Speed of Light

Exercise Solutions

Question 1: In an experiment to measure the speed of light by Fizeau's apparatus, following data are used:

Distance between the mirrors = 12.0 km,

Number of teeth in the wheel = 180.

Find the minimum angular speed of the wheel for which the image is not seen.

Solution:

In the Fizeau's apparatus, Distance between the mirrors, D = $12.0 \text{ km} = 12 \times 10^3 \text{ m}$ Number of teeth in the wheel, n = 180Speed of light = $3 \times 10^8 \text{ ms}^{-1}$

we know,

Speed of light, $c = (2Dn\omega)/\pi$

 $= \omega = c\pi/(2Dn) \text{ rad/sec} = c\pi/(2Dn) \times 180/\pi \text{ degree/sec}$

 $= \omega = [3x10^8]/[24x10^3] = 1.25 \times 10^4$ degree/sec

Question 2: In experiment with Foucault's apparatus, the various distances used are as follows:

Distance between the rotating and the fixed mirror = 16 m

Distance between the lens and the rotating mirror = 6 m,

Distance between the source and the lens = 2 m.

Solution:

Distance between fixed and rotating mirror = R = 16m Distance between lens and rotating mirror = b = 6m Distance between source and lens = a = 2m Angular speed = ω = 356 rev/s = 356 × 2 π rad/sec Shift in image = s = 0.7 cm = 0.7 x 10⁻³ m/s Now, Speed of light = c = (4R² ω a)/s(R+b) = $[4x16^{2}x 356x2\pi x 2]/[0.7x10^{-3}(16+6)]$

= 2.975 x 10⁸ m/s

Question 3: In a Michelson experiment for measuring speed of light, the distance travelled by light between two reflections from the rotating mirror is 4.8 km. The rotating mirror has a shape of a regular octagon. At what minimum angular speed of the mirror (other than zero) the image is formed at the position where a nonrotating mirror forms it?

Solution:

Distance travelled by the light wave between two reflections from the rotating mirror = $D = 4.8 \text{ km} = 4.8 \times 10^3$ Number of faces of the mirror = N = 8 In the Michelson experiment, the speed of light = c = $(D\omega N)/2\pi$ Where, ω is angular speed of the mirror.

Or $\omega = (2\pi c)/DN$ rad/s = c/(DN) rev/sec

 $= [3x10^8]/[4.8x10^3x8]$

= 7.8 x 10³ rev/sec