

		Composition an	d resolution of forces and	condition of equilibrium of
		Ba	esic Level	
1.	The resultant of tw between the forces		first force is doubled, the re	sultant is also doubled. The angle
	(a) $\pi/3$	(b) $2\pi/3$	(c) $\pi/6$	[MNR 1985; UPSEAT 2000 (d) $5\pi/6$
2.				ed, \vec{Q} remaining unaltered, the new
	(a) Along \vec{P}	(b) Along \vec{Q}	(c) At 60° to \vec{Q}	[MNR 1995] (d) At right angle to \vec{Q}
3.	-	two forces 2 <i>P</i> and $\sqrt{2}P$ is $\sqrt{10}F$, then the angle between the	em will be
	(a) π	(b) $\pi/2$	(c) $\pi/3$	(d) $\pi/4$
4.	The maximum resuthe resultant is	ultant of two forces is P and th		the two forces are at right angles,
				[Roorkee 1990]
	(a) $P + Q$	(b) $P-Q$	(c) $\frac{1}{2}\sqrt{P^2+Q^2}$	(d) $\sqrt{\frac{P^2+Q^2}{2}}$
5.	-	act at a point. If the square of the angle between the forces is	the magnitude of their resul	tant is three times the product of
	(a) 30°	(b) 45°	(c) 90°	(d) 60°
5.		into components P and Q equa	-	
	(a) $P = 2Q$	(b) $2P = Q$	(c) $P = Q$	(d) None of these
7.	If the square of the the forces is	e resultant of two equal forces	is equal to $(2-\sqrt{3})$ times their	r product, then the angle between
	(a) 60°	(b) 150 [°]	(c) 120°	(d) 30°
3.	The resultant of tw	vo equal forces is equal to eithe	er of these forces. The angle b	between them is
	(a) $\pi/4$	(b) $\pi/3$	(c) $\pi/2$	(d) $2\pi/3$
).	When two equal for angle 2β , then	orces are inclined at an angle	2α , their resultant is twice	e as great as when they act at an
				[UPSEAT 1999]
	(a) $\cos \alpha = 2 \sin \beta$	(b) $\cos \alpha = 2 \cos \beta$	(c) $\cos \beta = 2 \cos \alpha$	(d) $\sin\beta = 2\cos\alpha$
l 0.	Two forces of 13 N between the forces		an angle θ and are equal to θ	a resultant force of 14N, the angle
	(a) 30°	(b) 60 °	(c) 45°	(d) 90°
1.	If two forces $P + Q$	and $P-Q$ make an angle 2α v	vith each other and their res	with the subscript $ heta$ with the
	bisector of the ang	le between the two forces, the	$\frac{P}{Q}$ is equal to	

10	2 Statics			
	(a) $\frac{\tan\theta}{\tan\alpha}$	(b) $\frac{\tan \alpha}{\tan \theta}$	(c) $\frac{\sin\theta}{\sin\alpha}$	(d) $\frac{\sin \alpha}{\sin \theta}$
2.	A force <i>F</i> is resolve that of <i>F</i> , then the	_	Q. If P be at right angles to	F and has the same magnitude a
	(a) $\frac{F}{2}$	(b) $\frac{F}{\sqrt{2}}$	(c) 2 <i>F</i>	(d) $\sqrt{2}F$
3.	taken in order, The	ree forces 1N, 2N and 3N actin e magnitude of their resultant is		the sides of an equilateral triang
	(a) $\frac{\sqrt{3}}{2}N$	(b) 3 <i>N</i>	(c) $\sqrt{3}N$	(d) $\frac{3}{2}N$
•	-	les 5, 10, 15 and 20 <i>Newton</i> act nagnitude of their resultant is	on a particle in the direction	ons of North, South, East and We
	(a) $15\sqrt{2}N$	(b) 10 <i>N</i>	(c) $25\sqrt{2}N$	(d) $5\sqrt{2}N$
•	Forces of magnitud	des $P-Q$, P and $P+Q$ act at a j	point parallel to the sides o	of an equilateral triangle taken
	order. The resultar	nt of these forces, is		
	(a) $\sqrt{3}P$	(b) $\sqrt{3}Q$	(c) $3\sqrt{3}P$	(d) 3P
•	angles to one anoth (a) 48, 14	her, their resultant would have (b) 42, 8	a magnitude of 50 <i>Newton</i> . (c) 40, 6	34 Newton; if they acted at rigThe magnitude of the forces are(d) 36, 2
•	Three forces of ma is 60° , the value of		a point are in equilibrium.	If the angle between the first ty [Roorkee 199
	(a) $30\sqrt{7}$	(b) $30\sqrt{3}$	(c) $20\sqrt{6}$	(d) $25\sqrt{2}$
	1995]	ant is $(2m-1)\sqrt{P^2+Q^2}$; then $\tan m+1$		[UPSEAT 2000; SCI
	(a) $\frac{1}{m}$	(b) $\frac{m+1}{m-1}$	(c) $\frac{m-1}{m+1}$	(d) $\sqrt{1+m^2}$
•	If forces of magnitute of the magnitude of the magnitude of the the magnitude of the the magnitude of the		arallel to the sides <i>BC</i> , <i>CA</i> ar	nd <i>AB</i> respectively of a $\triangle ABC$, th
	(a) $\sqrt{P^2 + Q^2 + R^2}$		(b) $\sqrt{P^2 + Q^2 + R^2 - 2}$	$PQ\cos C - 2QR\cos A - 2PR\cos B$
	(c) $P+Q+R$		(d) None of these	
).	2 Newton perpendi	cular to the line of action of the		35° . If their resultant is a force
		$\sqrt{2} - 1$ (D) $P = (\sqrt{2} - 1), Q = (\sqrt{2} + 1)$	(U) I = (V J + I), Q = (V	$S = I$ (a) $P = (\sqrt{S} - I), Q = (\sqrt{S} + I)$
•		ant of <i>P</i> and <i>Q</i> and if $\frac{P}{3} = \frac{Q}{7} = \frac{R}{5}$		
•	Let <i>R</i> be the result		, then the angle between P	
	Let <i>R</i> be the resulta (a) $\cos^{-1}\left(\frac{11}{14}\right)$	ant of <i>P</i> and <i>Q</i> and if $\frac{P}{3} = \frac{Q}{7} = \frac{R}{5}$ (b) $\cos^{-1}\left(\frac{-11}{14}\right)$ to forces <i>P</i> and <i>Q</i> is at right angle	, then the angle between <i>P</i> (c) $\frac{2\pi}{3}$	and <i>R</i> is (d) $\frac{5\pi}{6}$ (d) $\frac{2\pi}{6}$ (d) Q' acting at the same angle α is
	Let <i>R</i> be the resultation (a) $\cos^{-1}\left(\frac{11}{14}\right)$ The resultant of two right angles to <i>Q'</i> .	ant of <i>P</i> and <i>Q</i> and if $\frac{P}{3} = \frac{Q}{7} = \frac{R}{5}$ (b) $\cos^{-1}\left(\frac{-11}{14}\right)$ to forces <i>P</i> and <i>Q</i> is at right angle. Then,	, then the angle between <i>P</i> (c) $\frac{2\pi}{3}$	and <i>R</i> is (d) $\frac{5\pi}{6}$ (d) $\frac{2\pi}{6}$ (d) $\frac{2\pi}{6}$
 2.	Let <i>R</i> be the resulta (a) $\cos^{-1}\left(\frac{11}{14}\right)$ The resultant of two right angles to <i>Q'</i> . T (a) <i>P</i> , <i>Q</i> , <i>Q'</i> are in <i>Q</i>	ant of <i>P</i> and <i>Q</i> and if $\frac{P}{3} = \frac{Q}{7} = \frac{R}{5}$ (b) $\cos^{-1}\left(\frac{-11}{14}\right)$ to forces <i>P</i> and <i>Q</i> is at right angle. Then,	, then the angle between P (c) $\frac{2\pi}{3}$ es to P, the resultant of P and (c) P,Q',Q are in GP	and <i>R</i> is (d) $\frac{5\pi}{6}$ (d) A <i>Q</i> ' acting at the same angle α is (d) None of these
•	Let <i>R</i> be the resulta (a) $\cos^{-1}\left(\frac{11}{14}\right)$ The resultant of two right angles to <i>Q'</i> . T (a) <i>P</i> , <i>Q</i> , <i>Q'</i> are in <i>Q</i>	ant of P and Q and if $\frac{P}{3} = \frac{Q}{7} = \frac{R}{5}$ (b) $\cos^{-1}\left(\frac{-11}{14}\right)$ to forces P and Q is at right angle Then, GP (b) Q, P, Q' are in GP	, then the angle between P (c) $\frac{2\pi}{3}$ es to P, the resultant of P and (c) P,Q',Q are in GP	and <i>R</i> is (d) $\frac{5\pi}{6}$ (d) A <i>Q</i> ' acting at the same angle α is (d) None of these

24. The sum of the two forces is 18 and their resultant perpendicular to the lesser of the forces is 12, then the lesser force is

000	51			[MNR 1987, 1989; UPSEA
000	(a) 5	(b) 3	(c) 7	(d) 15
5.	The magnitudes of tw		ection of the resultant is at	right angles to that of the smalle
	(a) 5:3	(b) 5:4	(c) 4:5	(d) 4:3
6.	If the resultant of two	forces <i>P</i> and <i>Q</i> is $\sqrt{3}Q$ and n	nakes an angle 30 $^{ m o}$ with the $ m o$	lirection of P, then
	(a) $P = 2Q'$	(b) $Q = 2P$	(c) $P = 3Q$	(d) None of these
87.	resolved part with the	e direction of the force is		inclination of the direction of th
8.		(b) 60° he forces acting along <i>AB</i> , <i>B</i> the angle made by the result	-	(d) 150° C. Suppose <i>R</i> is the magnitude of
		(b) $R = 2P\sqrt{3}, \theta = \pi/2$		(d) $R = 2P\sqrt{3}, \theta = \pi/6$
9.		pt at rest under the action of		
	-	(b) $\uparrow 7N, \uparrow 4N, \downarrow 12N$	_	(d) $\uparrow 4N \uparrow 2\sqrt{5}N \downarrow 6N$
_				
;0 .	-	-	-	along the sides AB, AC and C
	respectively. If the re-	sultant meets AC at D_1 , then	the ratio <i>DC</i> : <i>AD</i> will be eq	ual to
	(a) 1:1	(b) 1:2	(c) 1: 3	(d) 1: 4
1.	•	ces P , Q , R act along the lin	es OA, OB and OC and are	in equilibrium. If O is incentre
	ΔABC , then			[UPSEAT 199
	(a) $P = Q$	<i>R</i>	(b) $\frac{P}{QA} = \frac{Q}{QB} = \frac{R}{QC}$	
	(a) $\frac{P}{\cos A/2} = \frac{Q}{\cos B/2}$	$=\frac{1}{\cos C/2}$	(b) $\frac{\partial A}{\partial A} = \frac{\partial B}{\partial B} = \frac{\partial C}{\partial C}$	
	(c) $\frac{P}{\sin A/2} = \frac{Q}{\sin B/2} =$	$=\frac{R}{\sin C/2}$	(d) None of these	
2.	If the forces of 12, 5 a	nd 13 units weight balance a	t a point, two of them are in	clined at
	(a) 30°	(b) 45 [°]	(c) 90°	(d) 60°
3.	Forces of 1, 2 units ac	t along the lines $x = 0$ and $y = 0$	= 0 . The equation of the line	e of action of the resultant is
				[MNR 1981; UPSEAT 200
	(a) $y - 2x = 0$	(b) $2y - x = 0$	(c) $y + x = 0$	(d) $y - x = 0$
4.	If N is resolved in two	components such that first	is twice of other, the compo	nents are
	(a) $5N, 5\sqrt{2}N$	(b) $10N, 10\sqrt{2}N$	(c) $\frac{N}{\sqrt{5}}, \frac{2N}{\sqrt{5}}$	(d) None of these
5.	<i>O</i> is the circumcentre <i>Q</i> : <i>R</i> is	of $\triangle ABC$. If the forces <i>P</i> , <i>Q</i>	and <i>R</i> acting along <i>OA</i> , <i>OB</i> , a	and OC are in equilibrium then I
	(a) $\sin A : \sin B : \sin C$	(b) $\cos A : \cos B : \cos C$	(c) $a\cos A:b\cos B:c\cos a$	$a \sec C (d) a \sec A : b \sec B : c \sec C$
6.	between P and R, ther		equilibrium. If the angle be	tween <i>P</i> and <i>Q</i> is double the ang
	(a) $\frac{Q^2 + R^2}{R}$	(b) $\frac{Q^2 - R^2}{Q}$	(c) $\frac{Q^2 - R^2}{R}$	(d) $\frac{Q^2 + R^2}{Q}$
7.	-	l being attached to a point in	-	string fastened to a point on he string is equal to the radius
	(a) $\frac{2W}{\sqrt{3}}$	(b) $\frac{2W}{3}$	(c) $\frac{W}{2}$	(d) None of these
	(a) —		(c) =	

38. Three forces *P*, *Q*, *R* are acting at a point in a plane. The angle between *P*, *Q* and *Q*, *R* are 150° and 120° respectively, then for equilibrium; forces *P*, *Q*, *R* are in the ratio

	(a) 1:2:3	(b) 1 : 2: $3^{1/2}$	(c) 3:2:1	(d) $(3)^{1/2}:2:1$
9.		–		e° and 150° respectively denote the
	-	nd B, B and C and C and A, th		on of
	(a) $\sqrt{3}:1:1$	(b) $1:1:\sqrt{3}$	(c) $1:\sqrt{3}:1$	(d) 1:2.5:2.5
).				<i>Q</i> is reversed, R is again doubled.
	the ratio $P^2:Q^2:R$	$R^2 = 2:3:x$, then x is equal t	0 []	MNR 1993; UPSEAT 2001; AIEEE 2003
	(a) 5	(b) 4	(c) 3	(d) 2
•	•		•	$-\pi/3$, then the magnitude of their
		$\sqrt{3}$ times of the earlier one. T	e	
	(a) $\pi/2$	(b) $2\pi/3$	(c) $\pi/4$	(d) $4\pi/5$
•	then	-		lirection, the resultant becomes <i>R'</i>
	(a) $R'^2 = P^2 + Q^2 + Q^2$	$2PQ\cos\alpha$	(b) $R'^2 = P^2 - Q^2 - Q^2$	$2PQ\cos\alpha$
	(c) $R'^2 + R^2 = 2(P^2)$	$+Q^{2}$)	(d) $R'^2 + R^2 = 2(P^2)$	$-Q^{2}$)
•	Forces proportiona in magnitude and d		g the sides of triangle <i>ABC</i> in	order, their resultants represented
	(a) <i>CA</i>	(b) <i>AC</i>	(c) <i>BC</i>	(d) <i>CB</i>
		Ad	lvance Level	
•		-	ed, Q remaining the same,	the resultant becomes R' . If R is
	perpendicular to R			
	(a) $2P = Q$	(b) $P = Q$	(c) $P = 2Q$	(d) None of these
•	-		-	forces proportional to <i>PA</i> and <i>Pa</i> . The resultant of these forces is
	(a) $2\overrightarrow{PA}$	(b) $2\overrightarrow{PB}$	(c) $2\overrightarrow{PC}$	(d) None of these
•		upon by three forces P, Q and		
	(a) 1:3:5	(b) 3:5:7	(c) 5:7:9	(d) 7:9:11
•				etween the pair of forces 5 and 3 is
	(a) 30°	(b) 60°	(c) 90 [°] \rightarrow	(d) 120°
,	ABCD is a quadril	lateral. Forces represented l	by DA, DB, AC and BC act or	n a particle. The resultant of thes
	forces is \rightarrow	\rightarrow	\rightarrow	→
	(a) \overrightarrow{DC}	(b) 2 <i>DC</i>	(c) <i>CD</i>	(d) 2 <i>CD</i>
•		cting at a point, the maximu heir resultant is 3N. Then the		their resultant is $4N$. If they act a
	(a) $\left(2+\frac{1}{2}\sqrt{3}\right)N$ and	$\left(2-\frac{1}{2}\sqrt{3}\right)N$	(b) $(2+\sqrt{3})N$ and (2)	$(2-\sqrt{3})N$
	(c) $\left(2+\frac{1}{2}\sqrt{2}\right)N$ and	$\left(2, \frac{1}{\sqrt{2}}\right)_{N}$	(d) $(2+\sqrt{2})N$ and ($2 \sqrt{2}$
	$\left(\frac{2}{2}+\frac{1}{2}\sqrt{2}\right)^{N}$ and	$\left(2-\frac{1}{2}v^{2}\right)^{\mu}$	$(u) (2 + \sqrt{2})/\sqrt{a} \pi u$	$\Delta = \mathbf{v} \Delta J \mathbf{v}$
	The resultant of tw	o forces P and Q is equal to γ	$\sqrt{3}Q$ and makes an angle of 30	D^{o} with the direction of <i>P</i> , then $\frac{P}{Q}$ =
	(a) 1 or 2	(b) 3 or 5	(c) 3 or 4	(d) 4 or 5
,	Two men carry a w	veight of 240 Newton betwee	en them by means of two roj	pes fixed to the weight. One rope i
	inclined at 60° to the formula of the second	he vertical and the other at 3	0^{o} . The tensions in the ropes	s are
	(a) 120 <i>N</i> ,120 <i>N</i>	(b) $120 N, 120 \sqrt{3} N$	(c) $120\sqrt{3}N, 120\sqrt{3}N$	(d) None of these
		a particle in equilibrium. Or		

52. Three forces keep a particle in equilibrium. One acts towards west, another acts towards north-east and the third towards south. If the first be 5N, then other two are

				_							
	(a) $5\sqrt{2}N, 5\sqrt{2}N$	(b) $5\sqrt{2}N, 5N$	(c) 5 <i>N</i> ,5 <i>N</i>	(d) None of these							
53.	A particle is attracte	ed to three points A, B and	C by forces equal to $\overrightarrow{PA}, \overrightarrow{PB}$ an	d \overrightarrow{PC} respectively such that their							
	resultant is $\lambda \overrightarrow{PG}$, where G is the centroid of ΔABC . Then $\lambda =$										
	(a) 1	(b) 2	(c) 3	(d) None of these							
54.	Three forces of mag	nitudes 8 Newton, 5N and 4	4N acting at a point are in eq	uilibrium, then the angle betwee							
	the two smaller force	es is									
	(a) $\cos^{-1}\left(\frac{23}{40}\right)$	(b) $\cos^{-1}\left(\frac{-23}{40}\right)$	(c) $\sin^{-1}\left(\frac{23}{40}\right)$	(d) None of these							
55.	-	2N, P N and Q N act at a poi	-	CA and AB respectively. Forces of BE, CA, CF and AB respectively.							
	(a) $P = 2\sqrt{3}N, Q = 6N$	(b) $P = 6N, Q = 2\sqrt{3}N$	(c) $P = \sqrt{3}N, Q = 6N$	(d) $P = 2\sqrt{3}N, Q = 3N$							
56.	The resultant of fore	ces P and Q acting at a point	nt including a certain angle c	α is <i>R</i> , that of the forces 2 <i>P</i> and ry angle is 2 <i>R</i> . Then $P:Q:R =$							
	(a) 1:2:3	-		(d) None of these							
57.	.,			eversed, R is again doubled. The							
,,.	P:Q:R is given by										
	(a) 1:1:1		(c) $\sqrt{2}:\sqrt{3}:\sqrt{2}$								
;8.	of the magnitude of t	the other. The ratio of the la	is at right angles to one of th arger force to the smaller is	em and its magnitude is one thir							
	(a) $3:2\sqrt{2}$	(b) $3\sqrt{3}:2$	(c) 3:2	(d) 4:3							
9.		are, on which forces 2, 3 a sultant correct to one decima		AD and CA respectively. Then the							
_	(a) 1	(b) 2	(c) 16	(d) None of these							
50.		•		h planes, inclined at angles α and at ion θ of the rod to the vertical							
	given by										
	(a) $2 \cot \theta = \cot \beta - \cot \theta$		(b) $\tan \theta = 2 \tan \alpha \tan \beta$	$\alpha / (\tan \alpha - \tan \beta)$							
	(c) $\cot \theta = \sin(\alpha - \beta)/2$	-	(d) All of these	ultant make on angle dwith th							
51.		-	i one another and their res	ultant make an angle θ with the							
	(a) $P \tan \theta = Q \tan \alpha$	between them. Then (b) $P \cot \alpha = Q \cot \theta$	(c) $P \tan \alpha = Q \tan \theta$	(d) None of these							
52.				its ends, their lengths being 9 an							
		gle at which the rod is inclin									
	(a) $\cos\theta = 7/25$	(b) $\sin\theta = 8/9$	(c) $\sin\theta = 19/20$	(d) $\sin\theta = 24/25$							
5 3.			lengths 3 cm, 4 cm and 5 cm, i position the inclination of this	s suspended by a string tied at th side to the vertical is							
	(a) $\sin^{-1}(24/25)$	(b) $\sin^{-1}(12/25)$	(c) $\cos^{-1}(7/25)$	(d) None of these							
4.	Three forces \vec{P}, \vec{Q} and	\vec{R} acting along <i>IA</i> , <i>IB</i> and <i>I</i>	C, where I is the incentre of	a $\Delta\!ABC$, are in equilibrium . The							
	$\vec{P}:\vec{Q}:\vec{R}$ is			-							
	1.0.113			[AIEEE 200							
	(a) $\operatorname{cosec} \frac{A}{2} : \operatorname{cosec} \frac{B}{2} :$	$\operatorname{cosec} \frac{C}{-}$	(b) $\sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{A}{2}$								
	(a) $\cos \frac{1}{2} \cdot \cos \frac{1}{2}$.	2		2							
	(c) $\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$	2	(d) $\cos \frac{A}{2} : \cos \frac{B}{2} : \cos \frac{A}{2}$	<u>_</u>							

then the angle between new resultant force and Q will be

10	6 Statics			
6.	force, reaction of plane	(b) 60° e when applying along any inc e and weight of body are in arit	hmetic series	
97.	A bead of weight W c thread to the highest p	 (b) 6 kilogram weight an slide on a smooth circular point of the wire, and in equili wire on the bead, if the length (b) W,W 	brium the thread is taut. T	he bead is attached by a light Then the tension of the thread
			Parallel For	rces, Moment and Couples
		Basic .	Level	
58. 59.	and <i>AB</i> respectively. Tl (a) Centroid	t at the vertices <i>A</i> , <i>B</i> and <i>C</i> of a ne centre of the force is at the (b) Circum- centre t along the sides <i>BC</i> , <i>CA</i> , <i>AB</i> of a	(c) Incentre	(d) None of these
	centroid of $\triangle ABC$, then (a) $P + Q + R = 0$	(b) $\frac{P}{a} + \frac{Q}{b} + \frac{R}{c} = 0$	(c) $\frac{P}{\cos A} + \frac{Q}{\cos B} + \frac{R}{\cos C}$	= 0 (d) None of these
о.		on the sides <i>BC</i> , <i>CA</i> , <i>AB</i> of the	•00011 •000 <u>0</u> •000 0	
	Δ denotes the area of t	he $\triangle ABC$, then the forces $\overrightarrow{AP}, \overrightarrow{B}$	$\overrightarrow{Q}, \overrightarrow{CR}$ reduce to a couple wh	nose moment is
		(b) $2\frac{n-m}{n+m}$		
1.	then	ces <i>P,Q,R</i> acting along the side		
	(a) $P \sin A + Q \sin B + R \sin B$ (c) $P \sec A + Q \sec B + R \sin B$		(b) $P \cos A + Q \cos B + R \cos Q$ (d) $P \tan A + Q \tan B + R t$	
2.		nlike parallel forces of magnitud		
	(a) Force P	(b) Couple of moment <i>p</i> . <i>P</i>	(c) Force 2P	(d) Force $\frac{P}{2}$
3.	The moment of a syste are G_1, G_2, G_3 then,	m of coplanar forces (not in eq	quilibrium) about three coll	linear points <i>A,B,C</i> in the plan
	(a) $G_1.AB + G_2.BC + G_3.$	AC = 0	(b) $G_1.BC + G_2.CA + G_3.A$	B = 0
	(c) $G_1.CA + G_2.AB + G_3.$	BC = 0	(d) None of these	
4.	weight of the body is a	bout one of its ends which is f cting. In the position of equilibr	rium, the rod is inclined to	the vertical at an angle
5.		 (b) 45° ke parallel forces <i>P</i>, <i>Q</i> passes <i>P</i> and <i>Q</i> respectively, then (b) <i>Q</i>, <i>P</i>, <i>R</i> are in G.P. 	 (c) 60° through a point O. If the r (c) <i>R</i>, <i>P</i>, <i>Q</i> are in G.P. 	(d) None of theseesultant also passes through(d) <i>P</i>, <i>Q</i>, <i>R</i> are in A.P.
6. 7.	Any two coplanar coup (a) Balance each other Two like parallel forc	les of equal moments	(c) Need not be equival body at points <i>A</i> and <i>B</i> i	ent (d) None of thes
	(a) $\frac{1}{2}AB$	(b) $\frac{1}{3}AB$	(c) $\frac{1}{4}AB$	(d) $\frac{3}{4}AB$
8.	2	cces P,Q, R act at the corners	7	+

78. Three like parallel forces *P*,*Q*, *R* act at the corners *A*,*B*,*C* of a $\triangle ABC$. If their resultant passes through the incentre of $\triangle ABC$, then

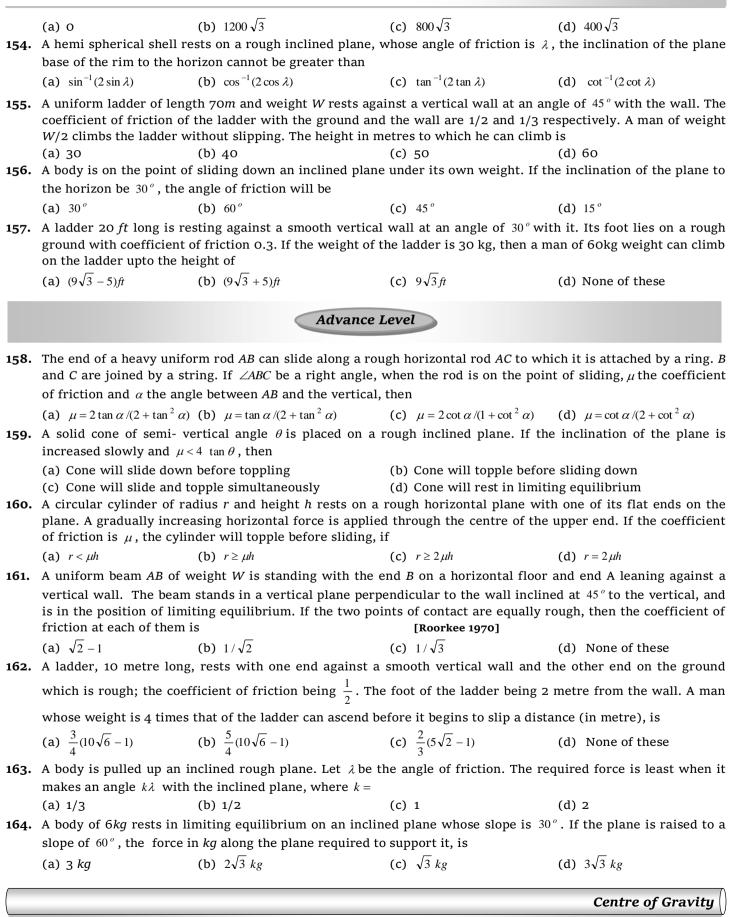
(a)
$$\frac{p}{a} + \frac{Q}{b} + \frac{R}{c} = 0$$
 (b) $P_{a} + Q_{b} + R_{c} = 0$ (c) $\frac{p}{a} = \frac{Q}{b} = \frac{R}{c}$ (d) $P_{a} = Q_{b} = R_{c}$
79. If the sum of the resolved parts of a system of coplanar forces along two mutually perpendicular direction is zero, then the sum of the moment of the forces about a given point
(a) is zero always (b) is positive always (c) is negative always (d) May have any value
80. Three forces P , Q , R act along the sides BC , CA , AB of triangle ABC , taken in order. If their resultant passes through the incentre of ABC , them
(a) $P + Q = R = 0$ (b) $\frac{P}{a} + \frac{Q}{b} + \frac{R}{c}$ (c) $a^{P} + bQ + cR = 0$ (d) None of these
81. If the resultant of two unlike parallel forces of magnitudes 10 N and 16 N act along a line at a distance of 24 cm
from the line of action of the smaller force, then the distance between the lines of action of the forces is
(a) 12 cm (b) 8 cm (c) 9 m (d) 16 cm
82. If the position of the resultant of two like parallel forces P and Q is unaltered, when the positions of P and Q are
interchanged, then
(a) $P = Q$ (b) $P - 2Q$ (c) $2P - Q$ (d) None of these
83. Three parallel forces PQ , R at at three points AR , C of a rod at distances of $2m$, $8m$ and $6m$ respectively from
one end. If the rod be in equilibrium, then $P:Q:R =$
(a) $1:2:3$ (b) $1:7 \times \overline{P}$ (c) $1\frac{r \times \overline{P}}{|\overline{P}|}$ (d) $\frac{r \times \overline{P}}{|\overline{P}|}$
84. The magnitude of the moment of a force \overline{C} about a point is
(a) $|\overline{R}|$ (b) $|\overline{r} \times \overline{R}|$ (c) $\frac{12N}{|\overline{P}|}$ (d) $\frac{r \times \overline{R}}{|\overline{P}|}$
85. The resultant of two like parallel forces is $12N$. The distance between the force is $18M$. If one of these
86. Force forming a couple are of magnitude (2) $12M$ (d) $4N$
87. The resultant of three equal like parallel forces acting at the writces of a triangle at at its
(a) $16M$ (the parallel forces of $\frac{P}{Q}$ Newton have a resultant to $2 Newton$, then
(a) $P = Q$ (b) $P = 2Q$ (c) $2^{P} = Q$ (d) None of these
90. Two parallel forces of $\frac{P}{$

95.		ke parallel forces of magnitude ce, then the distance between t	the lines of action of the fore	ces is
	(a) 18 <i>cm</i>	(b) 24 <i>cm</i>	(c) 20 <i>cm</i>	(d) None of these
6.	-	of 5N and 15 N, act on a light listance of its point of a applica (b) 20 N,4.5m	-	B respectively 6m apart. The [Roorkee Screning 1 (d) 10N,15m
7.	The point in the lever ab	and 2 <i>gms</i> hang from the ends yout which it will balance is fro	m the weight of 10 <i>gms</i> at a	distance of
	(a) 5 cm	(b) 25 <i>cm</i>	(c) 45 cm	(d) 65 cm →
3.	In a right angle $\triangle ABC$, \triangle	$\Delta A = 90^{\circ}$ and sides <i>a,b,c</i> are resp	pectively 5 cm, 4 cm and 3 c	<i>m</i> . If a force <i>F</i> has moments
	0, 9 and 16 in <i>N</i> -cm. (a) 9	units respectively about vertic (b) 4	ces <i>A</i> , <i>B</i> and <i>C</i> , then magnitu (c) 5	de of \vec{F} is (d) 3
).		ting at a point (2, 3) in cartesi then the moment of the resulta	-	are parallel to the positive x
	(a) 8W	(b) - 3W	(c) 3W	(d) - 8W
0.	changes the point of su	er on his shoulder and holds i pport of the handle at the sho ne pressure on his shoulder is p	ulder and if x is the distand	
	(a) <i>x</i>	(b) x^2	(c) 1/x	(d) $1/x^2$
1.	If the force represented	by $3\hat{j} + 2\hat{k}$ is acting through the	point $5\hat{i} + 4\hat{j} - 3\hat{k}$, then its m	noment about the point (1, 3,
	1) is		-	_
				[UPSEAT 2002]
	(a) $14\hat{i} - 8\hat{j} + 12\hat{k}$	(b) $-14\hat{i}+8\hat{j}-12\hat{k}$	(c) $-\hat{6i} - \hat{j} + 9\hat{k}$	(d) $6\hat{i} + \hat{j} - 9\hat{k}$
2.		2 particles of mass 1 <i>kg</i> attache acceleration of system about co	• •	
	(a) 2 <i>N</i>	(b) 4 <i>N</i>	(c) 1 <i>N</i>	(d) None of these
		Advance	Level	
3.	produced at the point <i>E</i> ,			
	(a) 1:2	(b) 1:3	(c) 1:4	(d) 1:5
4.		ultants of two forces $\frac{P}{Q}$ and	$\frac{Q}{P}(P > Q)$ according as they	are like or unlike such that
	R: R' = 25:7, then $P: Q =$			
5.	_	(b) 3:4 5 <i>P</i> and <i>Q</i> act on a rigid body e point of application of the r		
		(b) $\frac{2P+Q}{2P-Q}AB$	(c) $\frac{P-Q}{P+Q}AB$	(d) $\frac{P-Q}{2P+Q}AB$
)6.	two weights P and Q at	eight, in the form of the arc of its extremities rests with its co al of the radius to the end at wh	onvexity downwards upon a	horizontal plane. If θ be the

(a)
$$\frac{Q \sin \alpha}{P + Q \cos \alpha}$$
 (b) $\frac{P \sin \alpha}{Q + P \cos \alpha}$ (c) $\frac{Q \cos \alpha}{P + Q \sin \alpha}$ (d) $\frac{P \cos \alpha}{Q + P \sin \alpha}$

107. *ABCD* is a rectangle such that AB = CD = a and BC = DA = b. Forces *P*, *P* act along *AD* and *CB*, and forces *Q*,*Q* act along *AB* and *CD*. The perpendicular distance between the resultant of forces *P*, *Q* at *A* and the resultant of forces *P*,*Q* at *C* is

A heavy uniform rod, 15 cm long, is suspended from a fixed point by strings fastened to its ends, their lengths 119. being 9 and 12 cm. If θ be the angle at which the rod is inclined to the vertical, then $\sin \theta =$ (c) $\frac{19}{20}$ (a) $\frac{4}{5}$ (d) $\frac{24}{25}$ (b) $\frac{8}{0}$ **120.** A light string of length *l* is fastened to two points *A* and *B* at the same level at a distance 'a' apart. A ring of weight W can slide on the string, and a horizontal force P is applied to it such that the ring is in equilibrium vertically below *B*. The tension in the string is equal to (c) $\frac{W(l^2 + a^2)}{2t^2}$ (d) $\frac{2W(l^2 + a^2)}{2a^2}$ (a) $\frac{aW}{l}$ (b) *law* **121.** Two forces *P* and *Q* acting parallel to the length and base of an inclined plane respectively would each of them singly support a weight *W*, on the plane , then $\frac{1}{P^2} - \frac{1}{O^2} =$ (a) $1/W^2$ (b) $2/W^2$ (c) $3/W^2$ (d) None of these 122. The resultant of the forces 4, 3, 4 and 3 units acting along the lines AB, BC, CD and DA of a square ABCD of side 'a' respectively is [MNR 1988] (a) A force $5\sqrt{2}$ through the centre of the square (b) A couple of moment 7a (c) A null force (d) None of these **123.** A body of 6.5 kg is suspended by two strings of lengths 5 and 12 metres attached to two points in the same horizontal line whose distance apart is 13 m. The tension of the strings in kg wt. are (a) 3,5 (b) 2.5, 6 (c) 4, 5 (d) 3, 4 124. A body of mass 10 kg is suspended by two strings 7 cm and 24 cm long, their other ends being fastened to the extremities of a rod of length 25 cm. If the rod be so held that the body hangs immediately below its middle point, then the tension of the strings in kg wt. are (a) 7/5, 24/5 (b) 14/5, 48/5 (d) None of these (c) 3/5, 7/5 **125.** A sphere of radius *r* and weight *W* rests against a smooth vertical wall, to which is attached a string of length *l* where one end is fastened to a point on the wall and the other to the surface of the sphere. Then the tension in the string is (b) $\frac{W(l-r)}{l+r}$ (c) $\frac{W(l+r)}{\sqrt{(l^2+2lr)}}$ (a) $\frac{W(l-r)}{\sqrt{(l^2+2lr)}}$ (d) None of these 126. A system of five forces whose directions and non-zero magnitudes can be chosen arbitrarily, will never be in equilibrium if *n* of the forces are concurrent, where (a) n = 2(b) n = 3(c) n = 4(d) n = 5127. A string ABC has its extremities tied to two fixed points A and B in the same horizontal line. If a weight W is knotted at a given point C, then the tension in the portion CA is (where a, b, c and the sides and Δ is the area of triangle *ABC*) (a) $\frac{Wb}{4c\Lambda}(a^2 + b^2 + c^2)$ (b) $\frac{Wb}{4c\Lambda}(b^2 + c^2 - a^2)$ (c) $\frac{Wb}{4c\Lambda}(c^2 + a^2 - b^2)$ (d) $\frac{Wb}{4c\Lambda}(a^2 + b^2 - c^2)$ 128. A uniform rod of weight W and length 2l is resting in a smooth spherical bowl of radius r. The rod is inclined to the horizontal at an angle of (d) $l/\sqrt{(r^2 - l^2)}$ (c) $\tan^{-1}(l/r)$ (a) 0° (b) $\pi/4$ **129.** There are three coplanar forces acting on a rigid body. If these are in equilibrium, then they are (a) Parallel (b) Concurrent (c) Concurrent or parallel (d) All of these 130. There is a system of coplaner forces acting on a rigid body represented in magnitude, direction and sense by the sides of a polygon taken in order, then the system is equivalent to (a) A single non-zero force (b) A zero force


Statics 111 (c) A couple, where moment is equal to the area of polygen (d) A couple, where moment is twice the area of polygen **131.** A weight of 10 N is hanged by two ropes as shown in fig., find tensions T_1 and T_2 . [UPSEAT 2002] 60 (b) $5\sqrt{3}N.5N$ (d) $5\sqrt{3}N 5\sqrt{3}N$ (a) $5N.5\sqrt{3}N$ (c) 5N.5N**132.** Three coplanar forces each equal to *P*, act at a point. The middle one makes an angle of 60° with each one of the remaining two forces. If by applying force Q at that point in a direction opposite to that of the middle force, equilibrium is achieved, then (a) P = Q(c) 2P = Q(d) None of these (b) P = 2Q**133.** A 2*m* long uniform rod ABC is resting against a smooth vertical wall at the end A and on a smooth peg at a point B. If distance of B from the wall is 0.3m, then (a) AB < 0.3m(b) *AB* < 1.0*m* (c) AB > 0.3m(d) AB > 1.0mAdvance Level 134. A uniform rod AB movable about a hinge at A rests with one end in contact with a smooth wall. If α be the inclination of the rod to the horizontal, then reaction at the hinge is (a) $\frac{W}{2}\sqrt{3 + \cos ec^2\alpha}$ (b) $\frac{W}{2}\sqrt{3 + \sin^2\alpha}$ (c) $W\sqrt{3 + \cos ec^2\alpha}$ (b) $\frac{W}{2}\sqrt{3+\sin^2\alpha}$ (a) $\frac{W}{2}\sqrt{3+\cos ec^2\alpha}$ (d) None of these 135. A uniform rod AB, 17m long whose mass in 120kg rests with one end against a smooth vertical wall and the other end on a smooth horizontal floor, this end being tied by a chord 8m long, to a peg at the bottom of the wall, then the tension of the chord is (a) 32 kg wt (b) 16 kg wt (c) 64 kg wt (d) 8 kg wt 136. Forces of magnitudes 3, P, 5, 10 and Q Newton are respectively acting along the sides AB, BC, CD, AD and the diagonal CA of a rectangle ABCD, where AB = 4 m and BC = 3m. If the resultant is a single force along the other diogonal *BD* then *P*,*Q* and the resultant are (a) $4,10\frac{5}{12},12\frac{11}{12}$ (c) $3\frac{1}{2}, 8, 9\frac{1}{2}$ (b) 5, 6, 7 (d) None of these 137. A uniform rod AB of length a hangs with one end against a smooth vertical wall, being supported by a string of length *l*, attached to the other end of the rod and to a point of the rod vertically above *B*. If the rod rests inclined to the wall at an angle θ , then $\cos^2 \theta =$ (b) $(l^2 - a^2)/2a^2$ (c) $(l^2 - a^2)/3a^2$ (a) $(l^2 - a^2)/a^2$ (d) None of these 138. The resultant of two forces sec B and sec C along sides AB, AC of a triangle ABC is a force acting along AD, where D is [MNR 1995] (a) Middle point of BC (b) Foot of perpendicular from A on BC (c) D divides BC in the ratio cos B: cos C (d) D divides BC in the ratio cos C: cos B 139. Three coplanar forces each of weight 10 kilogram are acting at a particle. If their line of actions make same angle, then their resultant force will be (c) $10\sqrt{2}$ (a) Zero (b) $5\sqrt{2}$ (d) 20 Friction **Basic Level**

140. A rough plane is inclined at an angle α to the horizon. A body is just to slide due to its own weight. The angle of friction would be

[BIT Ranchi 1994] (a) $\tan^{-1} \alpha$ (b) α (c) $\tan \alpha$ (d) 2α **141.** A particle is resting on a rough inclined plane with inclination α . The angle of friction is λ , the particle will be at rest if and only if, [UPSEAT 2000; MNR 1991] (a) $\alpha > \lambda$ (b) $\alpha \geq \lambda$ (c) $\alpha \leq \lambda$ (d) $\alpha < \lambda$ **142.** The relation between the coefficient of friction (μ) and the angle of friction (λ) is given by (a) $\mu = \cos \lambda$ (b) $\mu = \sin \lambda$ (c) $\mu = \tan \lambda$ (d) $\mu = \cot \lambda$ 143. A rough inclined plane has its angle of inclination equal to 45 ° and $\mu = 0.5$. The magnitude of the least force in kg wt, parallel to the plane required to move a body of 4kg up the plane is (d) $\frac{1}{\sqrt{2}}$ (a) $3\sqrt{2}$ (b) $2\sqrt{2}$ (c) $\sqrt{2}$ 144. A body of weight W rests on a rough plane, whose coefficient of friction is $\mu(=\tan \lambda)$ which is inclined at an angle α with the horizon. The least force required to pull the body up the plane is (a) $W \sin \lambda$ (b) $W \cos \lambda$ (c) $W \tan \lambda$ (d) $W \cot \lambda$ 145. The minimum force required to move a body of weight W placed on a rough horizontal plane surface is (a) $W \sin \lambda$ (c) $W \tan \lambda$ (b) $W \cos \lambda$ (d) $W \cos \lambda$ 146. A body of weight 4 kg is kept in a plane inclined at an angle of 30° to the horizontal. It is in limiting equilibrium. The coeffiecient of friction is then equal to (d) $\frac{\sqrt{3}}{4}$ (c) $\frac{1}{4\sqrt{3}}$ (a) $\frac{1}{\sqrt{3}}$ (b) $\sqrt{3}$ 147. A cubical block rests on an inclined plane with four edges horizontal. The coefficient of friction is $\frac{1}{\sqrt{2}}$. The block just slides when the angle of inclination of the plane is (a) 0° (b) 30° (c) 60° (d) 45° 148. A weight W can be just supported on a rough inclined plane by a force P either acting along the plane or horizontally. The ratio $\frac{P}{W}$, for the angle of friction ϕ , is (a) $\tan \phi$ (b) $\sec \phi$ (c) $\sin \phi$ (d) None of these 149. A ball *AB* of weight *W* rests like a ladder, with upper end *A* against a smooth vertical wall and the lower end *B* on a rough horizontal plane. If the bar is just on the point of sliding, then the reaction at A is equal to (μ is the coeffcient of friction) (c) Normal reaction at *B* (d) W/μ (a) μW (b) W **150.** A body is in equilibrium on a rough inclined plane of which the coeffcient of friction is $(1/\sqrt{3})$. The angle of inclination of the plane is gradually increased. The body will be on the point of sliding downwards, when the inclinician of the plane reaches [MNR 1995] (a) 15° (c) 45° (d) 60° (b) 30° 151. A body of weight 40 kg rests on a rough horizontal plane, whose coefficient of friction is 0.25. The least force which acting horizontally would move the body is

(a) 10 kg wt(b) 20 kg wt(c) 30 kg wt(d) 40 kg wt**152.** The least force required to pull a body of weight W up an inclined rough plane is
(a) $W \sin(\alpha + \lambda)$ (b) $2W \sin(\alpha - \lambda)$ (c) $W \sin(\alpha - \lambda)$ (d) $2W \sin(\alpha + \lambda)$

153. The foot of a uniform ladder is on a rough horizontal ground and the top rests against a smooth vertical wall. The weight of the ladder is 400 units. A man weighing 800 units stands on the ladder at one quarter of its length from the bottom. If the inclination of the ladder to the horizontal is 30°, the reaction at the wall is

Basic Level

165.	=	es placed at the vertices of a tri	angle is at its	
166.	(a) Incentre In a circular disc of unif	(b) Centroid orm metal sheet of radius 10 <i>cn</i>	(c) Circumcentre n and centre O. two circular	(d) Orthocentre holes of radii 5 <i>cm</i> and 2.5 <i>cm</i>
		G_1 and G_2 of the wholes are on		
	of gravity of the punched			
	(a) $\frac{22}{25}$ cm	(b) $\frac{55}{22}$ cm	(c) $\frac{25}{22}$ cm	(d) None of these
167.	The centre of mass of a will be at a distance	rod of length 'a' cm whose der	nsity varies as the square o	of the distance from one end,
	(a) $\frac{a}{2}$ from this end	(b) $\frac{a}{3}$ from this end	(c) $\frac{2a}{3}$ from this end	(d) $\frac{3a}{4}$ from this end
168.	AB is a straight line of le	ength 150 <i>cm</i> . Two particles of n pectively. The distance of the t	nasses 1kg and 3kg are plac	ed at a distance of 15 <i>cm</i> form
	(a) 40 <i>cm</i>	(b) 50 <i>cm</i>	(c) 67.5 cm	(d) None of these
169.		linder is attached to a hemisph the ratio of the radius and heigl		G of combined solid is at the
	(a) 1:2	(b) $\sqrt{2}:1$	(c) 1: 3	(d) None of these
170.		gle one side is thrice the other gle. The angle that the hypotenu	-	
	(a) $\sin^{-1}(3/5)$	(b) $\sin^{-1}(4/5)$	(c) 60°	(d) None of these
171.		l out of a circular lamina of dia e remainder from the centre of	-	f the square being a radius of
	(a) $\frac{1}{2\pi + 1}$	(b) $\frac{1}{2\pi - 1}$	(c) $\frac{1}{\pi+1}$	(d) $\frac{1}{\pi - 1}$
172.		the surface of a hollow cone lies		
100	(a) $1:2$	(b) 1 : 3 lid cylinder with radius a and	(c) 2:3	(d) 1:1
1/3.	-	e cylinder. The centre of gravit		-
174.	The centre of gravity G	of three particles of equal mas use is equal to 8 units is on the (b) 5/3	s placed at the three vertic	
175.	Weights 2, 3, 4 and 5 lbs	s are suspended from a uniform lever is 11 <i>lbs</i> , then the distanc (b) 63/25	n lever 6 <i>ft</i> long at distance	es of 1, 2, 3 and 4 <i>ft</i> from one
	(, 55) - 5			
		Advance	Level	
176.		ular lamina with centre of graportion is at G' . Then GG' is e		BC is removed, the centre of
	(a) $\frac{1}{3}AG$	(b) $\frac{1}{4}AG$	(c) $\frac{1}{2}AG$	(d) $\frac{1}{6}AG$
177.		nd on opposite side of it, isoscel ectively. The distance of the cer (b) 1cm		

- 178. A straight rod AB of length 1ft balances about a point 5 inches from A when masses of 9 and 6 lbs are suspended from A and B respectively. It balances about a point 3 1/2 inches from B when the mass of 6 lbs is replaced by one of 23 lbs. The distance of C.G. of the rod from the end B is

 (a) 3 1/2 inches
 (b) 5 1/2 inches
 (c) 2 1/2 inches
 (d) None of these

 179. A uniform rod of length 2l and weight W is lying across two pegs on the same level 'a' ft apart. If neither peg can bear a pressure greater than P, then the greatest length of the rod which may be projected beyond either peg is

 (a) 1 a(W+P)/W
 (b) 1 a(W-P)/W
 (c) 1 + a(W-P)/W
 (d) None of these
- **180.** A rod $2\frac{1}{2}ft$ long rests on two pegs 10 inches apart with its centre mid way between them. The greatest masses that can be suspended in succession from the two ends without disturbing equilibrium are 4 and 6 *lbs*. respectively. The weight of the rod is (a) 2 *lbs* (b) 4 *lbs* (c) 3 *lbs* (d) None of these
- **181.** A heavy rod *ACDB*, where AC=a and DB=b rests horizontally upon two smooth pegs *C* and *D*. If a load *P* were applied at *A*, it would just disturb the equilibrium. Similar would do the load *Q* applied to *B*. If CD=c, then the weight of the rod is
 - (a) $\frac{Pa+Qb}{c}$ (b) $\frac{Pa-Qb}{c}$ (c) $\frac{Pa+Qb}{2c}$ (d) None of these

* * *

Assignment (Basic and Advance Level)

Statics

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	d	d	d	d	С	b	d	b	d	b	d	С	d	b	а	а	С	b	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
С	b	b	а	b	а	а	а	а	b	а	C	b	С	С	b	а	d	b	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
b	С	а	b	d	а	b	b	С	а	b	b	С	а	а	b	С	а	С	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a,b	a,d	a,c	b	d	b	b	С	b	b	b	b	b	b	а	b	а	С	d	а
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
С	а	а	b	С	b	d	b	а	d	а	а	b	b	С	b	b	С	d	С
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
а	а	С	C	С	а	b	d	а	C	d	С	С	а	С	b	a,b,c	С	d	С
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
а	b	b	b	С	С	С	а	d	b	b	С	b,c	а	а	а	С	b	а	b
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160

	Indices and Surds 115																		
С	С	а	b	а	а	b	а	а	b	а	а	d	а	С	а	а	b	а	а
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
а	b	с	b	b	С	d	С	b	а	b	а	а	С	С	d	d	b	b	b

181 a