Sample Question Paper - 13 Mathematics-Standard (041) Class- X, Session: 2021-22 TERM II

Time Allowed: 2 hours

General Instructions:

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. All questions are compulsory.
- 3. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 4. Section B comprises of 4questions of 3 marks each. Internal choice has been provided in one question.
- 5. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study-based questions.

Section A

1. Find the sum of the first 25 terms of an A.P. whose n^{th} term is given by $a_n = 2 - 3n$. [2]

OR

Which term of an A.P. 150,147,144,....is its first negative term?

- 2. Solve for x : $rac{x+1}{x-1} + rac{x-2}{x+2} = 4 rac{2x+3}{x-2}; x
 eq 1, -2, 2$
- 3. In the given figure, PQ is a chord of a circle with centre O and PT is a tangent. If $\angle QPT = 60^\circ$, [2] find $\angle PRQ$.

- A sphere of diameter 5 cm is dropped into a cylindrical vessel partly filled with water. The [2] diameter of the base of the vessel is 10 cm. If the sphere is completely submerged, by how much will the level of water rise?
- 5. Find the modal class for the following distribution

Marks	Number of students
Below 10	3
Below 20	12
Below 30	27
Below 40	57

Maximum Marks: 40

[2]

[2]

Below 50	75	
Below 60	80	

6. Find the value of k for which the roots are real and equal of equation:

 $3x^2 - 5x + 2k = 0$

OR

Find the roots of the equation, if they exist, by applying the quadratic formula: $36x^2 - 12ax + (a^2 - b^2) = 0$.

Section B

7. Calculate the missing frequency from the following distribution, it being given that the [3] median of the distribution is 24.

Age in years	0 - 10	10 -20	20 - 30	30 - 40	40 - 50
No. of persons	5	25	?	18	7

- 8. Divide a line segment of length 14 cm internally in the ratio 2: 5. Also, justify your construction.
- 9. Calculate the arithmetic mean of the following frequency distribution, using the stepdeviation method:

Class interval	Frequency
0 - 50	17
50 - 100	35
100 - 150	43
150 - 200	40
200 - 250	21
250 - 300	24

10. A ladder rests against a wall at an angle a to the horizontal. Its foot is pulled away from the **[3]** wall through a distance a, so that it slides a distance b down the wall making an angle β with the horizontal. Show that

 $\frac{a}{b} = \frac{\cos \alpha - \cos \beta}{\sin \beta - \sin \alpha}$

OR

What are the angles of depression from the observing positions O₁ and O₂ of the object at A?

Section C

A conical vessel of radius 6 cm and height 8 cm is completely filled with water. A sphere is [4]
 lowered into the water and its size is such that when it touches the sides, it is just immersed as shown in Figure. What fraction of water over flows?

[2]

[3]

[3]

12. If from an external point B of a circle with centre 'O', two tangents BC, BD are drawn such that [4] \angle DBC = 120°, prove that BC + BD = BO, i.e., BO = 2BC.

OR

AB is a diameter and AC is chord of a circle with centre O such that $\angle BAC = 30^{\circ}$. The tangent at C intersects extended AB at a point D. Prove that BC = BD.

13. A nursery plants a new tree and attaches a guy wire to help support the tree while its roots [4] take hold. An eight-foot wire is attached to the tree and to a stake in the ground. From the stake in the ground the angle of elevation of the connection with the tree is 42°.

- i. Find to the *nearest tenth of a foot*, the height of the connection point on the tree.
- ii. If the angle of elevation changes to 30^o, keeping the height of the connection point on the tree same as calculated in (i), what should be the length of the wire?
- 14. 200 logs are stacked in the following manner: 20 logs in the bottom row, 19 in the next row, 18 [4] in the row next to it and so on (see Fig.). In how many rows are the 200 logs placed and how many logs are in the top row?

Solution

MATHEMATICS STANDARD 041

Class 10 - Mathematics

```
Section A
```

1. According to the question,

a_n = 2 - 3n Put n = 1, $a_1 = 2 - 3 \times 1 = 2 - 3 = -1$ Put n = 2, $a_2 = 2 - 3 \times 2 = 2 - 6 = -4$ Common difference(d) = (-4) - (-1) = -4 + 1 = -3 $S_n = \frac{n}{2}[2a + (n-1)d]$ $S_{25} = \frac{25}{2} [2(-1) + (25 - 1)(-3)]$ $=\frac{25}{2}[-2-72]$ $=\frac{25}{2}\times-74$ = -925 OR a = 150 and d = -3 Let, $a_n = 0$ a + (n - 1)d = 0150 + (n - 1)(-3) = 0150 - 3n + 3 = 0-3n = -153 3n =153 n = 153/3∴n > 51. Since, the first negative term is 52nd term. 2. Given, $\frac{x+1}{x-1} + \frac{x-2}{x+2} = 4 - \frac{2x+3}{x-2}$ $\Rightarrow \frac{x^2 + 3x + 2 + x^2 - 3x + 2}{x^2 + x - 2} = \frac{4x - 8 - 2x - 3}{x - 2}$ \Rightarrow (2x² + 4) (x - 2) = (2x - 11) (x² + x - 2) or, $5x^2 + 19x - 30 = 0$ \Rightarrow 5x² + 25x - 6x - 30 = 0 \Rightarrow (x+5) (5x-6) = 0 \Rightarrow x = -5, $\frac{6}{5}$ 3. In the given figure it is given that PQ is a chord of a circle with center O and \angle QPT = 60°. let X be the point on the tangent PT of the circle. Now from the given figure we have, $\angle QPT + \angle QPX = 180^{\circ}$ (Linear pair) $\Rightarrow \angle QPX = 180^{\circ} - \angle QPT = 180^{\circ} - 60^{\circ} = 120^{\circ}$ and $\angle QPX = \angle PRQ$ (Alternate segment theorem) $\Rightarrow \angle PRQ = 120^{\circ}$ 4. Diameter of sphere = 5 cm Radius of sphere = $\frac{5}{2}$ cm Diameter of cylinder = 10 cm

Radius of Cylinder = $\frac{10}{2}$ = 5 cm

Let level of water rise in cyinder = h cm

According to the question Volume of sphere = Volume of water rise in cylinder

h

$$\Rightarrow \quad \frac{4}{3}\pi \left(\frac{5}{2}\right)^3 = \pi (5)^2 \times \\ \Rightarrow \quad \frac{4}{3} \times \frac{125}{8} = 25 \times h \\ \Rightarrow \quad h = \frac{4 \times 125}{3 \times 8 \times 25} \text{ cm} \\ \Rightarrow \quad h = \frac{500}{600} = \frac{5}{6} \text{ cm}$$

Г 5.

Class Interval	Frequency
0 - 10	3
10 - 20	9
20 - 30	15
30 - 40	30
40 - 50	18
50 - 60	5

Here, modal class = 30 - 40 as it has maximum frequency, i.e; 30.

6. We have,

 $3x^2 - 5x + 2k = 0$ Here, a = 3, b = -5 and c = 2k $\therefore D = b^2 - 4ac$ $= (-5)^2 - 4 \times 3 \times 2k$ = 25 - 24k \Rightarrow D = 25 - 24k Now, it is given that given equation will has real and equal roots, So, discriminant D = 0 \Rightarrow 25 - 24k = 0 \Rightarrow 24k = 25 $\Rightarrow k = rac{25}{24}$ Hence, $k = \frac{25}{24}$ so that given equation has real and equal roots.

OR

The given equation is $36x^2 - 12ax + (a^2 - b^2) = 0$

Comparing it with $ax^2 + bx + c = 0$, we have

 $a = 36, b = -12a and c = a^2 - b^2$

Now, discrimnant D = $b^2 - 4ac = (-12a)^2 - 4(36)(a^2 - b^2)$

 $= 144a^2 - 144a^2 + 144b^2 = 144b^2 > 0$

So, the given equation has real roots and are given by

$$\begin{aligned} \alpha &= \frac{-b + \sqrt{D}}{2A} = \frac{-(-12a) + \sqrt{144b^2}}{2 \times 36} = \frac{12a + 12b}{72} = \frac{a + b}{6} \\ \beta &= \frac{-B - \sqrt{D}}{2A} = \frac{-(-12a) - \sqrt{144b^2}}{2 \times 36} = \frac{12a - 12b}{72} = \frac{a - b}{6} \\ \text{Hence, } \frac{a + b}{6} \text{ and } \frac{a - b}{6} \text{ are the roots of the given equation.} \end{aligned}$$

Section **B**

7.	Class interval	Frequency	Cumulative frequency	
	0-10	5	5	
	10-20	25	30	
	20-30	Х	30 + x	
	30-40	18	48 + x	
	40-50	7	55 + x	

N = 55 + xLet the missing frequency be x Given, Median = 24 ...(1) From table, total frequency N = 55 + x Or, $\left(\frac{N}{2}\right)$ = 27.5 + $\left(\frac{x}{2}\right)$ Hence, c.f. just greater than $\left(\frac{N}{2}\right)$ is (30 + x), which corresponding class is 20 - 30. Then, median class = 20 - 30 ∴ l = 20, h = 30 - 20 =10, f =x, F = 30 \therefore Median= l + $\frac{\frac{N}{2}-F}{f} \times h$ $\Rightarrow 24 = 20 + \frac{\frac{55+x}{2} - 30}{\frac{55+x}{2} - 30} \times 10$ $\Rightarrow 24 - 20 = \frac{\frac{55+x}{2} - 30}{x} \times 10$ \Rightarrow 4x = $\left(\frac{55+x}{2}-30\right) \times 10$ \Rightarrow 4x = 5 (55 + x) - 300 \Rightarrow 4x - 5x = -25 \Rightarrow -x = -25 \Rightarrow x = 25 : Missing frequency = 25 8. Steps of construction

- i. Draw a line segment AB of 14 cm.
- ii. Through the points A and B, draw two parallel lines AX and BY on the opposite side of AB.
- iii. Starting from A. Cut 2 equal parts on AX and starting from B cut 5 equal parts on BY such that $AX_1 = X_1X_2$ and $BY_1 = Y_1Y_2 = Y_2Y_3 = Y_3Y_4 = Y_4Y_5$

iv. Join X₂Y₅ which intersect AB at P

$$\frac{AP}{PB} = \frac{2}{5}$$

Justification

.

In $\triangle APX_2$ and $\triangle BPY_5$

 $igtriangle APX_2 = igtriangle BPY_5$ (vertically opposite angles) $igtriangle PAX_2 = igtriangle PBY_5$ (alternate interior angles)

then $\triangle APX_2 \sim \triangle BYY$ (by AA similarity)

	AP	AA	2 _ 2	(hv	cnct)
٠	PB	-BY	г — Б	; (Dy	c.p.c.t)

9.	Class Interval	Frequency(f _i)	Mid value x _i	$u_i = \frac{(x_i - A)}{h}$	($f_i imes u_i$)
	0 - 50	17	25	-2	-34
	50 - 100	35	75	-1	-35
	100 - 150	43	125 = A	0	0
	150 - 200	40	175	1	40

200 - 250	21	225	2	42
250 - 300	24	275	3	72
	$\Sigma f_i = 180$			$\Sigma\left(f_i imes u_i ight)=154-69=85$

let assumed mean is 125. $A = 125, h = 50, \Sigma f_i = 180 \text{ and } \Sigma (f_i u_i) = 85$ Mean, $\overline{x} = A + \left\{ h \times \frac{\Sigma(f_i u_i)}{\Sigma f_i} \right\}$ $= 125 + \left\{ 50 \times \frac{85}{180} \right\}$ = 125 + 23.61= 148.61

10.

β β α x

Let PQ be the ladder such that is top Q is on the wall OQ.

Y

0

The ladder is pulled away from the wall through a distance a, so Q slides and takes position Q'. Clearly, PQ = P'Q'.

In
$$\Delta's \ POQ \ and \ P'OQ'$$
, we have
 $\sin \alpha = \frac{OQ}{PQ}, \cos \alpha = \frac{OP}{PQ}, \sin \beta = \frac{OQ'}{P'Q'}, \cos \beta = \frac{OP'}{P'Q'}$
 $\Rightarrow \sin \alpha = \frac{b+y}{PQ}, \cos \alpha \frac{x}{PQ}, \sin \beta = \frac{y}{PQ}, \cos \beta = \frac{a+x}{PQ}$
 $\Rightarrow \sin \alpha - \sin \beta = \frac{b+y}{PQ} - \frac{y}{PQ}$ and
 $\cos \beta - \cos \alpha = \frac{a+x}{PQ} - \frac{x}{PQ}$
 $\Rightarrow \sin \alpha - \sin \beta = \frac{b}{PQ}$ and
 $\cos \beta - \cos \alpha = \frac{a}{PQ}$
 $\Rightarrow \frac{a}{b} = \frac{\cos \alpha - \cos \beta}{\sin \beta - \sin \alpha}$

02 60° 01 01

In triangle O₁AC,

 $\Rightarrow \angle A = 180^{\circ} - (90^{\circ} + 60^{\circ})$ $\Rightarrow \angle A = 180^{\circ} - 150^{\circ} \text{ We know that } [\angle A + \angle B + \angle C = 180^{\circ}]$ $\Rightarrow \angle A = 30^{\circ}$ Again, In a triangle O₂AB, $\Rightarrow \angle O_2 = 180^{\circ} - (90^{\circ} + 45^{\circ})$ $\Rightarrow \angle O_2 = 180^{\circ} - 135^{\circ}$ $\Rightarrow \angle O_2 = 45^{\circ}$

Hence the required angles are 30^o, 45^o.

Section C

11. Radius (R) of conical vessel = 6 cm Height (H) of conical vessel = 8 cm

Volume of conical vessel (V_c) = $\frac{1}{3}\pi r^2h$

 $= \frac{1}{3} \times \pi \times 6 \times 6 \times 8$ = 96\pi cm³ Let the radius of the sphere be r cm In right Δ PO'R by pythagoras theorem We have $l^2 = 6^2 + 8^2$ $l = \sqrt{36 + 64} = 10$ cm In right triangle MRO $\sin \theta = \frac{OM}{OR}$ $\Rightarrow \quad \frac{3}{5} = \frac{r}{8-r}$ $\Rightarrow 24 - 3r = 5r$ $\Rightarrow 8r = 24$ $\Rightarrow r = 3$ cm $\therefore V_1$ = Volume of the sphere ,= $\frac{4}{3}\pi \times 3^3$ cm³ = 36π cm³ V_2 = Volume of the water = Volume of the cone = $\frac{1}{3}\pi \times 6^2 \times 8$ cm³ = 96π cm³

Clearly, volume of the water that flows out of the cone is same as the volume of the sphere i.e., V₁.

. Fraction of the water that flows out = $V_1:V_2=36\pi:96\pi=3:8$

12. According to the question, we are a given that from an external point B of a circle with centre 'O', two tangents BC, BD are drawn such that \angle DBC = 120°, we have to prove that BC + BD = BO, i.e., BO = 2BC. Given: A circle with centre O.

Tangents BC and BD are drawn from an external point B such that \angle DBC = 120° To prove: BC + BD = BO, i.e., BO = 2BC Construction: Join OB, OC and OD.

Proof: In \triangle OBC and \triangle OBD, we have OB = OB [Common] OC = OD [Radii of same circle] BC = BD [Tangents from an external point are equal in length] ...(i) $\therefore \triangle$ OBC $\cong \triangle$ OBD [By SSS criterion of congruence] $\Rightarrow \angle$ OBC = \angle OBD (CPCT) $\therefore \angle$ OBC = $\frac{1}{2} \angle$ DBC = $\frac{1}{2} \times 120^{\circ}$ [$\because \angle$ CBD = 120° given] ⇒ ∠OBC = 60° OC and BC are radius and tangent respectively at contact point C. Hence, ∠OCB = 90° Now, in right angle △OCB, ∠OBC = 60° $\therefore \cos 60^\circ = \frac{BC}{BO}$ $\Rightarrow \frac{1}{2} = \frac{BC}{BO}$ $\Rightarrow OB = 2BC$ $\Rightarrow OB = BC + BC$ $\Rightarrow OB = BC + BD [:: BC = BD from (i)]$ Hence, proved.

OR

Given: A circle with centre O. A tangent CD at C. Diameter AB is produced to D. BC and AC chords are joined, $\angle BAC = 30^{\circ}$

To prove: BC = BD **Proof:** DC is tangent at C and, CB is chord at C. Therefore, $\angle DCB = \angle BAC [\angle s \text{ in alternate segment of a circle}]$ $\Rightarrow \angle DCB = 30^{\circ} ...(i) [\because \angle BAC = 30^{\circ} (Given)]$ AOB is diameter. [Given] Therefore, $\angle BCA = 90^{\circ}$ [Angle in s semi circle] Therefore, $\angle ABC = 180^{\circ} - 90^{\circ} - 30^{\circ} = 60^{\circ}$ In $\triangle BDC$, Exterior $\angle B = \angle D + \angle BCD$ $\Rightarrow 60^{\circ} = \angle D + 30^{\circ}$ $\Rightarrow \angle D = 30^{\circ} ...(ii)$ Therefore, $\angle DCB = \angle D = 30^{\circ}$ [From (i), (ii)] $\Rightarrow BD = BC [\because$ Sides opposite to equal angles are equal in a triangle] Hence, proved.

13. i. According to the figure,

sin 42° = $\frac{x}{8}$ 0.669 = $\frac{x}{8}$ x = 5.4' So, height of the tree is 5.4 foot.

```
ii. Given: x = 5.4' and \theta = 30°
Let length of the wire be y foot.
```

```
Now, \sin 30^{\circ} = \frac{5.4}{y}
y = \frac{5.4}{0.5} = 10.8
```

So, length of the wire is 10.8 foot.

14. Let the required number of rows be n.

According to question:-

20 + 19 + 18 + ... to n terms = 200 ...(1)

The equation (1) is an arithmetic series in which

a = 20,d=(19 - 20) = -1 and S_n = 200

We know that sum of n terms of an A.P. is given by :-

$$\begin{split} &S_n = \frac{n}{2} \{2a + (n - 1)d\} \dots (A) \\ &\therefore \frac{n}{2} \{2 \times 20 + (n - 1) \times (-1)\} = 200 \\ &\Rightarrow n(41 - n) = 400 \\ &\Rightarrow -n^2 + 41n - 400 = 0 \\ &\Rightarrow n^2 - 41n + 400 = 0 (taking minus sign common) \\ &\Rightarrow n^2 - 25n - 16n + 400 = 0 \\ &\Rightarrow n(n - 25) - 16(n - 25) = 0 \\ &\Rightarrow n(n - 25) - 16(n - 25) = 0 \\ &\Rightarrow n - 25 = 0 \text{ or } n - 16 = 0 \\ &\Rightarrow n - 25 = 0 \text{ or } n - 16 = 0 \\ &\Rightarrow n = 25 \text{ or } n = 16 \\ &\text{Now, nth term of an A.P. is given by :-} \\ &T_n = a + (n - 1)d \dots (B) \\ &\Rightarrow T_{25} = (a + 24d) = 20 + 24 \times (-1) = -4 \\ &\text{This is meaningless as the number of logs cannot be negative. So, we reject the value n = 25 \\ &\therefore n = 16. \end{split}$$

Thus, there are 16 rows in the whole stack.

Now, again using formula B for 16th term of A.P., we get :-

 T_{16} = (a + 15d) = 20 + 15 × (-1) = 20 - 15 = 5

Hence, there are 5 logs in the top row.