab^{2})$

11. Question

Factorize the following:

 $2l^2mn - 3lm^2n + 4lmn^2$

Answer

Greatest common factor of the two terms namely 21lmn, - $3 \text{Im}^2 n$, $4 \text{Im}^2 of expression 21 \text{Im} n - <math>3 \text{Im}^2 n + 4 \text{Im}^2 n$ is Im

 $21\text{lmn} - 3\text{lm}^2\text{n} + 4\text{lmn}^2 = \text{lm}(21 - 3\text{m} + 4\text{n})$

12. Question

Factorize the following:

 $x^4y^2 - x^2y^4 - x^4y^4$

Answer

Greatest common factor of the two terms namely x^4y^2 , - x^2y^4 , - x^4y^4 of expression x^4y^2 - x^2y^4 - x^4y^4 is x^2y^2

 $x^{4}y^{2} - x^{2}y^{4} - x^{4}y^{4} = x^{2}y^{2} (x^{2} - y^{2} - x^{2}y^{2})$

13. Question

Factorize the following:

 $9x^2y+3axy \\$

Answer

Greatest common factor of the two terms namely $9x^2y$ and 3axy of expression $9x^2y + 3axy$ is 3xy

 $9x^2y + 3axy = 3xy(3x^2 + a)$

14. Question

Factorize the following:

 $16m - 4m^2$

Answer

Greatest common factor of the two terms namely 16m - 4m² of expression 16m - 4m² is 4m

 $16m - 4m^2 = 4m(4 - m)$

15. Question

Factorize the following:

 $-4a^2+4ab-4ca$

Answer

Greatest common factor of the two terms namely -4a, 4ab, -4ca of expression -4a + 4ab -4ca is -4a

-4a + 4ab - 4ca = -4a(a - b + c)

16. Question

Factorize the following:

 $16m - 4m^2$

Answer

Greatest common factor of the two terms namely x^2yz , xy^2z , xyz^2 of expression $x^2yz + xy^2z + xyz^2$ is xyz

 $x^{2}yz + xy^{2}z + xyz^{2} = xyz(x + y + z)$

17. Question

Factorize the following:

 $ax^2y + bxy^2 + cxyz$

Answer

Greatest common factor of the two terms namely -4a, 4ab, -4ca of expression -4a + 4ab -4ca is -4a

 $ax^2y + bxy^2 + cxyz = xy (ax + by + cz)$

Exercise 7.3

1. Question

Factorize each of the following algebraic expressions:

6x(2x-y)+7y(2x-y)

Answer

(6x + 7y) (2x - y) [Therefore, taking (2x - y) common)]

2. Question

Factorize each of the following algebraic expressions:

2r(y-z)+s(x-y)

Answer

-2r (x - y) + s (x - y) [Therefore, taking - 1 common]= (x - y) (-2r + s) [Therefore, taking (x - y) common]

= (x - y) (s - 2r)

3. Question

Factorize each of the following algebraic expressions:

7a(2x-3)+3b(2x-3)

Answer

(7a + 3b) (2x - 3) [Therefore, taking (2x - 3) common]

4. Question

Factorize each of the following algebraic expressions:

 $9a \bigl(6a-5b\bigr)-12a^2 \bigl(6a-5b\bigr)$

Answer

(9a - 12a²) (6a - 5b) [Therefore, taking (6a - 5b) common]

5. Question

Factorize each of the following algebraic expressions:

 $5 \left(x-2y\right)^2 + 3 \left(x-2y\right)$

Answer

(x - 2y) [5 (x - 2y) + 3] [Therefore, taking (x - 2y) common]

= (x - 2y) (5x - 10y + 3)

6. Question

Factorize each of the following algebraic expressions:

 $16(2l - 3m)^2 - 12(3m - 2l)$

Answer

 $16 (2I - 3m^2) + 12 (2I - 3m)$ [Therefore, 3m - 2I = -(2I - 3m)]

= 4 (2I - 3m) [4 (2I - 3m) + 3] [Therefore, taking 4 (2I - 3m) common]

= 4 (3I - 2m) (8I - 12m + 3)

7. Question

Factorize each of the following algebraic expressions:

 $3a\left(x-2y\right)-b\left(x-2y\right)$

Answer

(3a - b) (x - 2y) [Therefore, taking (x - 2y) as common]

8. Question

Factorize each of the following algebraic expressions:

 $a^{2}\left(x+y\right)+b^{2}\left(x+y\right)+c^{2}\left(x+y\right)$

Answer

 $(a^{2} + b^{2} + c^{2}) (x + y)$ [Therefore, taking (x + y) common in each term]

9. Question

Factorize each of the following algebraic expressions:

 $(x-y)^2 + (x-y)$

Answer

(x - y) (x - y + 1) [Therefore, taking (x - y) common)

10. Question

Factorize each of the following algebraic expressions:

 $6(a+2b)-4(aa+2b)^2$

Answer

[6 - 4 (a + 2b)] (a + 2b) [Therefore, taking (a + 2b) common]

= (6 - 4a - 8b) (a + 2b)

11. Question

Factorize each of the following algebraic expressions:

 $a(x-y)+2b(y-x)+c(x-y)^{2}$

Answer

a $(x - y) - 2b (x - y) + c (x - y)^2$ [Therefore, (y - x) = - (x - y)]

= (x - y) [a - 2b + c (x - y)]

= (x - y) (a - 2b + cx - cy)

12. Question

Factorize each of the following algebraic expressions:

 $-4\left(x-2y\right)^{2}+8\left(x-2y\right)$

Answer

- (x - 2y) [4 (x - 2y - 8] [Therefore, taking - (x - 2y) as common]

= -(x - 2y)(4x - 8y - 8)

13. Question

Factorize each of the following algebraic expressions:

 $x^{3}\left(a-2b\right)+x^{2}\left(a-2b\right)$

Answer

 x^{2} (a – 2b) (x + 1) [Therefore, taking x^{2} (a – 2b) as common]

14. Question

Factorize each of the following algebraic expressions:

 $\bigl(2x-3y\bigr)\bigl(a+b\bigr)+\bigl(3x-2y\bigr)\bigl(a+b\bigr)$

Answer

(a + b) (2x - 3y + 3x - 2y) [Therefore, taking (a + b) common]

= (a + b) (5x - 5y)

15. Question

Factorize each of the following algebraic expressions:

 $4 \bigl(x+y\bigr)\bigl(3a-b\bigr) + 6 \bigl(x+y\bigr)\bigl(2b-3a\bigr)$

Answer

2(x + y) [2(3a - b) + 3(2b - 3a)] [Therefore, by taking 2(x + y) common]

= 2 (x + y) (4b - 3a)

Exercise 7.4

1. Question

Factorize each of the following expressions:

 ${\tt qr-pr+qs-ps}$

Answer

q (r + s) - p (r + s)

= (q - p) (r + s)

2. Question

Factorize each of the following expressions:

 $p^2q-pr^2-pq+r^2$

Answer

 $p(pq - r^2) - 1(pq - r^2)$

 $= (p - 1) (pq - r^2)$

3. Question

Factorize each of the following expressions:

 $\mathbf{1} + \mathbf{x} + \mathbf{x}\mathbf{y} + \mathbf{x}^2\mathbf{y}$

Answer

1(1 + xy) + x(1 + xy)

= (1 + x) (1 + xy)

4. Question

Factorize each of the following expressions:

ax + ay - bx - by

Answer

a(x + y) - b(x + y)

= (a - b) (x + y)

5. Question

Factorize each of the following expressions:

 $xa^2 + xb^2 - ya^2 - yb^2$

 $x (a^2 + b^2) - y (a^2 + b^2)$ = (x - y) (a² + b²)

6. Question

Factorize each of the following expressions:

 $x^2 + xy + xzyz$

Answer

x (x + 3) + y (x + 3)

= (x + y) (x + 3)

7. Question

Factorize each of the following expressions:

2ax + bx + 2ay + by

Answer

2a(x + y) + b(x + y)

= (2a + b) (x + y)

8. Question

Factorize each of the following expressions:

 $ax - by - ay + y^2$

Answer

a (b - y) - y (b - y)

= (a - y) (b - y)

9. Question

Factorize each of the following expressions:

 $\mathtt{a} xy + \mathtt{b} \mathtt{c} xy - \mathtt{a} \mathtt{z} - \mathtt{b} \mathtt{c} \mathtt{z}$

Answer

a (xy - z) + bc (xy - z)

= (a + bc) (xy - z)

10. Question

Factorize each of the following expressions:

 $lm^2-mn^2-lm+n^2$

Answer

2m (m - 1) - n² (m - 1)

 $= (2m - n^2) (m - 1)$

11. Question

Factorize each of the following expressions:

 $x^{3} - y^{2} + x - x^{2}y^{2} \\$

 $y^{2} (1 + x^{2}) + x (1 + x^{2})$ = (x - y²) (1 + x²)

12. Question

Factorize each of the following expressions:

6xy+6-9y-4x

Answer

2x (3y - 2) - 3 (3y - 2)

= (2x - 3) (3y - 2)

13. Question

Factorize each of the following expressions:

 $x^2-2ax-2ab+bx\\$

Answer

x(x + b) - 2a(x + b)

= (x - 2a) (x + b)

14. Question

Factorize each of the following expressions:

 $x^{3}-2x^{2}y+3xy^{2}-6y^{3} \\$

Answer

$$x (x^2 + 3y^2) - 2y (x^2 + 3y^2)$$

 $=(x - 2y) (x^2 + 3y^2)$

15. Question

Factorize each of the following expressions:

 $abx^2+\left(ay-b\right)x-y$

Answer

abx² – ayx – bx – y

= bx (ax - 1) + y (ax - 1)

= (bx + y) (ax - 1)

16. Question

Factorize each of the following expressions:

 $\left(ax+by\right)^{2}+\left(bx-ay\right)^{2}$

Answer

 $a^{2}x^{2} + b^{2}y^{2} + 2axby + b^{2}x^{2} + a^{2}y^{2} - 2axby$ = $a^{2} (x^{2} + y^{2}) + b^{2} (x^{2} + y^{2})$ = $(a^{2} + b^{2}) (x^{2} + y^{2})$

17. Question

Factorize each of the following expressions:

 $16\left(a-b\right)^{3}-24\left(a-b\right)^{2}$

Answer

8 (a – b)² [2 (a – b) – 3]

 $= 8 (a - b)^2 [2a - 2b - 3]$

18. Question

Factorize each of the following expressions:

 $ab\left(x^2+1\right)+x\left(a^2+b^2\right)$

Answer

 $abx^2 + ab + xa^2 + xb^2$

= ax (bx + a) + b (bx + a)

= (ax + b) (bx + a)

19. Question

Factorize each of the following expressions:

 $a^2x^2 + \left(ax^2 + 1\right)x + a$

Answer

 $a^{2}x^{2} + ax^{3} + x + a$ = x (ax² + 1) + a (ax² + 1) = (x + a) (ax² + 1)

20. Question

Factorize each of the following expressions:

a(a-2b-c)+2bc

Answer

a² – 2ab – ac + 2bc = a (a – c) – 2b (a – c)

21. Question

= (a - 2b) (a - c)

Factorize each of the following expressions:

 $a\big(a+b-c\big)-bc$

Answer

 $a^2 + ab + ac - bc$

= a (a - c) + b (a - c)

= (a + b) (a - c)

22. Question

Factorize each of the following expressions:

 $x^{2} - 11xy - x + 11y$

x (x - 1) - 11y (x - 1)

= (x - 11y) (x - 1)

23. Question

Factorize each of the following expressions:

ab - a - b + 1

Answer

a (b - 1) - 1 (b - 1)

= (a - 1) (b - 1)

24. Question

Factorize each of the following expressions:

 $x^2 + y - xy - x$

Answer

x (x - 1) - y (x - 1)

= (x - y) (x - 1)

Exercise 7.5

1. Question

Factorize each of the following expressions:

 $16x^2 - 25y^2$

Answer

 $(4x)^2 - (5y)^2$

= (4x + 5y) (4x - 5y)

2. Question

Factorize each of the following expressions:

 $27x^2 - 12y^2$

Answer

Consider $27x^2 - 12y^2$, Taking 3 common we get, 3 [(3x)² - (2y)²]As we know $a^2 - b^2 = (a-b)(a+b)$

= 3 (3x + 2y) (3x - 2y)

3. Question

Factorize each of the following expressions:

144a² - 289b²

Answer

 $(12a)^2 - (17b)^2$

= (12a + 17b) (12a - 17b)

4. Question

Factorize each of the following expressions:

12m² – 27

Answer

3 (4m² - 9) = 3 [(2m)² - 3²] = 3 (2m + 3) (2m - 3)

5. Question

Factorize each of the following expressions:

 $125x^2 - 45y^2$

Answer

5 (25x² - 9y²)

 $= 5 [(5x)^2 - (3y)^2]$

= 5 (5x + 3y) (5x - 3y)

6. Question

Factorize each of the following expressions:

 $144a^2 - 169b^2$

Answer

(12a)² - (13b)²

= (12a + 13b) (12a - 13b)

7. Question

Factorize each of the following expressions:

 $\left(2a-b\right)^2$ – 16c²

Answer

(2a – b)² – (4c)²

= (2a - b + 4c) (2a - b - 4c)

8. Question

Factorize each of the following expressions:

 $\left(x+2y\right)^2-4\left(2x-y\right)^2$

Answer

 $(x + 2y)^{2} - [2 (2x - y)]^{2}$ = [(x + 2y) + 2 (2x - y)] [x + 2y - 2 (2x - y)] = (x + 4x + 2y - 2y) (x - 4x + 2y + 2y) = (5x) (4y - 3x)

9. Question

Factorize each of the following expressions:

3a⁵ – 48a³

Answer

 $3a^3 (a^2 - 16)$ = $3a^3 (a^2 - 4^2)$ = $3a^3 (a + 4) (a - 5)$

10. Question

Factorize each of the following expressions:

 $a^4 - 16b^4$

Answer

 $(a^2)^2 - (4b^2)^2$

 $= (a^2 + 4b^2) (a^2 - 4b^2)$

11. Question

Factorize each of the following expressions:

x⁸ - 1

Answer

 $(x^4)^2 - (1)^2$

 $= (x^4 + 1) (x^4 - 1)$

12. Question

Factorize each of the following expressions:

 $64 - (a + 1)^2$

Answer

 $8^2 - (a + 1)^2$

= [8 + (a + 1)] [8 - (a + 1)]

= (a + 9) (7 - a)

13. Question

Factorize each of the following expressions:

 $36l^2 - (m + n)^2$

Answer

(6l)² - (m + n)²

= (6l + m + n) (6l - m - n)

14. Question

Factorize each of the following expressions:

 $25x^4y^4 - 1$

Answer

 $(5x^2y^2)^2 - (1)^2$ = $(5x^2y^2 - 1)(5x^2y^2 + 1)$

15. Question

Factorize each of the following expressions:

$$a^4 - \frac{1}{b^4}$$

 $(a^{2})^{2} - (\frac{1}{b*b})^{2}$ $= (a^{2} + \frac{1}{b*b}) (a^{2} - \frac{1}{b*b})$

16. Question

Factorize each of the following expressions:

 $x^{3} - 144x$

Answer

x [x² - (12)²]

= x (x + 12) (x - 12)

17. Question

Factorize each of the following expressions:

 $\left(x-4y\right)^2-625$

Answer

 $(x - 4y)^2 - (25)^2$

= (x - 4y + 25) (x - 4y - 25)

18. Question

Factorize each of the following expressions:

 $9\left(a-b\right)^2-100\left(x-y\right)^2$

Answer

 $[3 (a - b)]^{2} - [10 (x - y)]^{2}$ = [3 (a - b) + 10 (x + y)] [3 (a - b) - 10 (x - y)] = [3a - 3b + 10x - 10y] [3a - 3b - 10x + 10y]

19. Question

Factorize each of the following expressions:

 $(3+2a)^2 - 25a^2$

Answer

 $(3 + 2a)^2 - (5a)^2$ = (3 + 2a + 5a) (3 + 2a - 5a) = (7a + 3) (3 - 3a)

20. Question

Factorize each of the following expressions:

 $\left(x+y\right)^2-\left(a-b\right)^2$

Answer

[(x + y) + (a - b)][(x + y) - (a - b)]

21. Question

Factorize each of the following expressions:

$$\frac{1}{16} x^2 y^2 - \frac{4}{49} y^2 z^2$$

Answer

 $\begin{aligned} &(\frac{1}{4}xy)^2 - (\frac{2}{7}yz)^2 \\ &= (\frac{xy}{4} + \frac{2}{7}yz)(\frac{xy}{4} - \frac{2}{7}yz) \\ &= y^2(\frac{x}{4} + \frac{2}{7}z)(\frac{x}{4} - \frac{2}{7}z) \end{aligned}$

22. Question

Factorize each of the following expressions:

 $75a^{3}b^{2} - 108ab^{4}$

Answer

3ab² (25a² – 36b²)

$$= 3ab^2 [(5a)^2 - (6b)^2]$$

 $= 3ab^2 (5a + 6b) (5a - 6b)$

23. Question

Factorize each of the following expressions:

 $x^{5} - 16x^{3}$

Answer

 $x^{3} (x^{2} - 16)$ = $x^{3} (x^{2} - 4^{2})$ = $x^{3} (x + 4) (x - 4)$

24. Question

Factorize each of the following expressions:

 $\frac{50}{x^2} - \frac{2x^2}{81}$

Answer

$$2 \left(\frac{25}{x*x}, \frac{x*x}{81}\right)$$
$$= 2 \left[\left(\frac{5}{x}\right)^2 - \left(\frac{x}{9}\right)^2\right]$$
$$= 2 \left(\frac{5}{x} + \frac{x}{9}\right) \left(\frac{5}{x} - \frac{x}{9}\right)$$

25. Question

Factorize each of the following expressions:

256x⁵ - 81x

Answer

 $x (256x^4 - 81)$ = x [(16x²)² - 9²] = x (16x + 9) (16x - 9)

26. Question

Factorize each of the following expressions:

 $a^4-\left(2b+c\right)^4$

Answer

 $(a^{2})^{2} - [(2b + c)^{2}]^{2}$ = [a^{2} + (2b + c)^{2}] [a^{2} - (2b + c)^{2}] = [a^{2} + (2b + c)^{2}] [a + 2b + c] [a - 2b - c]

27. Question

Factorize each of the following expressions:

 $\left(3x+4y\right)^4-x^4$

Answer

 $[(3x + 4y)^{2}]^{2} - (x^{2})^{2}$ = [(3x + 4y)^{2} + x^{2}] [(3x + 4y)^{2} - x^{2}] = [(3x + 4y)^{2} + x^{2}] [3x + 4y + x] [3x + 4y - x]

28. Question

Factorize each of the following expressions:

 $p^2q^2 - p^4q^4$

Answer

 $(pq)^2 - (p^2q^2)^2$ = $(pq + p^2q^2) (pq - p^2q^2)$ = $(pq)^2 (1 + pq) (1 - pq)$

29. Question

Factorize each of the following expressions:

 $3x^3y-24xy^3\\$

Answer

3xy (x² - 81y²)

 $= 3xy [x^2 - (9y)^2]$

= (3xy) (x + 9y) (x - 9y)

30. Question

Factorize each of the following expressions:

 $a^4b^4 - 16c^4$

Answer

$$(a^{2}b^{2})^{2} - (4c^{2})^{2}$$

= $(a^{2}b^{2} + 4c^{2}) (a^{2}b^{2} - 4c^{2})$
= $(a^{2}b^{2} + 4c^{2}) (ab + 2c) (ab - 2c)$

31. Question

Factorize each of the following expressions:

x⁴ - 625

Answer

 $(x^{2})^{2} - (25)^{2}$ = (x² + 25) (x² - 25) = (x² + 25) (x + 5) (x - 5)

32. Question

Factorize each of the following expressions:

 $x^{4} - 1$

Answer

 $(x^{2})^{2} - (1)^{2}$ = (x² + 1) (x² - 1) = (x² + 1) (x + 1) (x - 1)

33. Question

Factorize each of the following expressions:

 $49\left(a-b\right)^2-25\left(a+b\right)^2$

Answer

 $[7 (a - b)]^{2} - [5 (a + b)]^{2}$ = [7 (a - b) + 5 (a + b)] [7 (a - b) - 5 (a + b)] = (7a - 7b + 5a + 5b) (7a - 7b - 5a - 5b) = (12a - 2b) (2a - 12b) = 2 (6a - b) 2 (a - 6b) = 4 (6a - b) (a - 6b)

34. Question

Factorize each of the following expressions:

 $x-y-x^2+y^2\\$

Answer

 $x - y - (x^{2} - y^{2})$ = x - y - (x + y) (x - y) = (x - y) (1 - x - y)

35. Question

Factorize each of the following expressions:

 $16(2x-1)^2 - 25y^2$

Answer

 $[4 (2x - 1)]^2 - (5y)^2$ = (8x - 4 + 5y) (8x - 4 - 5y)

36. Question

Factorize each of the following expressions:

 $4(xy + 1)^2 - 9(x - 1)^2$

Answer

 $[2x (xy + 1)]^{2} - [3 (x - 1)]^{2}$ = (2xy + 2 + 3x - 3) (2xy + 2 - 3x + 3) = (2xy + 3x - 1) (2xy - 3x + 5)

37. Question

Factorize each of the following expressions:

 $(2x + 1)^2 - 9x^4$

Answer

 $(2x + 1)^{2} - (3x^{2})^{2}$ = (2x + 1 + 3x²) (2x + 1 - 3x²) = (3x² + 2x + 1) (-3x² + 2x + 1)

38. Question

Factorize each of the following expressions:

 $x^4 - \left(2y - 3z\right)^2$

Answer

 $(x^2)^2 - (2y - 3z)^2$ = $(x^2 + 2y - 3z) (x^2 - 2y + 3z)$

39. Question

Factorize each of the following expressions:

 $a^2-b^2+a-b\\$

Answer

(a + b) (a - b) + (a - b)

= (a - b) (a + b + 1)

40. Question

Factorize each of the following expressions:

 $16a^4 - b^4$

Answer

 $(4a^2)^2 - (b^2)^2$ = $(4a^2 + b^2) (4a^2 - b^2)$ $= (4a^2 + b^2) (2a + b) (2a - b)$

41. Question

Factorize each of the following expressions:

 $a^{4}-16\left(b-c\right)^{4}$

Answer

 $(a^{2})^{2} - [4 (b - c)^{2}]$ = $[a^{2} + 4 (b - c)^{2}] [a^{2} - 4 (b - c)^{2}]$ = $[a^{2} + 4 (b - c)^{2}] [(a + 2b - 2c) (a - 2b + 2c)]$

42. Question

Factorize each of the following expressions:

2a⁴ – 32a

Answer

2a $(a^4 - 16)$ = 2a $[(a)^2 - (4)^2]$ = 2a $(a^2 + 4) (a^2 - 4)$

 $= 2a (a^2 + 4) (a + 2) (a - 2)$

43. Question

Factorize each of the following expressions:

 $a^4b^4 - 81c^4$

Answer

$$(a^{2}b^{2})^{2} - (9c^{2})^{2}$$

= $(a^{2}b^{2} + 9c^{2}) (a^{2}b^{2} - 9c^{2})$
= $(a^{2}b^{2} + 9c^{2}) (ab + 3c) (ab - 3c)$

44. Question

Factorize each of the following expressions:

 $xy^9 - yx^9$

Answer

 $xy (y^{8} - x^{8})$ $= xy [(y^{4})^{2} - (x^{4})^{2}]$ $= xy (y^{4} + x^{4}) (y^{4} - x^{4})$ $= xy (y^{4} + x^{4}) (y^{2} + x^{2}) (y^{2} - x^{2})$ $= xy (y^{4} + x^{4}) (y^{2} + x^{2}) (y + x) (y - x)$

45. Question

Factorize each of the following expressions:

 $x (x^2 - 1)$ = x (x + 1) (x - 1)

46. Question

Factorize each of the following expressions:

 $18^2 x^2 - 32$

Answer

 $2 [(3ax)^2 - (4)^2]$ = 2 (3ax + 4) (3ax - 4)

Exercise 7.6

1. Question

Factorize each of the following algebraic expressions:

 $4x^2 + 12xy + 9y^2$

Answer

$$4x^{2} + 12xy + 9y^{2}$$

= $(2x)^{2} + (3y)^{2} + 2 (2x) (3y)$
= $(2x + 3y)^{2}$

2. Question

Factorize each of the following algebraic expressions:

 $9a^2 - 24ab + 16b^2$

Answer

Consider $9a^2 - 24ab + 16b^2$, As we know $(x - y)^2 = x^2 + y^2 - 2xy$ Here x = 3a, y = 4bSo,

 $(3a)^2 + (4b)^2 - 2 (3a) (4a)$

 $= (3a - 4b)^2$

3. Question

Factorize each of the following algebraic expressions:

 $p^2q^2 - 6pqr + 9r^2$

Answer

 $(pq)^2 + (3r)^2 - 2 (pq) (3r)$

 $= (pq - 3r)^2$

4. Question

Factorize each of the following algebraic expressions:

 $36a^2 + 36a + 9$

Answer

9 $(4a^2 + 4a + 1)$ = 9 $[(2a)^2 + 2(2a) + 1^1]$ $= 9 (2a + 1)^2$

5. Question

Factorize each of the following algebraic expressions:

 $a^2 + 2ab + b^2 - 16$

Answer

 $(a + b)^2 - 4^2$

= (a + b + 4) (a + b - 4)

6. Question

Factorize each of the following algebraic expressions:

 $9z^2 - x^2 + 4xy - 4y^2$

Answer

 $(3z)^{2} - [x^{2} - 2(x)(2y) + (2y)^{2}]$ = $(3z)^{2} - (x - 2y)^{2}$ = [3z + (x - 2y)][3z - (x - 2y)]

7. Question

Factorize each of the following algebraic expressions:

 $9a^4\,-24a^2b^2\,+16b^4\,-256$

Answer

(3a²)² - 2 (4a²) (3b²) + (4b²)² - (16)²= (3a² - 4b²)² - (16)² = (3a² - 4b² + 16) (3a² - 4b² - 16)

8. Question

Factorize each of the following algebraic expressions:

 ${\bf 16} - {\bf a}^6 + {\bf 4a}^3 {\bf b}^3 - {\bf 4b}^6$

Answer

 $\begin{aligned} &4^2 - [(a^3)^2 - 2 \ (a^3) \ (2b^3) + (2b^3)^2] \\ &= 4^2 - (a^3 - 2b^3)^2 \\ &= [4 + (a^3 - 2b^3)] \ [4 - (a^3 - 2b^3)] \end{aligned}$

9. Question

Factorize each of the following algebraic expressions:

 $a^2-2ab+b^2-c^2\\$

Answer

 $(a + b)^2 - c^2$

= (a + b + c) (a + b - c)

10. Question

Factorize each of the following algebraic expressions:

 $x^2 \,+\, 2x + 1 - 9y^2$

Answer

 $(x + 1)^2 - (3y)^2$ = (x + 3y + 1) (x - 3y + 1)

11. Question

Factorize each of the following algebraic expressions:

 $a^2+4ab+3b^2\\$

Answer

 $a^{2} + ab + 3ab + 3b^{2}$ = a (a + b) + 3b (a + b) = (a + 3b) (a + b)

12. Question

Factorize each of the following algebraic expressions:

 $96 - 4x - x^2$

Answer

 $-x^{2} - 4x + 96$ = $-x^{2} - 12x + 8x + 96$ = -x (x + 12) + 8 (x + 12)= (x + 12) (-x + 8)

13. Question

Factorize each of the following algebraic expressions:

 $a^4 + 3a^2 + 4 \\$

Answer

(a²)² + (a²)² + 2 (2a²) + 4 - a²= (a² + 2)² + (-a²) = (a² + 2 + a) (a² + 2 - a)

14. Question

Factorize each of the following algebraic expressions:

 $4x^4 + 1 \\$

Answer

 $(2x^2)^2 + 1 + 4x^2 - 4x^2$

$$= (2x^2 + 1)^2 - 4x^2$$

 $= (2x^2 + 2x + 1) (2x^2 - 2x + 1)$

15. Question

Factorize each of the following algebraic expressions:

 $4x^4 + y^4$

$$(2x^{2})^{2} + (y^{2})^{2} + 4x^{2}y^{2} - 4x^{2}y^{2}$$
$$= (2x^{2} + y^{2})^{2} - 4x^{2}y^{2}$$
$$= (2x^{2} + y^{2} + 2xy) (2x^{2} + y^{2} - 2xy)$$

16. Question

Factorize each of the following algebraic expressions:

 $(x+2)^2 - 6(x+2) + 9$

Answer

 $x^{2} + 4 + 4x - 6x - 12 + 9$ = $x^{2} + 1 - 2x$ = $(x - 1)^{2}$

17. Question

Factorize each of the following algebraic expressions:

 $25 - p^2 - q^2 - 2pq$

Answer

 $25 - (p^{2} + q^{2} + 2pq)$ = (5)² - (p + q)² = (5 + p + q) (5 - p - q) = - (p + q - 5) (p + q + 5)

18. Question

Factorize each of the following algebraic expressions:

 $x^{2} + 9y^{2} - 6xy - 25a^{2}$

Answer

 $(x - 3y)^2 - (5a)^2$ = (x - 3y + 5a) (x - 3y - 5a)

19. Question

Factorize each of the following algebraic expressions:

 $49 - a^2 + 8ab - 16b^2$

Answer

49 - (a² - 8ab + 16b²)= 49 - (a - 4b)² We know:a² - b² = (a + b)(a-b) = (7 + a - 4b) (7 - a + 4b) = - (a - 4b + 7) (a - 4b - 7)

20. Question

Factorize each of the following algebraic expressions:

 $(a - 4b)^2 - (5c)^2$ = (a - 4b + 5c) (a - 4b - 5c)

21. Question

Factorize each of the following algebraic expressions:

 $x^2 - y^2 + 6y - 9$

Answer

 $x^{2} + 6y - (y^{2} - 6y + 9)$ = $x^{2} - (y - 3)^{2}$ = (x + y - 3) (x - y + 3)

22. Question

Factorize each of the following algebraic expressions:

 $25x^2 - 10x + 1 - 36y^2 \\$

Answer

 $(5x)^2 - 2(5x) + 1 - (6y)^2$

$$= (5x - 1)^2 - (6y)^2$$

= (5x - 1 + 6y) (5x - 1 - 6y)

23. Question

Factorize each of the following algebraic expressions:

 $a^2 - b^2 + 2bc - c^2$

Answer

 $a^{2} - (b^{2} - 2bc + c^{2})$ = $a^{2} - (b - c)^{2}$ = (a + b - c) (a - b + c)

24. Question

Factorize each of the following algebraic expressions:

 $a^4 + 2b + b^2 - c^2$

Answer

 $(a + b)^2 - c^2$

= (a + b + c) (a + b - c)

25. Question

Factorize each of the following algebraic expressions:

 $49 - x^2 - y^2 + 2xy$

Answer

 $49 - (x^2 + y^2 - 2xy)$

= 7² - (x - y)²= [7 + (x - y)] [7 - x + y]

26. Question

Factorize each of the following algebraic expressions:

 $a^2+4b^2-4ab-4c^2\\$

Answer

 $a^{2} - 2 (a) (2b) + (2b)^{2} - (2c)^{2}$ = $(a - 2b)^{2} - (2c)^{2}$ = (a - 2b + 2c) (a - 2b - 2c)

27. Question

Factorize each of the following algebraic expressions:

 $x^2 - y^2 - 4xz + 4z^2 \\$

Answer

 $x^{2} - 2 (x) (2z) + (2z)^{2} - y^{2}As (a-b)^{2} = a^{2} + b^{2} - 2ab$ = $(x - 2z)^{2} - y^{2}$ As $a^{2} - b^{2} = (a+b)(a-b)$ = (x - 2z + y) (x - 2z - y)

Exercise 7.7

1. Question

Factorize each of the following algebraic expressions:

 $x^{2} + 12x - 45$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = 12, pq = -45

Clearly,

15 - 3 = 12, 15 (-3) = -45

Therefore, split 12x as 15x - 3x

Therefore,

 $x^2 + 12x - 45 = x^2 + 15x - 3x - 45$

= x (x + 15) - 3 (x + 15)

= (x - 3) (x + 15)

2. Question

Factorize each of the following algebraic expressions:

 $40 + 3x - x^2$

Answer

 $-(x^2 - 3x - 40)$

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = - 3, pq = - 40

Clearly,

5 - 8 = -3, 5 (-8) = -40

Therefore, split -3x as 5x - 8x

Therefore,

 $x^{2} - 3x - 40 = x^{2} + 5x - 8x - 40$ = x (x + 5) - 8 (x + 5)

= (x - 8) (x + 5)

3. Question

Factorize each of the following algebraic expressions:

 $a^2 + 3a - 88$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = 3, pq = -88

Therefore, split 3a as 11a - 8a

Therefore,

 $a^{2} + 3a - 88 = a^{2} + 11a - 8a - 88$ = a (a + 11) - 8 (a + 11) = (x - 8) (a + 11)

4. Question

Factorize each of the following algebraic expressions:

a² – 14a – 51

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = -14, pq = -51

Clearly,

3 - 17 = -14, 3(-17) = -51

Therefore, split 14a as 3a - 17a

Therefore,

 $a^2 - 14a - 51 = a^2 + 3a - 17a - 51$

= a (a + 3) - 17 (a + 3)

= (a - 17) (a + 3)

5. Question

Factorize each of the following algebraic expressions:

 $x^{2} + 14x + 45$

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = 14, pq = 45

Clearly,

5 + 9 = 14, 5 (9) = 45

Therefore, split 14x as 5x + 9x

Therefore,

 $x^2 + 14x + 45 = x^2 + 5x + 9x + 45$

= x (x + 5) - 9 (x + 5)

= (x + 9) (x + 5)

6. Question

Factorize each of the following algebraic expressions:

 $x^2 - 22x + 120$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = -22, pq = 120

Clearly,

-12 - 10 = -22, (-12) (-10) = -120

Therefore, split -22x as -12x - 10x

Therefore,

 $x^2 - 22x + 120 = x^2 - 12x - 10x + 120$

= x (x - 12) - 10 (x - 12)

= (x - 10) (x - 12)

7. Question

Factorize each of the following algebraic expressions:

 $x^{2} - 11x - 42$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = -11, pq = -42

Clearly,

3 - 14 = -11, 3 (-14) = -42

Therefore, split (-11x) as 3x - 14x

Therefore,

$$x^2 - 11x - 42 = x^2 + 3x - 14x - 42$$

$$= x (x + 3) - 14 (x + 3)$$

= (x - 14) (x + 3)

8. Question

Factorize each of the following algebraic expressions:

 $a^{2} + 2a - 3$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = 2, pq = -3

Clearly,

p = 3, q = -1

Therefore, split (2a) as (3a - a)

Therefore,

 $a^{2} + 2a - 3 = a^{2} + 3a - a - 3$ = a (a + 3) - 1 (a + 3)

= (a - 1) (a + 3)

9. Question

Factorize each of the following algebraic expressions:

 $a^2 + 14a + 48$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = 14, pq = 48

Clearly,

8 + 6 = 14, 8 (6) = 48

Therefore, split (14a) as 8a + 6a

Therefore,

$$a^{2} + 14a + 48 = a^{2} + 8a + 6a + 48$$

= a (a + 8) + 6 (a + 8)
= (a + 6) (a + 8)

10. Question

Factorize each of the following algebraic expressions:

 $x^{2} - 4x - 21$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

```
p + q = -4, pq = -21

Clearly,

3 - 7 = -4, 3 (-7) = -21

Therefore, split (-4x) as 3x - 7x

Therefore,

x^{2} + 4x - 21 = x^{2} + 3x - 7x - 21

= x (x + 3) - 7 (x + 3)

= (x - 7) (x + 3)
```

11. Question

Factorize each of the following algebraic expressions:

 $y^{2} + 5y - 36$

Answer

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = 5, pq = -36

Clearly,

Therefore, split 5y as 9y - 4y

Therefore,

$$y^{2} + 5y - 36 = y^{2} + 9y - 4y - 36$$
$$= y (y + 9) - 4 (y + 9)$$
$$= (y - 4) (y + 9)$$

12. Question

Factorize each of the following algebraic expressions:

 $\left(a^2-5a\right)^2-36$

Answer

It can be written as $(a^2 - 5a)^2 - 6^2$ Using $a^2 - b^2 = (a + b) (a - b)$ $(a^2 - 5a)^2 - 6^2 = (a^2 - 5a + 6) (a^2 - 5a - 6)$ To factorize $(a^2 - 5a + 6)$, we need to find p and q where, p + q = -5, pq = 6 Clearly, -2 - 3 = -5, (-2) (-3) = 6 Therefore, split -5a as a - 6a Therefore, $a^2 - 5a - 6 = a^2 - a - 6a + 6$ = (a - 6) (a - 1)Therefore, $(a^2 - 5a)^2 - 3b = (a^2 - 5a + b) (a^2 - 5a - 6)$ = (a - 1) (a - 2) (a - 3) (a - 6)**13. Question**

Factorize each of the following algebraic expressions:

 $\left(a+7\right)\left(a-10\right)+16$

Answer

a² - 3a - 54

In order to factorize the given expression, we find to find two numbers p and q such that:

p + q = -3, pq = -54 Clearly, 6 - 9 = -3, 6 (-9) = -54Therefore, split - 3a as 6a - 9aTherefore, $a^2 - 3a - 54 = a^2 + 6a - 9a - 54$ = (a - 9) (a + 6) Therefore, (a + 7) (a - 10) + 16 = (a - 9) (a + 6)

Exercise 7.8

1. Question

Resolve each of the following quadratic trinomials into factors:

 $2x^2 + 5x + 3$

Answer

Here, coefficient of $x^2 = 2$, coefficient of x = 5 and constant term = 3

We shall now split up the coefficient of x i.e., 5 into two parts whose sum is 5 and product is 2 * 3 = 6

So, we write middle term 5x as 2x + 3x

Thus, we have

 $2x^{2} + 5x + 3 = 2x^{2} + 2x + 3x + 3$ = 2x (x + 1) + 3 (x + 1)= (2x + 3) (x + 1)

2. Question

Resolve each of the following quadratic trinomials into factors:

 $2x^2 - 3x - 2$

Answer

Here, coefficient of $x^2 = 2$, coefficient of x = -3 and constant term = -2

We shall now split up the coefficient of x i.e., -3 into two parts whose sum is -3 and product is 2 * -2 = -4

So, we write middle term -3x as -4x + x

Thus, we have

 $2x^2 - 3x - 2 = 2x^2 - 4x + x - 2$

$$= 2x (x - 2) + 1 (x - 2)$$

= (x - 2) (2x + 1)

3. Question

Resolve each of the following quadratic trinomials into factors:

 $3x^2 + 10x + 3$

Answer

Here, coefficient of $x^2 = 3$, coefficient of x = 10 and constant term = 3

We shall now split up the coefficient of x i.e., 10 into two parts whose sum is 10 and product is 3 * 3 = 9

So, we write middle term 10x as 9x + x

Thus, we have

 $3x^2 + 10x + 3 = 3x^2 + 9x + x + 3$

= 3x (x + 3) + 1 (x + 3)

= (3x + 1)(x + 3)

4. Question

Resolve each of the following quadratic trinomials into factors:

 $7x - 6 - 2x^2$

Answer

 $7x - 6 - 2x^2 = -2x^2 + 7x - 6$

Here, coefficient of $x^2 = -2$, coefficient of x = 7 and constant term = -6

We shall now split up the coefficient of x i.e., 7 into two parts whose sum is 7 and product is -2 * -6 = 12Clearly,

4 + 3 = 7 and,

So, we write middle term 7x as 4x + 3x

Thus, we have

 $-2x^{2} + 7x - 6 = -2x^{2} + 4x + 3x - 6$ = -2x (x - 2) + 3 (x - 2)= (x - 2) (3 - 2x)

5. Question

Resolve each of the following quadratic trinomials into factors:

 $7x^2 - 19x - 6$

Answer

Here, coefficient of $x^2 = 7$, coefficient of x = -19 and constant term = -6

We shall now split up the coefficient of x i.e., -19 into two parts whose sum is -19 and product is 7 * -6 = -42Clearly,

2 - 21 = -19 and, 2 * (-21) = - 42 So, we write middle term - 19x as 2x - 21x Thus, we have $7x^2 - 19x - 6 = 7x^2 + 2x - 21x - 6$ = x (7x + 2) - 3 (7x + 2) = (7x + 2) (x - 3)

6. Question

Resolve each of the following quadratic trinomials into factors:

 $28 - 31x - 5x^2$

Answer

 $28 - 31x - 5x^2 = -5x^2 - 31x + 28$

Here, coefficient of $x^2 = -5$, coefficient of x = -31 and constant term = 28

We shall now split up the coefficient of x i.e., - 31 into two parts whose sum is - 31 and product is -5 (28) = - 140

Clearly,

4 - 35 = - 31 and,

4 (-35) = - 140

So, we write middle term - 31x as 4x - 35x

Thus, we have

 $-5x^2 - 31x + 28 = -5x^2 + 4x - 35x + 28$

= -x (5x - 4) - 7 (5x - 4)

= -(x + 7)(5x - 4)

7. Question

Resolve each of the following quadratic trinomials into factors:

 $3 + 23y - 8y^2$

Answer

 $3 + 23y - 8y^2 = -8y^2 + 23y + 3$

Here, coefficient of $y^2 = -8$, coefficient of y = 23 and constant term = 3

We shall now split up the coefficient of x i.e., 23 into two parts whose sum is 23 and product is -8(3) = -24

Clearly,

24 - 1 = 23 and,

24 (-1) = - 24

So, we write middle term 23y as 24y - y

Thus, we have

 $-8y^2 + 23y + 3 = -8^2 + 24y - y + 3$

$$= -8y(y - 3) - 1(y - 3)$$

= -(8y + 1)(y - 3)

8. Question

Resolve each of the following quadratic trinomials into factors:

 $11x^2 - 54x + 63$

Answer

 $11x^2 - 54x + 63$

Here, coefficient of $x^2 = 11$, coefficient of x = -54 and constant term = 63

We shall now split up the coefficient of x i.e., -54 into two parts whose sum is - 54 and product is 11 * 63 =

693

Clearly,

-33x - 21x = -54x and,

(-33) * (-21) = 693

So, we write middle term - 54x as - 33x - 21x

Thus, we have

 $11x^2 - 54x + 63 = 11x^2 - 33x - 21x - 6$

= 11x (x - 3) - 21 (x - 3)

= (11x - 21) (x - 3)

9. Question

Resolve each of the following quadratic trinomials into factors:

 $7x - 6x^2 + 20$

Answer

 $7x - 6x^2 + 20 = -6x^2 + 7x + 20$

Here, coefficient of $x^2 = -6$, coefficient of x = 7 and constant term = 20

We shall now split up the coefficient of x i.e., 7 into two parts whose sum is 7 and product is -6 * 20 = -120

Clearly,

15 - 8 = 7 and,

15 (-8) = - 120

So, we write middle term 7x as 15x - 8x

Thus, we have

 $-6x^{2} + 7x + 20 = -6x^{2} + 15x - 8x + 20$ = -3x (2x - 5) - 4 (2x - 5)

= -(3x + 4)(2x - 5)

10. Question

Resolve each of the following quadratic trinomials into factors:

 $3x^2 + 22x + 35$

Answer

 $3x^2 + 22x + 35$

Here, coefficient of $x^2 = 3$, coefficient of x = 22 and constant term = 35

We shall now split up the coefficient of x i.e., 22 into two parts whose sum is 22 and product is 3 * 35 = 105

So, we write middle term 22x as 15x + 7x

Thus, we have

 $3x^2 + 22x + 35 = 3x^2 + 15x + 7x + 35$

$$= 3x (x + 5) + 7 (x + 5)$$

= (3x + 7) (x + 5)

11. Question

Resolve each of the following quadratic trinomials into factors:

 $12x^2 - 17xy + 6y^2$

Answer

 $12x^2 - 17xy + 6y^2$

Here, coefficient of $x^2 = 12$, coefficient of x = -17 and constant term = $6y^2$

We shall now split up the coefficient of middle term i.e., -17y into two parts whose sum is -17y and product is $12 * 6y^2 = 72y^2$

Clearly,

-9y - 8y = -17y and,

$$(-9y)(-8y) = 72y^2$$

So, we replace middle term -17xy = -9xy - 8xy

Thus, we have

 $12x^2 - 17xy + 6y^2 = 12x^2 - 9xy - 8xy + 6y^2$

= 3x (4x - 3y) - 2y (4x - 3y)

= (3x - 2y) (4x - 3y)

12. Question

Resolve each of the following quadratic trinomials into factors:

 $6x^2 - 5xy - 6y^2$

Answer

Here, coefficient of $x^2 = 6$, coefficient of x = -5y and constant term = $-6y^2$

We shall now split up the coefficient of middle term i.e., -5y into two parts whose sum is -5y and product is 6 $(-6y^2) = -36y^2$

Clearly,

4y - 9y = -5y and,

 $(4y)(-9y) = -36y^2$

So, we replace middle term -5xy = 4xy - 9xy

Thus, we have

 $6x^2 - 5xy - 6y^2 = 6x^2 + 4xy - 9xy - 6y^2$

$$= (2x - 3y) (3x + 2y)$$

13. Question

Resolve each of the following quadratic trinomials into factors:

 $6x^2 - 13xy + 2y^2$

Answer

Here, coefficient of $x^2 = 6$, coefficient of x = -13y and constant term $= 2y^2$

We shall now split up the coefficient of middle term i.e., -13y into two parts whose sum is -13y and product is $6 (2y^2) = 12y^2$

Clearly,

-12y - y = -13y and,

 $(-12y)(-y) = 12y^2$

So, we replace middle term -13xy = -12xy - xy

Thus, we have

 $6x^2 - 13xy + 2y^2 = 6x^2 - 12xy - xy - 2y^2$

= (6x - y) (x - 2y)

14. Question

Resolve each of the following quadratic trinomials into factors:

 $14x^2 + 11xy - 15y^2$

Answer

Here, coefficient of $x^2 = 14$, coefficient of x = 11y and constant term = $-15y^2$

We shall now split up the coefficient of middle term i.e., 11y into two parts whose sum is 11y and product is $14 (-15y^2) = -210y^2$

Clearly,

21y - 10y = 11y and,

 $(21y)(-10y) = -210y^2$

So, we replace middle term 11xy = 21xy - 10xy

Thus, we have

 $14x^2 + 11xy - 15y^2 = 14x^2 + 21xy - 10xy - 15y^2$

= 2x (7x - 5y) + 3y (7x - 5y)

= (2x + 3y) (7x - 5y)

15. Question

Resolve each of the following quadratic trinomials into factors:

 $6a^2+17ab-3b^2\\$

Answer

Here, coefficient of $a^2 = 6$, coefficient of a = 17b and constant term = $-3b^2$

We shall now split up the coefficient of middle term i.e., 17b into two parts whose sum is 17b and product is $6 (-3b^2) = -18b^2$

Clearly,

18b - b = 17b and,

 $6(-3b^2) = -36y^2$

So, we replace middle term 17ab = 18ab - ab

Thus, we have

 $6a^2 + 17ab - 3b^2 = 6a^2 + 18ab - ab - 3b^2$

= 6a (a + 3b) - b (a + 3b)

= (6a - b) (a + 3b)

16. Question

Resolve each of the following quadratic trinomials into factors:

 $36a^2 + 12abc - 15b^2c^2$

Answer

Here, coefficient of $a^2 = 36$, coefficient of a = 12bc and constant term = $-15b^2c^2$

We shall now split up the coefficient of middle term i.e., 12bc into two parts whose sum is 12bc and product is $36 (-15b^2c^2) = -500b^2c^2$

So, we replace middle term 12abc = 30abc - 18abc

Thus, we have

```
36a^2 - 12abc - 15b^2c^2 = 36a^2 + 30abc - 18abc - 15b^2c^2
```

= (6a + 5bc) (6a - 3bc)

17. Question

Resolve each of the following quadratic trinomials into factors:

 $15x^2 - 16xyz - 15y^2z^2$

Answer

Here, coefficient of $x^2 = 15$, coefficient of x = -16yz and constant term $= -15y^2z^2$

We shall now split up the coefficient of middle term i.e., -16yz into two parts whose sum is -16yz and product is 15 $(-15y^2z^2) = -225y^2z^2$

Clearly,

-25yz + 9yz = -16yz and,

 $(-25yz)(9yz) = -225y^2z^2$

So, we replace middle term -16xyz = -25yz - 9yz

Thus, we have

 $15x^{2} - 16xyz - 15y^{2}z^{2} = 15x^{2} - 25yz + 9yz - 15y^{2}z^{2}$ = 5x (3x - 5yz) + 3yz (3x - 5yz)

= (5x + 3yz) (3x - 5yz)

18. Question

Resolve each of the following quadratic trinomials into factors:

 $(x-2y)^2 - 5(x-2y) + 6$

Answer

 $x^{2} + 4y^{2} - 4xy - 5x + 10y + 6$

Here, coefficient of $(x - 2y)^2 = 1$, coefficient of (x - 2y) = -5 and constant = 6

We shall now split up the coefficient of middle term i.e., -5 into two parts whose sum is -5 and product is 6(1) = 6

Clearly,

-2 - 3 = -5 and,

So, we replace-5 (x - 3y) = -2 (x - 2y) - 3 (x - 2y)

Thus, we have

$$(x - 2y)^2 - 5(x - 2y) + 6 = (x - 2y)^2 - 2(x - 2y) - 3(x - 2y) + 6$$

= (x - 2y - 2) (x - 2y - 3)

19. Question

Resolve each of the following quadratic trinomials into factors:

 $\left(2a-b\right)^2+2\left(2a-b\right)-8$

Answer

Here, coefficient of $(2a - b)^2 = 1$, coefficient of (2a - b) = 2 and constant term = -8

We shall now split up the coefficient of middle term i.e., 2 into two parts whose sum is 2 and product is -8 (1) = -8

Clearly,

4 - 2 = 2 and, 4 (-2) = -8So, we replace 2 (2a - b) = 4 (2a - b) - 2 (2a - b) Thus, we have $(2a - b)^{2} + 2 (2a - b) - 8 = (2a - b)^{2} + 4 (2a - b) - 2 (2a - b) - 8$ = (2a - b) (2a - b + 4) - 2 (2a - b + 4) = (2a - b - 2) (2a - b + 4)

Exercise 7.9

1. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $p^2 + 6p + 8$

Answer

 $p^2 + 6p + 8$

Here, coefficient of p^2 is unity so we add and subtract square of half of coefficient of p

Therefore,

 $p^2 + 6p + 8 = p^2 + 6p + 3^2 - 3^2 + 8$ (Adding and subtracting 3^2)

= $(p + 3)^2 - 1^2$ (By completing the square)

= (p + 3 - 1) (p + 3 + 1)

= (p + 2) (p + 4)

2. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $q^2 - 10q + 21$

Answer

 q^2 – 10q + 21 Coefficient of q^2 is 1 so we add and subtract square of half of coefficient of q Therefore,

 $q^2 - 10q + 21 = q^2 - 10q + 5^2 - 5^2 + 21$ (Adding and subtracting 5²)

= $(q - 5)^2 - 2^2$ (By completing the square) = (q - 5 - 2) (q - 5 + 2)

= (q - 7) (q - 3)

3. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $4y^2 + 12y + 5$

Answer

 $4y^2 + 12y + 5$

We have $4y^2 + 12y + 5 = 4(y^2 + 3y + \frac{5}{4})$ [Therefore, coefficient of $y^2 = 1$]

 $= 4 \left[y^{2} + 3y + (\frac{3}{2})^{2} - (\frac{3}{2})^{2} + \frac{5}{4} \right]$ $= 4 \left[(y + \frac{3}{2})^{2} - 1^{2} \right] \text{ (Completing the square)}$

$$= 4 (y + \frac{3}{2} + 1) (y + \frac{3}{2} - 1)$$
$$= (2y + 5) (2y + 1)$$

4. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $p^2 + 6p - 16$

Answer

 $p^{2} + 6p - 16$ Coefficient of $p^{2} = 1$ Therefore, we have $p^{2} + 6p + 3^{2} - 3^{2} - 16$ (Adding and subtracting 3^{2}) $= (p + 3)^{2} - 5^{2}$ (Completing the square) = (p + 3 + 5) (p + 3 - 5)= (p + 8) (p - 2)

5. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $x^{2} + 12x + 20$

Answer

 $x^{2} + 12x + 20$ Coefficient of $x^{2} = 1$ Therefore, we have $x^{2} + 12x + 6^{2} - 6^{2} + 20$ (Adding and subtracting 6^{2}) $= (x + 6)^{2} - 4^{2}$ (Completing the square) = (x + 6 + 4) (x + 6 - 4)= (x + 10) (x + 2)

$$= 4 \left[x - \frac{3}{2} + 1 \right] \left[x - \frac{3}{2} - 1 \right]$$

= (2x - 1)(2x - 5)

6. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $a^2 - 14a - 51$

Answer

a² - 14a - 51

Coefficient of $a^2 = 1$

Therefore, we have

 a^2 - 14a - 51 = a^2 - 14a + 7² - 7² - 51 (Therefore, adding and subtracting 7²)

= $(a - 7)^2 - 10^2$ (Completing the square)

= (a - 7 + 10) (9 - 7 - 10)

= (a + 3) (a - 17)

7. Question

Factorize each of the following quadratic polynomials by using the method of completing;

a² + 2a - 3

Answer

 $a^2 + 2a - 3$ Coefficient of $a^2 = 1$

Therefore, we have

 $a^{2} + 2a - 3 = a^{2} + 2a + 1^{2} - 1^{2} - 3$ (Adding and subtracting 1²)

= $(a + 1)^2 - 2^2$ (Completing the square)

= (a + 1 + 2) (a + 1 - 2)

= (a + 3) (a - 1)

8. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $4x^2 - 12x + 5$

Answer

 $4x^2 - 12x + 5$

We have,

 $4x^2 - 12x + 5 = 4(x^2 - 3x + \frac{5}{4})$

= 4 $[x^2 - 3x + (\frac{3}{2})^2 - (\frac{3}{2})^2 + \frac{5}{4}]$ [Therefore, adding and subtracting $(\frac{3}{2})^2$]

= 4 [$(x - \frac{3}{2})^2 - 1^2$] (Therefore, completing the square)

9. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $y^2 - 7y + 12$

Answer

 $y^2 - 7y + 12$

Coefficient of $y^2 = 1$

Therefore, we have

$$y^2 - 7y + 12 = y^2 - 7y + (\frac{7}{2})^2 - (\frac{7}{2})^2 + 12$$
 [By adding and subtracting $(\frac{7}{2})^2$]

= $(y - \frac{7}{2})^2 - (\frac{1}{2})^2$ (Completing the square) = $(y - \frac{7}{2}, \frac{1}{2})(y - \frac{7}{2} + \frac{1}{2})$ = (y - 4)(y - 3)

10. Question

Factorize each of the following quadratic polynomials by using the method of completing;

 $z^2 - 4z - 12$

Answer

z² - 4z - 12

Coefficient of $z^2 = 1$

Therefore, we have

 $z^2 - 4z - 12 = z^2 - 4z + 2^2 - 2^2 - 12$ [By adding and subtracting 2^2] = $(z - 2)^2 - 4^2$ (Completing the square)

= (z - 2 + 4) (z - 2 - 4)

= (z + 2) (z - 6)