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A Turing machine is a kind of state machine, which is much more 
powerful in terms of languages it can recognize. At any time, the 
machine is in any one of the fi nite number of states. Instructions 
for a turing machine include the specifi cation of conditions, under 
which the machine will make transitions from one state to other.

Model of Turing Machine
Tape (No boundaries Infinite length)

At each step,
*Reads a symbol
*writes a symbol
*moves left or right
or doesn’t move  

Read - write Head
(movement in both
directions) 

Control unit
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 • A TM (turing machine) consists of Tape, Head, control unit.
 • Tape: A tape is divided into a sequence of numbered 

cells, Each cell contains a symbol and cells that have not 
been written before are assumed to be filled with a blank 
symbol (B). The set of symbols of tape is denoted by . 
The tape is assumed to be arbitrarily extensible to the left 
as well as to the right.

 • Head: In a single step, a tape head reads the contents of a 
cell on the tape (reads a symbol), replaces it with some other 
characters (writes a symbol) and repositions itself to the 
next cell to the right or to the left of the one it has just read 
or does not move (moves left or right or does not move).

 • Control unit: The reading from the tape or writing into 
the tape is determined by the control unit. It contains a 
finite set of states, Q. The states are:

 1. Initial state, q
0

 2. Halt state, h: This is state in which TM stops all 
further operations. There can be one or more halt 
states in a TM. 

 3. Other states.

Note: A TM on entering the halt state stops making moves 
and whatever string is there on the tape, will be taken as the 
output, irrespective of whether the position of head is at the 
end or in the middle of the string on the tape.

Transition Diagram of TM

q

q
a → b, R

a → b, L
p

p

Reads a symbol

writes a symbol

Move Right (R)

Move Left (L)

No Move (N)

Specification of TM
5-Tuple specification:
TM = (state1, Read symbol, write symbol, L/R/N, state 2).
7 - Tuple specification of TM:
A TM, M is represented as a 7-tuple:
M = (Q, ∑, , δ, q

0
, B, h) where 

Q  → Finite set of states 
∑ → Finite set of non-blank symbols
   → Set of tape characters 
q

o
 → q

o
 ∈ Q, initial state 

B  → Blank character 
h  → h ⊆ Q, final state
δ  → Transition function, Q ×  → Q ×  x {L, R, N}

String classes in TM
Every TM, over the alphabet ∑, divides set of input string w 
into three classes:

 1. Accept (TM): It is the set of all strings w ∈ ∑* ∋ if the 
tape initially contains w and the TM is then run, then 
TM ends in a halt state.

 2. LOOP (TM): It is the set of all strings, w ∈ ∑* ∋ if 
the tape initially contains w and the TM is then run, 
then the TM loops forever (infinite loop).

 3. Reject (TM): It is the set of all strings w ∈ ∑* ∋, any 
of the following 3-cases arise. 

Case I:    There may be a state and a symbol under the tape 
head, for which δ does not have a value.

Case II:   If the head is reading the left most cell (i) contain-
ing the symbol x, the state of TM is say q, then δ 
(q, x) suggests a move to the left of the current 
cell. However as there is no cell to the left, no 
move is possible.

Case III:  If TM enters an infinite loop or if a TM rejects a 
given string w, because of above two cases, TM 
crashes (terminates unsuccessfully).

Languages accepted by a tM
 • The language accepted by TM is the set of accepted 

strings w ∈ ∑*.
 • Formally, let M = (Q, ∑, , δ, q0, B, h) be a TM. The lan-

guage accepted by M denoted by L(M) is defined as, L(M) 
= {w/w∈ z* and if w = a1… a

n
 then, (q

o
, ε, a1, a2, …a

n
) (h, 

b, …, b
i-1, bj

 b
n
) for some b1, b2 … b

n
 ∈ N* ∋} 

     L(M) = {W: q
o
 w ├ *x1hx2}

 • There are three types of turing machine related 
languages:

 1. Turing Acceptable language: A language, L over 
some alphabet is said to be turing acceptable language 
if there exists a TM, M ∋ L = L(M )

 2. Turing Decidable Language: A language L over 
∑ i.e., L ⊆ ∑* is said to be turing decidable, if both 
languages, L and its complement ∑* - L are turing 
acceptable.

 3. Recursively Enumerable Language: A language L 
is recursively enumerable, if it is accepted by a TM.

Example 1: Let M be a turing machine has M = (Q, , ∑, 
δ, S, B, F ) with Q = {q

o
, q

1
, q

2
, q

3
, q

4
}, ={a, b, X, Y, #}, 

∑ = {a, b}, S = q
0
, B = #, δ given by:

a b X Y #

q0 (q1, X, R) - - (q3, Y, R)

q1 (q1, a, R) (q2, Y, L) - (q1, Y, R)

q2 (q2, a, L) - (q0, X, R) (q2, Y, L)

q3 - - - (q3, Y, R) (q4, #, R)

q4 - - - - -

Which of following is true about M ?
(A) M halts on L having ‘baa’ as substring
(B) M halts on L having ‘bab’ as substring
(C) M halts on L = {an bn/n ≥ 1}
(D) M halts on L not having ‘bbaa’ as substring.
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Solution: (C)
M accepts an bn.

Example: aaabbb
 (q0, ∈, aaabbb)  → (q1, XXXYY, b)
 (q1 X, aabbb)  → (q2 XXXY, YY)
 (q1, Xa, abbb) → 1(q2, XXX, YYY )
 (q1, Xaa, bbb)  → (q2, XY, XYYY )
 (q1, Xa, aYbb)  → (q0, XXX, YYY )
  (q2, X, aaYbb)  → (q3, XXXY, YY )
 (q2, ∈, XaaYbb)  → (q3, XXXYY, Y )
 (q

o
, X, aaYbb)  → (q3, XXXYYY, ∈)

 (q1, XX, aYbb)  → (q4, XXXYYY#, ∈)

types of turing Machines

Two-way infinite turing machine
Finite control 

Banaia2a1

 • A TM with a two-way infinite tape is denoted by M = (Q, 
∑, , δ, q

o
 B, F), as in original model.

 • The tape is infinite to the left as well as to the right.

If δ(q, x) = (p, Y, L) then q x a ├ 
m
 pBY. The tape, is 

infinte towards left.
If δ (q, x) = (p, B, R) then q x a ├ 

m , pa the is infinite 
towards right.

Multiple turing machines

Finite
control 

 • A multiple TM consists of a finite control with k tape heads 
and k-tapes, each tape is infinite in both directions, on a 
single move, depending on the state of the finite control 
and the symbol scanned by each of tape heads, the 
machine can, 
 • change state 
 • print new symbol on each of the cells scanned by its 

tape head 
 • move each of its tape heads, independently, one cell to 

the left or right or keep it stationary.

 • Initially, the input appears on the first tape and other tapes 
are blank.

Non-deterministic turing machines
 • A non-deterministic turing machine is a device with a 

finite control and a single one way infinite tape. 
 • For a given state and a tape symbol scanned by the tape head, 

the machine has a finite number of choices for next move.
Note: Non-deterministic TM is not permitted to make a 
move in which the next state is selected from one choice, 
and the symbol printed and direction of head motion are 
selected from other choices.

 • The non-deterministic TM accepts its input if any 
sequence of choices of moves leads to an accepting state.

Multi-dimensional TM’s
Finite
control 

 • The tape consists of a k-dimensional array of cells infinite 
in all 2k directions, for some fixed k.

 • Depending on the state and the symbol scanned, the 
device changes it’s state, prints a new symbol and moves 
its tape head in one of the 2k directions, either positively 
or negatively, along one of the k-axes.

Multihead TM

B

k321

Finite control 

 • A K-head TM has some fixed ‘K’ number of heads. The 
heads are numbered from 1 through k, and a move of the TM 
depends on the state and on the symbol scanned by each head.

Offline turing machine
Finite control 

$C
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 • An offline TM is a multi tape TM, whose input tape is 
read only. The input is surrounded by end markers, ¢ on 
left and $ on right. The TM is not allowed to move the 
input tape head off the region between ¢ and $.

Multi stack machine
 • A deterministic two stack machine is a deterministic TM 

with a read only input and two storage tapes.

Note: 

 • All these types of TM’s does not add any language 
accepting power and all these are equivalent to the basic 
model.

 • Any language accepted by a 2-PDA can be accepted by 
some TM and any language accepted by a TM can be 
accepted by some 2-PDA. Accepting power of a TM = 
accepting power of a computer.

 • Any language accepted by a PDA with n stacks (n ≥ 2), 
can also be accepted by some TM.

Example 2: Consider the following statement about L:

 1. L is accepted by multi-tape turing machine M1.
 2. L is also accepted by single tape turing machine M2.

Which of following statement is correct?

(A) Acceptance by M2 is slower by O (n2)
(B) Acceptance of M2 is slower by O (n)
(C) Acceptance of M2 is faster by O (n)
(D) Acceptance of M2 is faster by O (n2)

Solution: (A)
While simulating multi-tape TM on a single tape TM the 
head has to move at least 2k cells per move, where k is the 
number of tracks on single tape TM. Thus for k moves,

2 2
1

2i k
i

k

=∑ = .

Which means quadratic slow down?
Thus, acceptance of multi-tape is faster by O(n2).

Universal turing machine
A Universal turing machine is a turing machine that can 
simulate an arbitrary turing machine on arbitrary input.

 • The machine consists of an input output relation to the 
machine computes.

 • The input is given in binary form on the machine tape and 
the output consists of the contents of the tape when the 
machine halts. 

 • The contents of the tape will change based on the Finite 
State Machine (FSM) inside the TM. 

 • The problem with TM is that a different machine will be 
constructed for every new computation to be performed. 

 • A UTM can simulate any other machine. 

Combining turing machines
If TM

1
 and TM

2
 are turing machines, then we can combine 

these machines and create a Turing machine which will first 
behave like TM

1 
and TM

2
.

 To combine two turing machines follow below steps: 

 1. Change all states in TM2, so that they do not conflict 
with the state names in TM1.

 2. Change all halts in TM1’s transition table to the new 
name of the start state of TM2.

 3. Append TM2’s transition table to the foot of TM1’s 
transition table. 

 • If TM1 and TM2 are combined in this way, we will write 
it as TM1 → TM2. 

So this new machine starts off in the initial state of TM1, 
operates as per TM1 until TM1 would halt then it launches 
TM2 and operates a TM2, until TM2 would halt. 

recursiveLy enuMerabLe Languages

 • A language L over the alphabet ∑ is called ‘recursively 
enumerable’ if there is a TM, M that accept every word in 
L and either rejects or loops for every word in language 
L′, the complement of L.
Accept (M) = L
Reject (M) + Loop (M) = L′.

 • When TM, M is still running on some input of recursively 
enumerable languages, it is not decided that M will even-
tually accept, if let it run for long time or M will run for-
ever (in loop).

Recursive language

 • A language is said to be recursive, if there exists a TM 
which will halt and accept when presented with any input 
string w ∈∑*, only if the string is in the language other-
wise will halt and reject the string. 

 • Thus, for turing decidable language L, there is a TM 
which halts for a large number of inputs w belonging to L.

 • A TM that always halts is known as a decider or a 
total turing machine and is said to decide the recursive 
language. The recursive language is also called as recur-
sive set of decidable. 

 • A language accepted by a TM is said to be recursively 
enumerable language. The subclass of recursively enu-
merable sets are said to be recursive sets or recursive 
language.

Note:

 • All recursive languages are also recursively enumerable. 
 • There may be languages which are recursively enumer-

able but not recursive.
 • Set of all possible words over the alphabet of the recur-

sive language is a recursive set.
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 • Set of all possible words, over the alphabet of the recur-
sive enumerable language, is a recursively enumerable set.

Recursively enumerable

Not recursively enumerable

RE but not recursive

Recursive

Figure 1 Relationship between the recursive, 
RE and non-RE languages.

properties of recursive and 
recursiveLy enuMerabLe Languages

 • If a language L is recursive, then there is a TM T that 
accepts it and always halts.

 • If L and L
I
 are both recursively enumerable, then L and L

I
 

are recursive.
 • Union of two recursive languages is recursive.
 • Recursively enumerable languages are closed under union.
 • If L, L1 and L2 are recursive languages, then so are L1 ∪ 

L2, L ∩ L2, L1L2, L*, L1 ∩ L2 and L1 - L2.
 • If L, L1 and L2 are recursively enumerable languages, then 

so are L1 ∪ L2, L*, L1 ∩ L2, L1L2.
 • If ∑ is an alphabet, L ⊆ ∑*, is a recursively enumerable 

language and ∑* – L is recursively enumerable, then L is 
recursive.

Example 3: If ∑ = {0,1}, the canonical order is 
{∈,0,1,00,01,10,11,000,…} where w is the ith word and M

j
 

is TM whose code is the integer j, written in binary. The 
language generated is L(M

j
). The diagonalized language, L

d
 

is a.
(A) Recursively enumerable language but not recursive 
(B) Recursive language
(C) Non-recursively enumerable language 
(D) Both (a) and (c)

Solution: (C)
Non-recursively enumerable language.

Non-recursively enumerable language

Non-Recursively Enumerable Language: A language 
which is not accepted by any turing machine is non-recursively 
enumerable. 

Example: Power set of an infinite set. 

 • These languages cannot be defined by any effective 
procedure.
For any non-empty ∑, there exist languages that are not 

Recursively Enumerable.
Infinite table for all i and j is:

j →
1 2 3 4 

1 0     1     1        0 

2 1     1     0 0 

i   3 0   0     1 0 

4 0  1     0     1

Diagonal 

To guarantee that no TM accepts L
d
:

w
i
 is in L

d
 if and only if the (i, i) entry is 0, that is, if M

i
 

does not accept w
i
. 

Suppose that some TM M
j
 accepted L

d
. Then it contra-

dicts if w
j
 is in L

d
, ( j, j) entry is 0, implying that w

j
 is not in 

L (M
i
) and contradicting L

d
 = L (M

i
).

If w
i
 is not in L

d
, then the (  j, j) entry is 1, implying that 

w
i
 is in L(M

j
), which again contradicts L

d
 = L(M

j
), as w

j
 is 

either in or not in L
d
, assumption, L

d
 = L(M

j
) is false.

Thus no TM in the list accepts L
d
, Hence L

d
 is non- 

recursively enumerable language. 

Decidable: A problem with two answers (Yes/No) is decid-
able if the corresponding language is recursive. 

Example: 

 1. A
DFA

 = {(M, w) M accepts the input string w}.

 • A Language L is turing decidable, if there exists a TM 
M such that on input x, M accepts if x ∈ L and M rejects 
otherwise. L is called undecidable if it is not decidable. 

 • Decidable Languages correspond to algorithmically 
solvable Decision problems.

 • Undecidable language corresponds to algorithmically 
unsolvable decision problems.

Closure properties of decidable languages
 • Decidable Languages are closed under complement, union, 

intersection, concatenation and star (closure) operations. 

Note 1: A language is decidable if both the language and its 
complement are recognizable. 

Note 2: Turing Decidable languages are Recursive languages. 

undecidabiLity
There are problems that can be computed. There are also 
problems that cannot be computed. These problems which 
cannot be computed are called ‘computationally undecid-
able problems’.
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Church’s Hypothesis

There is an assumption that the intuitive notion of com-
putable functions can be identified with partial recursive 
functions.

However, this hypothesis cannot be proved. The computa-
bility of recursive function is based on following assumptions:

 1. Each elementary function is computable. 
 2. Let ‘f  ’ be a computable function and ‘g’ be another 

function which can be obtained by applying an 
elementary operation to f, then g becomes a comput-
able function.

 3. Any function becomes computable, if it is obtained 
by rule (1) and (2).

Undecidability of the universal languages
 • The universal language, L

u
 is a recursively enumerable 

language but not recursive.

Hypothetical TM
M for Lu 

Yes

No

Accept 

Reject 

Halting Problem
The given configuration of TM is required to state halting 
problem. The output of TM can be:

 1. Halt: The machine starting at this configuration will 
halt after a finite number of states.

 2. No Halt: The machine starting at this configuration 
never reaches a halt state, no matter how long it runs.

 • The halting problem is unsolvable because, let, there 
exists a TM, M, which decides whether or not any com-
putation by a TM, T will ever halt when a description d

T
 

of T and tape t of T is given. That means the input to 
machine M, will be (machine, tape) pair. Then for every 
input (t, dT ) to M

I
 if T halt for input t, M

I
 also halts which 

is called accept halt. 

Similarly if T does not halt for input t then the M1 will 
halt which is called reject halt.

Accept halt 

Input

(t, dT)

When
T halt for t

When
T does not

halt for t

Reject halt

M1

 • Consider another Turing Machine, M2 which takes an 
input d

T 
. It first copies d

T
 on its tape and then this dupli-

cated tape information is given as input to M1. But M1 is 
a modified machine.

Input ModifiedCopy T
Loops

T halt for
input t = dT

T does not
halt for
 t = dT

Halt

dT dT, dT

M1

→

Replace T by M
2
 i.e., M

2
 = T

(Input)

M2 halt for
input dM2

dT

M2

Loops

Halt

That’s means, a machine M1, which can tell whether any 
other TM will halt on particular input does not exist. Hence 
halting problem is unsolvable.

Post’s Correspondence Problem (PCP)
The Undecidability of strings is determined with the help of 
Post’s Correspondence Problem (PCP). 

‘The PCP consists of two lists of strings that are of equal 
length over the input ∑. The two lists are A = w1, w2, w3, … 
w

n
 and B = x1, x2, … x

n
 then there exists a non-empty set of 

integers i1, i2, … i
n
 such that w1, w2, … w

n
 = x1, x2, … x

n
’.

To solve PCP, try all the combinations of i1, i2, … i
n
 to 

find the w
i
 = x

i
 then, PCP has a solution. 

Example 4: What is the solution for the following system 
of post correspondence problem. A = {100, 0, 1} B = {1, 
100, 00}
(A) 1113322 (B) 1311322
(C) 2233111 (D) No solution

Solution: (B)
The string is:
A1A3A1A1A3A2A2 = 100 + 1 + 100 + 100 + 1 + 0 + 0 = 
1001100100100,

B1B3B1B1B3B2B2 = 1 + 00 + 1 + 1 + 00 + 100 + 100 = 
1001100100100.

probLeMs

 • P stands for deterministic polynomial time. A deterministic 
machine at each time executes an instruction. Depending 
on instruction, it then goes to next state which is unique. 
Hence, time complexity of deterministic TM is the maxi-
mum number of moves made by M in processing an input 
string of length n, taken over all inputs of length n.

 • A language, L is said to be in class P, if ∃ a (determinis-
tic) TM, M is of time complexity P (n) for some polyno-
mial P and M accepts L.

 • Class P consists of those problems that are solvable in 
polynomial time by a deterministic TM.
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np probLeMs
 • NP stands for non-deterministic polynomial time.
 • A language, L is in class NP, if there is a non-deterministic 

TM, M is of time complexity P(n) for some polynomial 
P and M accepts L.

 • Class NP consists of problems for which solutions are 
verified quickly. P consist of problems which can be 
solved quickly.

P

NP

 • NP languages are closed under union, Intersection, con-
catenation, Kleen star.

 • NP problems are classified into two types:
 1. NP-complete 
 2. NP-hard problems.

Example: Vertex (Graph) coloring problem, Travelling 
salesman problem, the vertex cover problem, the Hamiltonian 
circuit problem.

np-coMpLete probLeM
 • A class of problems are known as NP-complete problems 

whose status is unknown. No polynomial time has yet 
been discovered for NP-complete problems nor has any 
one been able to prove that no polynomial time exists for 
any of them. These are hardest of NP-problems. The P 
and NP-complete problems are disjoint.

Example: (Cook’s Theorem) SAT is NP-complete, Bin 
packing problem, Knapsack Problem. 

 • A language L is said to be NP-complete if L ∈ NP and if 
every LI ∈ NP is polynomial-time reducible to L.
A language L1 is said to be polynomial time reducible to 

some language L2 if there exists a DTM by which any w1 in 
the alphabet of L1 can be transformed in polynomial time to 
a w2 in the alphabet of L2 in such a way that w1 ∈ L1 if w2 
∈ L2. It follows that if some L1 is NP-complete and polyno-
mial time reducible to L2, then L2 is also NP-complete.

np-hard probLeM

P

NP

NP - complete

NP - hard

 • A problem that is NP-hard has a property that all problems 
that are in NP can be reduced in polynomial time to it.

 • A language, L in NP-hard complete if and only if,
Condition 1: For every language, LI in NP, there is a poly-
nomial time reduction of LI to L.

Condition 2: L is not necessarily in NP. 

Table 1 NP-Hard versus NP-complete problems:

NP-Hard NP-Complete

(1)  A decision problem Pi is 
NP-hard if every problem 
in NP is polynomial time 
reducible to Pi.

(1)  A Decision problem Pi is 
NP-complete if it is NP-hard 
and is also in class NP itself.

(2)  In terms of symbols ‘Pi’ 
is NP-hard if for every Pj 
→ NP

(2)  In terms of symbols, ‘Pi’ is 
NP-complete, if Pi is NP-hard 
and Pj → NP

(3)  Pi is ‘as hard as’ all the 
problem in NP

(3)  Pi is one of the hardest prob-
lems in NP

(4)  If any problem in NP 
is proved intractable, 
then Pi must also be 
intractable 

(4)  If any one ever shows that 
as NP-complete problem is 
also intractable, then every 
NP-complete problem is also 
intractable.

Example 5: Which of following is FALSE?
(A)  {< x, y > | x and y are integers, gcd (x, y) = 1} is a NP 

class problem.
(B) CLIQUE is a NP class problem.
(C) Eulerian PATH is a P class problem
(D) Dijkstra’s algorithm is a problem in P. 
Solution: (A)
Choice (A) is a P class problem.
Consider the following table:

D – Decidable, U – Undecidable,? – Open 
question,T – Trivially Decidable Question Regular Sets DCFL’s CFL’s CSL’s

Recursive 
Sets

Recursively 
Enumerable Sets

(1) Membership problem? D D D D D D
(2) Emptiness problem? D D D U U U

(3) Completeness problem is L = ∑*? D D D U U U

(4) Equality problem? D ? U U U U

(5) Subset problem is L1 ⊆ L2? D U U U U U

(6) Is L Regular? T D U U U U

(7)  Is the intersection of two languages, a lan-
guage, of the same type?

T U U T T T

(8)  Is the complement of a language, also a lan-
guage of the same type?

T T U ? T U

(9) Is L is finite or infinite? D D D U U U
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Table 2 Closure properties of formal languages

Regular sets DCFL’S CFL’S CSL’S Recursive sets
Recursively 

enumerable sets

(1) Union Y N Y Y Y Y

(2) Concatenation Y N Y Y Y Y

(3) Kleen star Y N Y Y Y Y

(4) Intersection Y N N Y Y Y

(5) Complementation Y Y N Y Y N

(6) Homomorphism Y N Y N N Y

(7) Inverse Homomorphism Y Y Y Y Y Y

(8) Reversal Y N Y Y Y Y

(9) Substitution Y N Y Y N Y

(10) Intersection with regular ets Y Y Y Y Y Y

exercises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.
 1. The TM M over ∑ = {1} is given below

q0

q1

q2

q3

1/1, R

1/1, R

1/1, L

1/b, L

b/b, L

b/b, L
b/1, R

b/b, R
q4

  What does M generate?
 (A)  The output is total recursive multiplication 

function.
 (B) The output is addition of two integers.
 (C) The output is subtraction of two integers.
 (D)  The output should be w

1
w

2
 if input = (w

1
w

2
) a pair 

of words.

 2. Consider language,

  A = {<M>: M is a DFA which doesn’t accept any string 
containing odd number 1’s}

  Which of following is true about A?
 (A) A is Trivially decidable   (B) A is undecidable
 (C) A is decidable   (D) None of these

 3. Consider EQ
CFG

= {<G
1
G

2
>: G

1
, G

2
 are CFGs and L (G

1
) 

= L (G
2
)}. Which of following is true about EQ

CFG
?

 (A) Recognizable (B) Co-Recognizable
 (C) Un-recognizable (D) None of the above.

 4. A language is given as INFINITE
DFA
= {<A>: A is a 

DFA and L (A) is an infinite language}. Which of fol-
lowing is true?

 (A) Un-decidable  (B) Decidable
 (C) Trivially decidable (D) None of above.

 5. A TM designed over an alphabet {0, 1, #}, where 0 
indicates blank, which takes a non-null string of 1’s and 
#‘s and transfer’s the right-most symbol to the left-most 
end contains-states. (Ex: 000#1#1#1000 … becomes 
0001#1#1#000)

 (A) 4 (B) 3
 (C) 6 (D) 5.

 6. Which of following statements are true?
  (i)  Let K, L be decidable languages. The concatenation 

of languages, K, L is also decidable language.

  (ii)  Let L be Turing recognizable language. Then the 
complement, L1 is also Turing recognizable language.

 (A) (i) and (ii) (B)  Only (ii)
 (C) Both are false (D) Only (i)

 7. Let T
i
: denote i th TM. Given, X determines whether X∈ 

S, Where the set S is defined inductively as follows: If 
u ∈ S, then u2 + 1, 3u + 2 and u! are all members of 
S. Which of following is true about the given decision 
problem?

 (A) Decidable (B) Un-decidable 
 (C) Trivially decidable (D) No solution.

 8. Fermat’s last theorem asserts that there are no integer 
solution (x, y, z, n) to equation xn + yn = zn satisfying x, y 
> 0 and n > 2. Which of the following is true regarding 
the halting problem?

 (A) Decidable 
 (C) Un-decidable
 (C) Trivially decidable
 (D) May or may not have solution.
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 9. The TM, T is designed as 

q0 q1 q2

q3

y/y, R

y/y, R
x/x, L

B
B

y/y, L

1/y, L

0/0, L

x/x, R

0/x, R 0/x, R
0/0, R

q4

q5

q6

y/y, R

  Which of following is true?
 (A) T halts on 0n1n, n ≥ 0
 (B) T halts on (01) (0n 1n), n ≥ 0

 (C) T halts on 0 1 0
2 2n n n,  ≥

 (D) T halts on 02n1n , n ≥ 0

 10. Design TM, which reads an input and starts inverting 
0’s to 1’s till the first 1. The first 1 also inverted. After it 
has inverted first 1, it read the next symbols and keeps 
them as they are till the next 1. After encountering 1, it 
starts repeating the cycle by inverting the symbol till 
next 1. It halts when it encounters a blank symbol?

 (A) q0 q1

q2

B/B, R

0/1, R

1/0, R

 (B) 

B/B, RB/B, R

0/0, R0/0, R

1/1, R

1/1, Rq0 q1

q2

 (C) 

q0 q1

q2

B/B, R

0/1, R

1/1, R

0/0, R

1/0, R

 (D) 

q0 q1

q2

B/B, RB/B, R

0/0, R0/1, R

1/1, R

1/0, R

 11. Consider three problems, P
1
, P

2
 and P

3
. It is known that 

P
1
 has polynomial time solution, P

2
 is NP-complete 

and P
3
 is in NP. Which one of the following is true?

 (A)  P
3
 has polynomial time solution if P

1
 is polyno-

mial time reducible to P
3
.

 (B)  P
3
 is NP-complete if P

3
 is polynomial time reduc-

ible to P
2
.

 (C) P
3
 is NP complete if P

2
 is reducible to P

3

 (D)  P
3
 has polynomial time complexity and P

3
 is re-

ducible to P
2
.

 12. Let FHAM be the problem of finding a Hamiltonian 
cycle in a graph G and DHAM be the problem of deter-
mining if a Hamiltonian cycle exists in a graph. Which 
one of the following is true?

 (A) Both FHAM and DHAM are NP-hard.
 (B) FHAM is NP-hard, but DHAM is not.
 (C) DHAM is NP-hard but FHAM is not.
 (D) Neither DHAM nor FHAM is NP-hard.

 13. The solution for the system of post correspondence 
problem, A = {ba, abb, bab}, B = {bab, bb, abb} is 

 (A) 1312212 (B) 15234434
 (C) 1311322 (D) No solution.

 14. A language, prefix_free REX = {R/R is a regular 
expression where L(R) is prefix_free}. Which of fol-
lowing is true about prefix _free REX?

 (A) Decidable
 (B) Un-decidable
 (C) Trivially decidable.
 (D) Can’t be determined.

 15. The TM, M is designed as:

1 2

3

4

5

78

6

0

a → a, L
c → c, L
b → b, L
x → x, L

c → x, R
c → x, R

c → x, R

* → *, R

* → *, R

x → x, R

a → x, R

a → a, R

b → x, R

b → x, R

B → B, R

b → b, R

x → x, R

  Which of following is true about M?

 (A) M is designed for a b c nn n n, ≥ 0

 (B) M is designed for a b c nn n n2 3 4

0,  ≥
 (C) M is designed for an bn+1 cn+2, n ≥ 0
 (D) M is designed for an bn cn, n > 0
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Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Consider the language, Aε
–CFG

 = {<G>: G is a CFG that 
generatesε}. Which of the following is true?

 (A) Undecidable 
 (B) Decidable
 (C) Trivially decidable.
 (D) None of the above.

 2. The TM is designed with input and output as binary 
form. (# represents blank). The turing machine TM (M) 
is 

0 1 #

q0 (q1, 0, R) (q, 1, R) φ

q1 (q1, 0, R) (q, 1, R) (q2, #, L)

q2 (q3, #, L) (q3, #, L) φ

q3 (q3, 0, L) (q3, 1, L) (q4, #, L)

q4 φ φ φ

  Which of following is true? 

 (A) M accepts 2n
 (B) M accepts n2

 (C) M replaces left most symbol with #
 (D) M replaces right most symbol with #

 3. The TM is designed with 3-characters 0, 1, # to com-
pute function f (n) = 2n. Input and output are to be in 
binary form and string represented by ‘n’ is enclosed 
between two #’s on left and right of it. b is blank 
symbol. TM contains _____ states.

 (A) 4 (B) 3
 (C) 2 (D) 1

 4. The language {1n | n is a prime number} is 
 (A) Undecidable
 (B) Decidable
 (C) Trivially decidable
 (D) None of the above

 5. Which of following statement(s) are true?

  (i)  Let L be Turing decidable language. Then the com-
plement L  is also Turing decidable language.

  (ii)  Let K and L be two Turing recognizable languages. 
The intersection, K ∩ L is also Turing recognizable 
language.

 (A) Both (i) and (ii)
 (B) Only (i)
 (C) Only (ii)
 (D) Neither (i) nor (ii) are true.

 6. For the following two-way infinite TM, the equivalent 
one-way TM contains _____ states.

q0 q1 qf

b/1, R

1/1, L
1/1, R

b/1, L

 (A) 7 (B) 6
 (C) 5 (D) 4

 7. L contains at least two strings. Which of following is 
true?

 (A) L has recursively enumerable sets and recursive.
 (B) L is recursive.
 (C)  L has recursively enumerable sets but not recursive.
 (D)  L does not contain recursively enumerable sets and 

also is not recursive.

 8. Consider the following TM:

Input

State 0 1 B

→ q0

(q0, 1, R) (q0, 0, R) (q1, B, R)

q1 – – –

  What does TM generates?
 (A) It display’s the negative of given binary number.
 (B) It computes one’s complement of a binary number.
 (C) It computes two’s complement of a binary number 
 (D) It generates double the 0’s as 1’s.

 9. Consider the following TM, M:

q0 q1

a/a, L

B/B, LB/B, R

B/B, R a/B, R

b/B, L

b/b, R

b/b, R

a/a, R

q2q3

q4

  Which of following is true?
 (A) M halts on an+1 bn, n ≥ 0.
 (B) M halts on a b nn n2 3

0, . ≥
 (C) M halts on (ab) (an), n ≥ 0.
 (D) M halts on an bn, n ≥ 0.

 10. A TM, M is designed generates language

  L a b n n mn m= ≥ ≠{ : }.  and 1  The number of states 

used are ________
 (A) 5 (B) 6
 (C) 7 (D) 4
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 11. Consider three decision problems p
1
, p

2
 and p

3
. It is 

known that p
1
 is decidable, p

2
 is undecidable. Which 

one of following is true?
 (A) p

3
 is decidable if p

1
 is reducible to p

3

 (B) p
3
 is undecidable if p

3
 is reducible to p

2

 (C) p
3
 is undecidable if p

2
 is reducible to p

3

 (D) p
3
 is decidable if p

3
 is reducible to p

2
’s complement.

 12. Which one of following is not decidable?
 (A)  Given a TM, M, a string S, and an integer K, M ac-

cepts S with in K-steps.
 (B) Equivalence of two given Turing machines.
 (C) Language accepted by a given DFSA is non-empty.
 (D) Language accepted by a CFG is non-empty.

 13. What is the solution for the correspondence system 
with two lists x = {b, bab3, ba} and y = {b3, ba, a}

 (A) 1312213 (B) 2113
 (C) 3112 (D) No solution.

 14. Given a Turing machine M, a state ‘q‘and a string ‘w’. 
To determine whether M ever reaches state q when 
started with input w from its initial state is?

 (A) Decidable
 (B) Un-decidable
 (C) Trivially decidable.
 (D) Can not be determined.

 15. Given a Turing machine, M to determine whether M ever 
moves its head to the left when started with input W is:

 (A) Decidable 
 (B) Un-decidable
 (C) Trivially decidable.
 (D) Can not be determined.

 1. For s ∈ (0 + 1)*, let d(s) denote the decimal value of 
s (e.g., d (101) = 5). [2006]

  Let L = {s ∈ (0 + 1)*|d(s) mod 5 = 2 and d(s) mod 7 ≠ 4}

  Which one of the following statements is true?
 (A) L is recursively enumerable, but not recursive
 (B) L is recursive, but not context-free
 (C) L is context-free, but not regular
 (D) L is regular

 2. Which of the following is true for the language {ap | p 
is a prime}? [2008]

 (A) It is not accepted by a Turing Machine
 (B) It is regular but not context-free
 (C) It is context-free but not regular
 (D)  It is neither regular nor context-free, but accept-

ed by a Turing machine

 3. If L and L  are recursively enumerable then L is [2008]
 (A) regular
 (B) context-free
 (C) context-sensitive
 (D) recursive

 4. Let L = L
1
 ∩ L

2
, where L

1
 and L

2
 are languages as 

defined below:

  L a b c a b m nm m n n
1 0= ≥{ | , } 

  L a b c i j ki j k
2 0= ≥{ | , , }  

  Then L is [2009]
 (A) Not recursive
 (B) Regular
 (C) Context free but not regular
 (D) Recursively enumerable but not context free.

 5. Let L
1
 be a recursive language. Let L

2
 and L

3
 be 

languages that are recursively enumerable but not 
recursive. Which of the following statements is not 
necessarily true? [2010]

 (A) L
2
 – L

1
 is recursively enumerable

 (B) L
1
 – L

3
 is recursively enumerable

 (C) L
2
 ∩ L

1
 is recursively enumerable

 (D) L
2
 ∪ L

1
 is recursively enumerable

 6. Which of the following statements is/are FALSE?
 [2013]
 1.  For every non-deterministic Turing machine, there 

exists an equivalent deterministic Turing machine.
 2.  Turing recognizable languages are closed under un-

ion and complementation.
 3.  Turing decidable languages are closed under inter-

section and complementation.
 4.  Turing recognizable languages are closed under 

union and intersection.
 (A) 1 and 4 only (B) 1 and 3 only
 (C) 2 only (D) 3 only

 7. Let L be a language and L be its complement. Which 
one of the following is NOT a viable possibility?

 [2014]
 (A) Neither L nor L is recursively enumerable (r. e)

 (B)  One of L and L is r.e. but not recursive, the other 
is not r. e. 

 (C) Both L L and are r.e. but not recursive 

 (D) Both L L and  are recursive 

 8. Let A ≤
m
 B denotes that language A is mapping reduc-

ible (also known as many-to-one reducible) to lan-
guage B. Which one of the following is FALSE?

 [2014]
 (A) If A ≤

m
 B and B is recursive then A is recursive.

 (B)  If A ≤
m
 B and A is undecidable then B is undecid-

able.
 (C)  If A ≤

m
 B and B is recursively enumerable then A 

is recursively enumerable.

previous years’ Questions
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 (D)  If A ≤
m
 B and B is not recursively enumerable 

then A is not recursively enumerable.

 9. Let <M> be the encoding of a Turing machine as a 
string over ∑ = {0, 1}. Let L = {<M>|M is a Turing 
machine that accepts a string of length 2014}. Then, L 
is 

 (A) Decidable and recursively enumerable 
 (B) Undesirable but recursively enumerable 
 (C) Undesirable and not recursively enumerable 
 (D) Decidable but not recursively enumerable

 10. For any two languages L
1
 and L

2
 such that L

1
 is con-

text-free and L
2
 is recursively enumerable but not 

recursive, which of the following is/are necessarily 
true? [2015]

     I. L1 (complement of L
1
) is recursive

    II. L2 (complement of L
2
) is recursive

  III. L1 is context-free

   IV. L1  ∪ L
2
 is recursively enumerable

 (A) I only (B) III only
 (C) III and IV only (D) I and IV only

 11. Consider the following statements.

     I.  The complement of every Turning decidable lan-
guage is Turing decidable.

    II.  There exists some language which is in NP but is 
not Turing decidable.

  III. If L is a language in NP, L is Turing decidable.

  Which of the above statements is/are true? [2015]
 (A) Only II (B) Only III
 (C) Only I and II (D) Only I and III

 12. Let X be a recursive language and Y be a recursively 
enumerable but not recursive language. Let W and Z 
be two languages such that y  reduces to W, and Z 
reduces to x    (reduction means the standard many-
one reduction). Which one of the following state-
ments is TRUE? [2016]

 (A)  W can be recursively enumerable and Z is recur-
sive.

 (B)  W can be recursive and Z is recursively enumer-
able.

 (C)  W is not recursively enumerable and Z is recur-
sive.

 (D)  W is not recursively enumerable and Z is not re-
cursive.

 13. Consider the following types of languages: L
1
: 

Regular, L
2
: Context - free, L

3
: Recursive, L

4
: 

Recursively enumerable. Which of the following is /
are TRUE? [2016]

 I. L3∪ L4
 is recursively enumerable

 II. L 2∪ L
3
 is recursive

 III. L*
1
 ∩ L

2
 is context - free

 IV. L
1
 ∪ L 2 is context - free

 (A) I only (B) I and III only
 (C) I and IV only (D) I, II and III only

 14. Consider the following languages. [2016]

  L
1
=  {<M> | M takes at least 2016 steps on some 

input},
  L

2
=  {<M> | M takes at least 2016 steps on all inputs} 

and
  L

1
= {<M> | M accepts ε}

  where for each Turing machine M, <M> denotes a 
specific encoding of M. Which one of the following is 
TRUE?

 (A) L
1
 is recursive and L

2
, L

3
 are not recursive

 (B) L
2
 is recursive and L

1
, L

3
 are not recursive

 (C) L
1
, L

2
 are recursive L

3
 is not recursive

 (D) L
1
, L

2
, L

3
 are recursive

 15. Let A and B be finite alphabets and let  # be a symbol 
outside both A and B. Let f be a total function from A* 
to B*. We say f is computable if there exists a turning 
machine M which given an input x in A*, always halts 
with f(x) on its tape. Let L

f
 denote the language {x # 

f(x)| x ∈ A*}. Which of the following statements is 
true: [2017]

 (A) f is computable if and only if L
f
 is recursive.

 (B)  f is computable if and only if L
f 
is recursively 

enumerable.
 (C)  If f is computable then L

f
 is recursive, but not 

conversely.
 (D)  If f is computable then L

f 
is recursively enumer-

able, but not conversely.

 16. Let L(R) be the language represented by regular 
expression R. Let L(G) be the language generated by 
a context free grammar G. Let L(M) be the language 
accepted by a Turing machine M. Which of the fol-
lowing decision problems are undecidable? [2017]

 I.  Given a regular expression R and a string w, is w 
∈ L(R)?

 II.  Given a context-free grammar G, is L(G) = Ø ?
 III.  Given a context-free grammar G, is L(G) = ∑* 

for some alphabet ∑ ?
 IV.  Given a Turing machine M and a string w, is w ∈ 

L(M)?
 (A)  I and IV only (B)  II and III only
 (C)  II, III and IV only (D)  III and IV only

 17. The set of all recursively enumerable languages is: 
 [2018]
(A) Closed under complementation.
(B) Closed under intersection.
(C) A subset of the set of all recursive languages.
(D) An uncountable set.
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answer Keys

exercises

Practice Problems 1
 1. D 2. C 3. B 4. B 5. D 6. D 7. A 8. D 9. D 10. D
 11. C 12. A 13. D 14. A 15. C

Practice Problems 2
 1. B 2. D 3. B 4. B 5. A 6. B 7. C 8. B 9. D 10. B
 11. C 12. B 13. B 14. B 15. A

Previous Years’ Questions

 1. D 2. D 3. D 4. C 5. B 6. C 7. C 8. D 9. B  10. D

 11. D 12. C 13. D 14. C 15. A 16. D 17. B 18. D

 18. Consider the following problems. L(G) denotes the 
language generated by a grammar G. L(M) denotes 
the language accepted by a machine M.
(I) For an unrestricted grammar G and a string w, 

whether w ∈ L(G)
(II) Given a Turing machine M, whether L(M) is reg-

ular
(III) Given two grammars G

1
 and G

2
, whether L(G

1
)  

= L(G
2
)

(IV) Given and NFA N, whether there is a determin-
istic PDA P such that N and P accept the same 
language.

  Which one of the following statements is correct? 
 [2018]
(A) Only I and II are undecidable
(B) Only III is undecidable
(C) Only II and IV are undecidable
(D) Only I, II and III are undecidable
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