
Chapter 3

Recursively Enumerable
Sets and Turing Machines,

Decidability

 Turing machines

 Model of turing machine

 Types of turing machines

 Offl ine turing machine

 Universal turing machine

 Recursively enumerable languages

 Recursive language

 Undecidability

 Church’s hypothesis

 Halting problem

 Post’s correspondence problem

 7 P problems

 NP problems

 NP – complete problem

 NP – hard problem

 Closure properties of formal languages

LEARNING OBJECTIVES

turing Machines

Accept

L

Turing
machine

Unrestricted
grammar

Recursively
enumerable

language

A Turing machine is a kind of state machine, which is much more
powerful in terms of languages it can recognize. At any time, the
machine is in any one of the fi nite number of states. Instructions
for a turing machine include the specifi cation of conditions, under
which the machine will make transitions from one state to other.

Model of Turing Machine
Tape (No boundaries Infinite length)

At each step,
*Reads a symbol
*writes a symbol
*moves left or right
or doesn’t move

Read - write Head
(movement in both
directions)

Control unit

5.38 | Unit 5 • Theory of Computation

 • A TM (turing machine) consists of Tape, Head, control unit.
 • Tape: A tape is divided into a sequence of numbered

cells, Each cell contains a symbol and cells that have not
been written before are assumed to be filled with a blank
symbol (B). The set of symbols of tape is denoted by .
The tape is assumed to be arbitrarily extensible to the left
as well as to the right.

 • Head: In a single step, a tape head reads the contents of a
cell on the tape (reads a symbol), replaces it with some other
characters (writes a symbol) and repositions itself to the
next cell to the right or to the left of the one it has just read
or does not move (moves left or right or does not move).

 • Control unit: The reading from the tape or writing into
the tape is determined by the control unit. It contains a
finite set of states, Q. The states are:

 1. Initial state, q
0

 2. Halt state, h: This is state in which TM stops all
further operations. There can be one or more halt
states in a TM.

 3. Other states.

Note: A TM on entering the halt state stops making moves
and whatever string is there on the tape, will be taken as the
output, irrespective of whether the position of head is at the
end or in the middle of the string on the tape.

Transition Diagram of TM

q

q
a → b, R

a → b, L
p

p

Reads a symbol

writes a symbol

Move Right (R)

Move Left (L)

No Move (N)

Specification of TM
5-Tuple specification:
TM = (state1, Read symbol, write symbol, L/R/N, state 2).
7 - Tuple specification of TM:
A TM, M is represented as a 7-tuple:
M = (Q, ∑, , δ, q

0
, B, h) where

Q → Finite set of states
∑ → Finite set of non-blank symbols
 → Set of tape characters
q

o
 → q

o
 ∈ Q, initial state

B → Blank character
h → h ⊆ Q, final state
δ → Transition function, Q × → Q × x {L, R, N}

String classes in TM
Every TM, over the alphabet ∑, divides set of input string w
into three classes:

 1. Accept (TM): It is the set of all strings w ∈ ∑* ∋ if the
tape initially contains w and the TM is then run, then
TM ends in a halt state.

 2. LOOP (TM): It is the set of all strings, w ∈ ∑* ∋ if
the tape initially contains w and the TM is then run,
then the TM loops forever (infinite loop).

 3. Reject (TM): It is the set of all strings w ∈ ∑* ∋, any
of the following 3-cases arise.

Case I: There may be a state and a symbol under the tape
head, for which δ does not have a value.

Case II: If the head is reading the left most cell (i) contain-
ing the symbol x, the state of TM is say q, then δ
(q, x) suggests a move to the left of the current
cell. However as there is no cell to the left, no
move is possible.

Case III: If TM enters an infinite loop or if a TM rejects a
given string w, because of above two cases, TM
crashes (terminates unsuccessfully).

Languages accepted by a tM
 • The language accepted by TM is the set of accepted

strings w ∈ ∑*.
 • Formally, let M = (Q, ∑, , δ, q0, B, h) be a TM. The lan-

guage accepted by M denoted by L(M) is defined as, L(M)
= {w/w∈ z* and if w = a1… a

n
 then, (q

o
, ε, a1, a2, …a

n
) (h,

b, …, b
i-1, bj

 b
n
) for some b1, b2 … b

n
 ∈ N* ∋}

 L(M) = {W: q
o
 w ├ *x1hx2}

 • There are three types of turing machine related
languages:

 1. Turing Acceptable language: A language, L over
some alphabet is said to be turing acceptable language
if there exists a TM, M ∋ L = L(M)

 2. Turing Decidable Language: A language L over
∑ i.e., L ⊆ ∑* is said to be turing decidable, if both
languages, L and its complement ∑* - L are turing
acceptable.

 3. Recursively Enumerable Language: A language L
is recursively enumerable, if it is accepted by a TM.

Example 1: Let M be a turing machine has M = (Q, , ∑,
δ, S, B, F) with Q = {q

o
, q

1
, q

2
, q

3
, q

4
}, ={a, b, X, Y, #},

∑ = {a, b}, S = q
0
, B = #, δ given by:

a b X Y #

q0 (q1, X, R) - - (q3, Y, R)

q1 (q1, a, R) (q2, Y, L) - (q1, Y, R)

q2 (q2, a, L) - (q0, X, R) (q2, Y, L)

q3 - - - (q3, Y, R) (q4, #, R)

q4 - - - - -

Which of following is true about M ?
(A) M halts on L having ‘baa’ as substring
(B) M halts on L having ‘bab’ as substring
(C) M halts on L = {an bn/n ≥ 1}
(D) M halts on L not having ‘bbaa’ as substring.

Chapter 3 • Recursively Enumerable Sets and Turing Machines, Decidability | 5.39

Solution: (C)
M accepts an bn.

Example: aaabbb
 (q0, ∈, aaabbb) → (q1, XXXYY, b)
 (q1 X, aabbb) → (q2 XXXY, YY)
 (q1, Xa, abbb) → 1(q2, XXX, YYY)
 (q1, Xaa, bbb) → (q2, XY, XYYY)
 (q1, Xa, aYbb) → (q0, XXX, YYY)
 (q2, X, aaYbb) → (q3, XXXY, YY)
 (q2, ∈, XaaYbb) → (q3, XXXYY, Y)
 (q

o
, X, aaYbb) → (q3, XXXYYY, ∈)

 (q1, XX, aYbb) → (q4, XXXYYY#, ∈)

types of turing Machines

Two-way infinite turing machine
Finite control

Banaia2a1

 • A TM with a two-way infinite tape is denoted by M = (Q,
∑, , δ, q

o
 B, F), as in original model.

 • The tape is infinite to the left as well as to the right.

If δ(q, x) = (p, Y, L) then q x a ├
m
 pBY. The tape, is

infinte towards left.
If δ (q, x) = (p, B, R) then q x a ├

m , pa the is infinite
towards right.

Multiple turing machines

Finite
control

 • A multiple TM consists of a finite control with k tape heads
and k-tapes, each tape is infinite in both directions, on a
single move, depending on the state of the finite control
and the symbol scanned by each of tape heads, the
machine can,
 • change state
 • print new symbol on each of the cells scanned by its

tape head
 • move each of its tape heads, independently, one cell to

the left or right or keep it stationary.

 • Initially, the input appears on the first tape and other tapes
are blank.

Non-deterministic turing machines
 • A non-deterministic turing machine is a device with a

finite control and a single one way infinite tape.
 • For a given state and a tape symbol scanned by the tape head,

the machine has a finite number of choices for next move.
Note: Non-deterministic TM is not permitted to make a
move in which the next state is selected from one choice,
and the symbol printed and direction of head motion are
selected from other choices.

 • The non-deterministic TM accepts its input if any
sequence of choices of moves leads to an accepting state.

Multi-dimensional TM’s
Finite
control

 • The tape consists of a k-dimensional array of cells infinite
in all 2k directions, for some fixed k.

 • Depending on the state and the symbol scanned, the
device changes it’s state, prints a new symbol and moves
its tape head in one of the 2k directions, either positively
or negatively, along one of the k-axes.

Multihead TM

B

k321

Finite control

 • A K-head TM has some fixed ‘K’ number of heads. The
heads are numbered from 1 through k, and a move of the TM
depends on the state and on the symbol scanned by each head.

Offline turing machine
Finite control

$C

5.40 | Unit 5 • Theory of Computation

 • An offline TM is a multi tape TM, whose input tape is
read only. The input is surrounded by end markers, ¢ on
left and $ on right. The TM is not allowed to move the
input tape head off the region between ¢ and $.

Multi stack machine
 • A deterministic two stack machine is a deterministic TM

with a read only input and two storage tapes.

Note:

 • All these types of TM’s does not add any language
accepting power and all these are equivalent to the basic
model.

 • Any language accepted by a 2-PDA can be accepted by
some TM and any language accepted by a TM can be
accepted by some 2-PDA. Accepting power of a TM =
accepting power of a computer.

 • Any language accepted by a PDA with n stacks (n ≥ 2),
can also be accepted by some TM.

Example 2: Consider the following statement about L:

 1. L is accepted by multi-tape turing machine M1.
 2. L is also accepted by single tape turing machine M2.

Which of following statement is correct?

(A) Acceptance by M2 is slower by O (n2)
(B) Acceptance of M2 is slower by O (n)
(C) Acceptance of M2 is faster by O (n)
(D) Acceptance of M2 is faster by O (n2)

Solution: (A)
While simulating multi-tape TM on a single tape TM the
head has to move at least 2k cells per move, where k is the
number of tracks on single tape TM. Thus for k moves,

2 2
1

2i k
i

k

=∑ = .

Which means quadratic slow down?
Thus, acceptance of multi-tape is faster by O(n2).

Universal turing machine
A Universal turing machine is a turing machine that can
simulate an arbitrary turing machine on arbitrary input.

 • The machine consists of an input output relation to the
machine computes.

 • The input is given in binary form on the machine tape and
the output consists of the contents of the tape when the
machine halts.

 • The contents of the tape will change based on the Finite
State Machine (FSM) inside the TM.

 • The problem with TM is that a different machine will be
constructed for every new computation to be performed.

 • A UTM can simulate any other machine.

Combining turing machines
If TM

1
 and TM

2
 are turing machines, then we can combine

these machines and create a Turing machine which will first
behave like TM

1
and TM

2
.

 To combine two turing machines follow below steps:

 1. Change all states in TM2, so that they do not conflict
with the state names in TM1.

 2. Change all halts in TM1’s transition table to the new
name of the start state of TM2.

 3. Append TM2’s transition table to the foot of TM1’s
transition table.

 • If TM1 and TM2 are combined in this way, we will write
it as TM1 → TM2.

So this new machine starts off in the initial state of TM1,
operates as per TM1 until TM1 would halt then it launches
TM2 and operates a TM2, until TM2 would halt.

recursiveLy enuMerabLe Languages

 • A language L over the alphabet ∑ is called ‘recursively
enumerable’ if there is a TM, M that accept every word in
L and either rejects or loops for every word in language
L′, the complement of L.
Accept (M) = L
Reject (M) + Loop (M) = L′.

 • When TM, M is still running on some input of recursively
enumerable languages, it is not decided that M will even-
tually accept, if let it run for long time or M will run for-
ever (in loop).

Recursive language

 • A language is said to be recursive, if there exists a TM
which will halt and accept when presented with any input
string w ∈∑*, only if the string is in the language other-
wise will halt and reject the string.

 • Thus, for turing decidable language L, there is a TM
which halts for a large number of inputs w belonging to L.

 • A TM that always halts is known as a decider or a
total turing machine and is said to decide the recursive
language. The recursive language is also called as recur-
sive set of decidable.

 • A language accepted by a TM is said to be recursively
enumerable language. The subclass of recursively enu-
merable sets are said to be recursive sets or recursive
language.

Note:

 • All recursive languages are also recursively enumerable.
 • There may be languages which are recursively enumer-

able but not recursive.
 • Set of all possible words over the alphabet of the recur-

sive language is a recursive set.

Chapter 3 • Recursively Enumerable Sets and Turing Machines, Decidability | 5.41

 • Set of all possible words, over the alphabet of the recur-
sive enumerable language, is a recursively enumerable set.

Recursively enumerable

Not recursively enumerable

RE but not recursive

Recursive

Figure 1 Relationship between the recursive,
RE and non-RE languages.

properties of recursive and
recursiveLy enuMerabLe Languages

 • If a language L is recursive, then there is a TM T that
accepts it and always halts.

 • If L and L
I
 are both recursively enumerable, then L and L

I

are recursive.
 • Union of two recursive languages is recursive.
 • Recursively enumerable languages are closed under union.
 • If L, L1 and L2 are recursive languages, then so are L1 ∪

L2, L ∩ L2, L1L2, L*, L1 ∩ L2 and L1 - L2.
 • If L, L1 and L2 are recursively enumerable languages, then

so are L1 ∪ L2, L*, L1 ∩ L2, L1L2.
 • If ∑ is an alphabet, L ⊆ ∑*, is a recursively enumerable

language and ∑* – L is recursively enumerable, then L is
recursive.

Example 3: If ∑ = {0,1}, the canonical order is
{∈,0,1,00,01,10,11,000,…} where w is the ith word and M

j

is TM whose code is the integer j, written in binary. The
language generated is L(M

j
). The diagonalized language, L

d

is a.
(A) Recursively enumerable language but not recursive
(B) Recursive language
(C) Non-recursively enumerable language
(D) Both (a) and (c)

Solution: (C)
Non-recursively enumerable language.

Non-recursively enumerable language

Non-Recursively Enumerable Language: A language
which is not accepted by any turing machine is non-recursively
enumerable.

Example: Power set of an infinite set.

 • These languages cannot be defined by any effective
procedure.
For any non-empty ∑, there exist languages that are not

Recursively Enumerable.
Infinite table for all i and j is:

j →
1 2 3 4

1 0 1 1 0

2 1 1 0 0

i 3 0 0 1 0

4 0 1 0 1

Diagonal

To guarantee that no TM accepts L
d
:

w
i
 is in L

d
 if and only if the (i, i) entry is 0, that is, if M

i

does not accept w
i
.

Suppose that some TM M
j
 accepted L

d
. Then it contra-

dicts if w
j
 is in L

d
, (j, j) entry is 0, implying that w

j
 is not in

L (M
i
) and contradicting L

d
 = L (M

i
).

If w
i
 is not in L

d
, then the (j, j) entry is 1, implying that

w
i
 is in L(M

j
), which again contradicts L

d
 = L(M

j
), as w

j
 is

either in or not in L
d
, assumption, L

d
 = L(M

j
) is false.

Thus no TM in the list accepts L
d
, Hence L

d
 is non-

recursively enumerable language.

Decidable: A problem with two answers (Yes/No) is decid-
able if the corresponding language is recursive.

Example:

 1. A
DFA

 = {(M, w) M accepts the input string w}.

 • A Language L is turing decidable, if there exists a TM
M such that on input x, M accepts if x ∈ L and M rejects
otherwise. L is called undecidable if it is not decidable.

 • Decidable Languages correspond to algorithmically
solvable Decision problems.

 • Undecidable language corresponds to algorithmically
unsolvable decision problems.

Closure properties of decidable languages
 • Decidable Languages are closed under complement, union,

intersection, concatenation and star (closure) operations.

Note 1: A language is decidable if both the language and its
complement are recognizable.

Note 2: Turing Decidable languages are Recursive languages.

undecidabiLity
There are problems that can be computed. There are also
problems that cannot be computed. These problems which
cannot be computed are called ‘computationally undecid-
able problems’.

5.42 | Unit 5 • Theory of Computation

Church’s Hypothesis

There is an assumption that the intuitive notion of com-
putable functions can be identified with partial recursive
functions.

However, this hypothesis cannot be proved. The computa-
bility of recursive function is based on following assumptions:

 1. Each elementary function is computable.
 2. Let ‘f ’ be a computable function and ‘g’ be another

function which can be obtained by applying an
elementary operation to f, then g becomes a comput-
able function.

 3. Any function becomes computable, if it is obtained
by rule (1) and (2).

Undecidability of the universal languages
 • The universal language, L

u
 is a recursively enumerable

language but not recursive.

Hypothetical TM
M for Lu

Yes

No

Accept

Reject

Halting Problem
The given configuration of TM is required to state halting
problem. The output of TM can be:

 1. Halt: The machine starting at this configuration will
halt after a finite number of states.

 2. No Halt: The machine starting at this configuration
never reaches a halt state, no matter how long it runs.

 • The halting problem is unsolvable because, let, there
exists a TM, M, which decides whether or not any com-
putation by a TM, T will ever halt when a description d

T

of T and tape t of T is given. That means the input to
machine M, will be (machine, tape) pair. Then for every
input (t, dT) to M

I
 if T halt for input t, M

I
 also halts which

is called accept halt.

Similarly if T does not halt for input t then the M1 will
halt which is called reject halt.

Accept halt

Input

(t, dT)

When
T halt for t

When
T does not

halt for t

Reject halt

M1

 • Consider another Turing Machine, M2 which takes an
input d

T
. It first copies d

T
 on its tape and then this dupli-

cated tape information is given as input to M1. But M1 is
a modified machine.

Input ModifiedCopy T
Loops

T halt for
input t = dT

T does not
halt for
 t = dT

Halt

dT dT, dT

M1

→

Replace T by M
2
 i.e., M

2
 = T

(Input)

M2 halt for
input dM2

dT

M2

Loops

Halt

That’s means, a machine M1, which can tell whether any
other TM will halt on particular input does not exist. Hence
halting problem is unsolvable.

Post’s Correspondence Problem (PCP)
The Undecidability of strings is determined with the help of
Post’s Correspondence Problem (PCP).

‘The PCP consists of two lists of strings that are of equal
length over the input ∑. The two lists are A = w1, w2, w3, …
w

n
 and B = x1, x2, … x

n
 then there exists a non-empty set of

integers i1, i2, … i
n
 such that w1, w2, … w

n
 = x1, x2, … x

n
’.

To solve PCP, try all the combinations of i1, i2, … i
n
 to

find the w
i
 = x

i
 then, PCP has a solution.

Example 4: What is the solution for the following system
of post correspondence problem. A = {100, 0, 1} B = {1,
100, 00}
(A) 1113322 (B) 1311322
(C) 2233111 (D) No solution

Solution: (B)
The string is:
A1A3A1A1A3A2A2 = 100 + 1 + 100 + 100 + 1 + 0 + 0 =
1001100100100,

B1B3B1B1B3B2B2 = 1 + 00 + 1 + 1 + 00 + 100 + 100 =
1001100100100.

probLeMs

 • P stands for deterministic polynomial time. A deterministic
machine at each time executes an instruction. Depending
on instruction, it then goes to next state which is unique.
Hence, time complexity of deterministic TM is the maxi-
mum number of moves made by M in processing an input
string of length n, taken over all inputs of length n.

 • A language, L is said to be in class P, if ∃ a (determinis-
tic) TM, M is of time complexity P (n) for some polyno-
mial P and M accepts L.

 • Class P consists of those problems that are solvable in
polynomial time by a deterministic TM.

Chapter 3 • Recursively Enumerable Sets and Turing Machines, Decidability | 5.43

np probLeMs
 • NP stands for non-deterministic polynomial time.
 • A language, L is in class NP, if there is a non-deterministic

TM, M is of time complexity P(n) for some polynomial
P and M accepts L.

 • Class NP consists of problems for which solutions are
verified quickly. P consist of problems which can be
solved quickly.

P

NP

 • NP languages are closed under union, Intersection, con-
catenation, Kleen star.

 • NP problems are classified into two types:
 1. NP-complete
 2. NP-hard problems.

Example: Vertex (Graph) coloring problem, Travelling
salesman problem, the vertex cover problem, the Hamiltonian
circuit problem.

np-coMpLete probLeM
 • A class of problems are known as NP-complete problems

whose status is unknown. No polynomial time has yet
been discovered for NP-complete problems nor has any
one been able to prove that no polynomial time exists for
any of them. These are hardest of NP-problems. The P
and NP-complete problems are disjoint.

Example: (Cook’s Theorem) SAT is NP-complete, Bin
packing problem, Knapsack Problem.

 • A language L is said to be NP-complete if L ∈ NP and if
every LI ∈ NP is polynomial-time reducible to L.
A language L1 is said to be polynomial time reducible to

some language L2 if there exists a DTM by which any w1 in
the alphabet of L1 can be transformed in polynomial time to
a w2 in the alphabet of L2 in such a way that w1 ∈ L1 if w2
∈ L2. It follows that if some L1 is NP-complete and polyno-
mial time reducible to L2, then L2 is also NP-complete.

np-hard probLeM

P

NP

NP - complete

NP - hard

 • A problem that is NP-hard has a property that all problems
that are in NP can be reduced in polynomial time to it.

 • A language, L in NP-hard complete if and only if,
Condition 1: For every language, LI in NP, there is a poly-
nomial time reduction of LI to L.

Condition 2: L is not necessarily in NP.

Table 1 NP-Hard versus NP-complete problems:

NP-Hard NP-Complete

(1) A decision problem Pi is
NP-hard if every problem
in NP is polynomial time
reducible to Pi.

(1) A Decision problem Pi is
NP-complete if it is NP-hard
and is also in class NP itself.

(2) In terms of symbols ‘Pi’
is NP-hard if for every Pj
→ NP

(2) In terms of symbols, ‘Pi’ is
NP-complete, if Pi is NP-hard
and Pj → NP

(3) Pi is ‘as hard as’ all the
problem in NP

(3) Pi is one of the hardest prob-
lems in NP

(4) If any problem in NP
is proved intractable,
then Pi must also be
intractable

(4) If any one ever shows that
as NP-complete problem is
also intractable, then every
NP-complete problem is also
intractable.

Example 5: Which of following is FALSE?
(A) {< x, y > | x and y are integers, gcd (x, y) = 1} is a NP

class problem.
(B) CLIQUE is a NP class problem.
(C) Eulerian PATH is a P class problem
(D) Dijkstra’s algorithm is a problem in P.
Solution: (A)
Choice (A) is a P class problem.
Consider the following table:

D – Decidable, U – Undecidable,? – Open
question,T – Trivially Decidable Question Regular Sets DCFL’s CFL’s CSL’s

Recursive
Sets

Recursively
Enumerable Sets

(1) Membership problem? D D D D D D
(2) Emptiness problem? D D D U U U

(3) Completeness problem is L = ∑*? D D D U U U

(4) Equality problem? D ? U U U U

(5) Subset problem is L1 ⊆ L2? D U U U U U

(6) Is L Regular? T D U U U U

(7) Is the intersection of two languages, a lan-
guage, of the same type?

T U U T T T

(8) Is the complement of a language, also a lan-
guage of the same type?

T T U ? T U

(9) Is L is finite or infinite? D D D U U U

5.44 | Unit 5 • Theory of Computation

Table 2 Closure properties of formal languages

Regular sets DCFL’S CFL’S CSL’S Recursive sets
Recursively

enumerable sets

(1) Union Y N Y Y Y Y

(2) Concatenation Y N Y Y Y Y

(3) Kleen star Y N Y Y Y Y

(4) Intersection Y N N Y Y Y

(5) Complementation Y Y N Y Y N

(6) Homomorphism Y N Y N N Y

(7) Inverse Homomorphism Y Y Y Y Y Y

(8) Reversal Y N Y Y Y Y

(9) Substitution Y N Y Y N Y

(10) Intersection with regular ets Y Y Y Y Y Y

exercises

Practice Problems 1
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.
 1. The TM M over ∑ = {1} is given below

q0

q1

q2

q3

1/1, R

1/1, R

1/1, L

1/b, L

b/b, L

b/b, L
b/1, R

b/b, R
q4

 What does M generate?
 (A) The output is total recursive multiplication

function.
 (B) The output is addition of two integers.
 (C) The output is subtraction of two integers.
 (D) The output should be w

1
w

2
 if input = (w

1
w

2
) a pair

of words.

 2. Consider language,

 A = {<M>: M is a DFA which doesn’t accept any string
containing odd number 1’s}

 Which of following is true about A?
 (A) A is Trivially decidable (B) A is undecidable
 (C) A is decidable (D) None of these

 3. Consider EQ
CFG

= {<G
1
G

2
>: G

1
, G

2
 are CFGs and L (G

1
)

= L (G
2
)}. Which of following is true about EQ

CFG
?

 (A) Recognizable (B) Co-Recognizable
 (C) Un-recognizable (D) None of the above.

 4. A language is given as INFINITE
DFA
= {<A>: A is a

DFA and L (A) is an infinite language}. Which of fol-
lowing is true?

 (A) Un-decidable (B) Decidable
 (C) Trivially decidable (D) None of above.

 5. A TM designed over an alphabet {0, 1, #}, where 0
indicates blank, which takes a non-null string of 1’s and
#‘s and transfer’s the right-most symbol to the left-most
end contains-states. (Ex: 000#1#1#1000 … becomes
0001#1#1#000)

 (A) 4 (B) 3
 (C) 6 (D) 5.

 6. Which of following statements are true?
 (i) Let K, L be decidable languages. The concatenation

of languages, K, L is also decidable language.

 (ii) Let L be Turing recognizable language. Then the
complement, L1 is also Turing recognizable language.

 (A) (i) and (ii) (B) Only (ii)
 (C) Both are false (D) Only (i)

 7. Let T
i
: denote i th TM. Given, X determines whether X∈

S, Where the set S is defined inductively as follows: If
u ∈ S, then u2 + 1, 3u + 2 and u! are all members of
S. Which of following is true about the given decision
problem?

 (A) Decidable (B) Un-decidable
 (C) Trivially decidable (D) No solution.

 8. Fermat’s last theorem asserts that there are no integer
solution (x, y, z, n) to equation xn + yn = zn satisfying x, y
> 0 and n > 2. Which of the following is true regarding
the halting problem?

 (A) Decidable
 (C) Un-decidable
 (C) Trivially decidable
 (D) May or may not have solution.

Chapter 3 • Recursively Enumerable Sets and Turing Machines, Decidability | 5.45

 9. The TM, T is designed as

q0 q1 q2

q3

y/y, R

y/y, R
x/x, L

B
B

y/y, L

1/y, L

0/0, L

x/x, R

0/x, R 0/x, R
0/0, R

q4

q5

q6

y/y, R

 Which of following is true?
 (A) T halts on 0n1n, n ≥ 0
 (B) T halts on (01) (0n 1n), n ≥ 0

 (C) T halts on 0 1 0
2 2n n n, ≥

 (D) T halts on 02n1n , n ≥ 0

 10. Design TM, which reads an input and starts inverting
0’s to 1’s till the first 1. The first 1 also inverted. After it
has inverted first 1, it read the next symbols and keeps
them as they are till the next 1. After encountering 1, it
starts repeating the cycle by inverting the symbol till
next 1. It halts when it encounters a blank symbol?

 (A) q0 q1

q2

B/B, R

0/1, R

1/0, R

 (B)

B/B, RB/B, R

0/0, R0/0, R

1/1, R

1/1, Rq0 q1

q2

 (C)

q0 q1

q2

B/B, R

0/1, R

1/1, R

0/0, R

1/0, R

 (D)

q0 q1

q2

B/B, RB/B, R

0/0, R0/1, R

1/1, R

1/0, R

 11. Consider three problems, P
1
, P

2
 and P

3
. It is known that

P
1
 has polynomial time solution, P

2
 is NP-complete

and P
3
 is in NP. Which one of the following is true?

 (A) P
3
 has polynomial time solution if P

1
 is polyno-

mial time reducible to P
3
.

 (B) P
3
 is NP-complete if P

3
 is polynomial time reduc-

ible to P
2
.

 (C) P
3
 is NP complete if P

2
 is reducible to P

3

 (D) P
3
 has polynomial time complexity and P

3
 is re-

ducible to P
2
.

 12. Let FHAM be the problem of finding a Hamiltonian
cycle in a graph G and DHAM be the problem of deter-
mining if a Hamiltonian cycle exists in a graph. Which
one of the following is true?

 (A) Both FHAM and DHAM are NP-hard.
 (B) FHAM is NP-hard, but DHAM is not.
 (C) DHAM is NP-hard but FHAM is not.
 (D) Neither DHAM nor FHAM is NP-hard.

 13. The solution for the system of post correspondence
problem, A = {ba, abb, bab}, B = {bab, bb, abb} is

 (A) 1312212 (B) 15234434
 (C) 1311322 (D) No solution.

 14. A language, prefix_free REX = {R/R is a regular
expression where L(R) is prefix_free}. Which of fol-
lowing is true about prefix _free REX?

 (A) Decidable
 (B) Un-decidable
 (C) Trivially decidable.
 (D) Can’t be determined.

 15. The TM, M is designed as:

1 2

3

4

5

78

6

0

a → a, L
c → c, L
b → b, L
x → x, L

c → x, R
c → x, R

c → x, R

* → *, R

* → *, R

x → x, R

a → x, R

a → a, R

b → x, R

b → x, R

B → B, R

b → b, R

x → x, R

 Which of following is true about M?

 (A) M is designed for a b c nn n n, ≥ 0

 (B) M is designed for a b c nn n n2 3 4

0, ≥
 (C) M is designed for an bn+1 cn+2, n ≥ 0
 (D) M is designed for an bn cn, n > 0

5.46 | Unit 5 • Theory of Computation

Practice Problems 2
Directions for questions 1 to 15: Select the correct alterna-
tive from the given choices.

 1. Consider the language, Aε
–CFG

 = {<G>: G is a CFG that
generatesε}. Which of the following is true?

 (A) Undecidable
 (B) Decidable
 (C) Trivially decidable.
 (D) None of the above.

 2. The TM is designed with input and output as binary
form. (# represents blank). The turing machine TM (M)
is

0 1 #

q0 (q1, 0, R) (q, 1, R) φ

q1 (q1, 0, R) (q, 1, R) (q2, #, L)

q2 (q3, #, L) (q3, #, L) φ

q3 (q3, 0, L) (q3, 1, L) (q4, #, L)

q4 φ φ φ

 Which of following is true?

 (A) M accepts 2n
 (B) M accepts n2

 (C) M replaces left most symbol with #
 (D) M replaces right most symbol with #

 3. The TM is designed with 3-characters 0, 1, # to com-
pute function f (n) = 2n. Input and output are to be in
binary form and string represented by ‘n’ is enclosed
between two #’s on left and right of it. b is blank
symbol. TM contains _____ states.

 (A) 4 (B) 3
 (C) 2 (D) 1

 4. The language {1n | n is a prime number} is
 (A) Undecidable
 (B) Decidable
 (C) Trivially decidable
 (D) None of the above

 5. Which of following statement(s) are true?

 (i) Let L be Turing decidable language. Then the com-
plement L is also Turing decidable language.

 (ii) Let K and L be two Turing recognizable languages.
The intersection, K ∩ L is also Turing recognizable
language.

 (A) Both (i) and (ii)
 (B) Only (i)
 (C) Only (ii)
 (D) Neither (i) nor (ii) are true.

 6. For the following two-way infinite TM, the equivalent
one-way TM contains _____ states.

q0 q1 qf

b/1, R

1/1, L
1/1, R

b/1, L

 (A) 7 (B) 6
 (C) 5 (D) 4

 7. L contains at least two strings. Which of following is
true?

 (A) L has recursively enumerable sets and recursive.
 (B) L is recursive.
 (C) L has recursively enumerable sets but not recursive.
 (D) L does not contain recursively enumerable sets and

also is not recursive.

 8. Consider the following TM:

Input

State 0 1 B

→ q0

(q0, 1, R) (q0, 0, R) (q1, B, R)

q1 – – –

 What does TM generates?
 (A) It display’s the negative of given binary number.
 (B) It computes one’s complement of a binary number.
 (C) It computes two’s complement of a binary number
 (D) It generates double the 0’s as 1’s.

 9. Consider the following TM, M:

q0 q1

a/a, L

B/B, LB/B, R

B/B, R a/B, R

b/B, L

b/b, R

b/b, R

a/a, R

q2q3

q4

 Which of following is true?
 (A) M halts on an+1 bn, n ≥ 0.
 (B) M halts on a b nn n2 3

0, . ≥
 (C) M halts on (ab) (an), n ≥ 0.
 (D) M halts on an bn, n ≥ 0.

 10. A TM, M is designed generates language

 L a b n n mn m= ≥ ≠{ : }. and 1 The number of states

used are ________
 (A) 5 (B) 6
 (C) 7 (D) 4

Chapter 3 • Recursively Enumerable Sets and Turing Machines, Decidability | 5.47

 11. Consider three decision problems p
1
, p

2
 and p

3
. It is

known that p
1
 is decidable, p

2
 is undecidable. Which

one of following is true?
 (A) p

3
 is decidable if p

1
 is reducible to p

3

 (B) p
3
 is undecidable if p

3
 is reducible to p

2

 (C) p
3
 is undecidable if p

2
 is reducible to p

3

 (D) p
3
 is decidable if p

3
 is reducible to p

2
’s complement.

 12. Which one of following is not decidable?
 (A) Given a TM, M, a string S, and an integer K, M ac-

cepts S with in K-steps.
 (B) Equivalence of two given Turing machines.
 (C) Language accepted by a given DFSA is non-empty.
 (D) Language accepted by a CFG is non-empty.

 13. What is the solution for the correspondence system
with two lists x = {b, bab3, ba} and y = {b3, ba, a}

 (A) 1312213 (B) 2113
 (C) 3112 (D) No solution.

 14. Given a Turing machine M, a state ‘q‘and a string ‘w’.
To determine whether M ever reaches state q when
started with input w from its initial state is?

 (A) Decidable
 (B) Un-decidable
 (C) Trivially decidable.
 (D) Can not be determined.

 15. Given a Turing machine, M to determine whether M ever
moves its head to the left when started with input W is:

 (A) Decidable
 (B) Un-decidable
 (C) Trivially decidable.
 (D) Can not be determined.

 1. For s ∈ (0 + 1)*, let d(s) denote the decimal value of
s (e.g., d (101) = 5). [2006]

 Let L = {s ∈ (0 + 1)*|d(s) mod 5 = 2 and d(s) mod 7 ≠ 4}

 Which one of the following statements is true?
 (A) L is recursively enumerable, but not recursive
 (B) L is recursive, but not context-free
 (C) L is context-free, but not regular
 (D) L is regular

 2. Which of the following is true for the language {ap | p
is a prime}? [2008]

 (A) It is not accepted by a Turing Machine
 (B) It is regular but not context-free
 (C) It is context-free but not regular
 (D) It is neither regular nor context-free, but accept-

ed by a Turing machine

 3. If L and L are recursively enumerable then L is [2008]
 (A) regular
 (B) context-free
 (C) context-sensitive
 (D) recursive

 4. Let L = L
1
 ∩ L

2
, where L

1
 and L

2
 are languages as

defined below:

 L a b c a b m nm m n n
1 0= ≥{ | , }

 L a b c i j ki j k
2 0= ≥{ | , , }

 Then L is [2009]
 (A) Not recursive
 (B) Regular
 (C) Context free but not regular
 (D) Recursively enumerable but not context free.

 5. Let L
1
 be a recursive language. Let L

2
 and L

3
 be

languages that are recursively enumerable but not
recursive. Which of the following statements is not
necessarily true? [2010]

 (A) L
2
 – L

1
 is recursively enumerable

 (B) L
1
 – L

3
 is recursively enumerable

 (C) L
2
 ∩ L

1
 is recursively enumerable

 (D) L
2
 ∪ L

1
 is recursively enumerable

 6. Which of the following statements is/are FALSE?
 [2013]
 1. For every non-deterministic Turing machine, there

exists an equivalent deterministic Turing machine.
 2. Turing recognizable languages are closed under un-

ion and complementation.
 3. Turing decidable languages are closed under inter-

section and complementation.
 4. Turing recognizable languages are closed under

union and intersection.
 (A) 1 and 4 only (B) 1 and 3 only
 (C) 2 only (D) 3 only

 7. Let L be a language and L be its complement. Which
one of the following is NOT a viable possibility?

 [2014]
 (A) Neither L nor L is recursively enumerable (r. e)

 (B) One of L and L is r.e. but not recursive, the other
is not r. e.

 (C) Both L L and are r.e. but not recursive

 (D) Both L L and are recursive

 8. Let A ≤
m
 B denotes that language A is mapping reduc-

ible (also known as many-to-one reducible) to lan-
guage B. Which one of the following is FALSE?

 [2014]
 (A) If A ≤

m
 B and B is recursive then A is recursive.

 (B) If A ≤
m
 B and A is undecidable then B is undecid-

able.
 (C) If A ≤

m
 B and B is recursively enumerable then A

is recursively enumerable.

previous years’ Questions

5.48 | Unit 5 • Theory of Computation

 (D) If A ≤
m
 B and B is not recursively enumerable

then A is not recursively enumerable.

 9. Let <M> be the encoding of a Turing machine as a
string over ∑ = {0, 1}. Let L = {<M>|M is a Turing
machine that accepts a string of length 2014}. Then, L
is

 (A) Decidable and recursively enumerable
 (B) Undesirable but recursively enumerable
 (C) Undesirable and not recursively enumerable
 (D) Decidable but not recursively enumerable

 10. For any two languages L
1
 and L

2
 such that L

1
 is con-

text-free and L
2
 is recursively enumerable but not

recursive, which of the following is/are necessarily
true? [2015]

 I. L1 (complement of L
1
) is recursive

 II. L2 (complement of L
2
) is recursive

 III. L1 is context-free

 IV. L1 ∪ L
2
 is recursively enumerable

 (A) I only (B) III only
 (C) III and IV only (D) I and IV only

 11. Consider the following statements.

 I. The complement of every Turning decidable lan-
guage is Turing decidable.

 II. There exists some language which is in NP but is
not Turing decidable.

 III. If L is a language in NP, L is Turing decidable.

 Which of the above statements is/are true? [2015]
 (A) Only II (B) Only III
 (C) Only I and II (D) Only I and III

 12. Let X be a recursive language and Y be a recursively
enumerable but not recursive language. Let W and Z
be two languages such that y reduces to W, and Z
reduces to x (reduction means the standard many-
one reduction). Which one of the following state-
ments is TRUE? [2016]

 (A) W can be recursively enumerable and Z is recur-
sive.

 (B) W can be recursive and Z is recursively enumer-
able.

 (C) W is not recursively enumerable and Z is recur-
sive.

 (D) W is not recursively enumerable and Z is not re-
cursive.

 13. Consider the following types of languages: L
1
:

Regular, L
2
: Context - free, L

3
: Recursive, L

4
:

Recursively enumerable. Which of the following is /
are TRUE? [2016]

 I. L3∪ L4
 is recursively enumerable

 II. L 2∪ L
3
 is recursive

 III. L*
1
 ∩ L

2
 is context - free

 IV. L
1
 ∪ L 2 is context - free

 (A) I only (B) I and III only
 (C) I and IV only (D) I, II and III only

 14. Consider the following languages. [2016]

 L
1
= {<M> | M takes at least 2016 steps on some

input},
 L

2
= {<M> | M takes at least 2016 steps on all inputs}

and
 L

1
= {<M> | M accepts ε}

 where for each Turing machine M, <M> denotes a
specific encoding of M. Which one of the following is
TRUE?

 (A) L
1
 is recursive and L

2
, L

3
 are not recursive

 (B) L
2
 is recursive and L

1
, L

3
 are not recursive

 (C) L
1
, L

2
 are recursive L

3
 is not recursive

 (D) L
1
, L

2
, L

3
 are recursive

 15. Let A and B be finite alphabets and let  # be a symbol
outside both A and B. Let f be a total function from A*
to B*. We say f is computable if there exists a turning
machine M which given an input x in A*, always halts
with f(x) on its tape. Let L

f
 denote the language {x #

f(x)| x ∈ A*}. Which of the following statements is
true: [2017]

 (A) f is computable if and only if L
f
 is recursive.

 (B) f is computable if and only if L
f
is recursively

enumerable.
 (C) If f is computable then L

f
 is recursive, but not

conversely.
 (D) If f is computable then L

f
is recursively enumer-

able, but not conversely.

 16. Let L(R) be the language represented by regular
expression R. Let L(G) be the language generated by
a context free grammar G. Let L(M) be the language
accepted by a Turing machine M. Which of the fol-
lowing decision problems are undecidable? [2017]

 I. Given a regular expression R and a string w, is w
∈ L(R)?

 II. Given a context-free grammar G, is L(G) = Ø ?
 III. Given a context-free grammar G, is L(G) = ∑*

for some alphabet ∑ ?
 IV. Given a Turing machine M and a string w, is w ∈

L(M)?
 (A) I and IV only (B) II and III only
 (C) II, III and IV only (D) III and IV only

 17. The set of all recursively enumerable languages is:
 [2018]
(A) Closed under complementation.
(B) Closed under intersection.
(C) A subset of the set of all recursive languages.
(D) An uncountable set.

Chapter 3 • Recursively Enumerable Sets and Turing Machines, Decidability | 5.49

answer Keys

exercises

Practice Problems 1
 1. D 2. C 3. B 4. B 5. D 6. D 7. A 8. D 9. D 10. D
 11. C 12. A 13. D 14. A 15. C

Practice Problems 2
 1. B 2. D 3. B 4. B 5. A 6. B 7. C 8. B 9. D 10. B
 11. C 12. B 13. B 14. B 15. A

Previous Years’ Questions

 1. D 2. D 3. D 4. C 5. B 6. C 7. C 8. D 9. B 10. D

 11. D 12. C 13. D 14. C 15. A 16. D 17. B 18. D

 18. Consider the following problems. L(G) denotes the
language generated by a grammar G. L(M) denotes
the language accepted by a machine M.
(I) For an unrestricted grammar G and a string w,

whether w ∈ L(G)
(II) Given a Turing machine M, whether L(M) is reg-

ular
(III) Given two grammars G

1
 and G

2
, whether L(G

1
)

= L(G
2
)

(IV) Given and NFA N, whether there is a determin-
istic PDA P such that N and P accept the same
language.

 Which one of the following statements is correct?
 [2018]
(A) Only I and II are undecidable
(B) Only III is undecidable
(C) Only II and IV are undecidable
(D) Only I, II and III are undecidable

	Unit 5: Theory of Computation
	Chapter 3: Recursively Enumerable Sets and Turing Machines, Decidability
	Turing Machines
	Languages Accepted by a TM
	Types of Turing Machines
	Recursively Enumerable Languages
	Properties of Recursive and Recursively Enumerable Languages
	Undecidability
	Problems
	NP Problems
	NP-Complete Problem
	NP-Hard Problem
	Exercises
	Previous Years’ Questions
	Answer Keys

