
Chapter 4

Code Optimization

coDE optiMiZation basics
The process of improving the intermediate code and the target
code in terms of both speed and the amount of memory required
for execution is known as code optimization.

Compilers that apply code–improving transformations are
called optimizing compilers.

Properties of the transformations of an
optimizing compiler are

1. A transformation must preserve the meaning of programs.
 2. It must speed up programs by a measurable amount.
 3. A transformation must be worth the effort.

Places for improvements
1. Source Code:

 User can – profi le a program
 – change an algorithm
 – transform loops

 2. Intermediate code can be improved by improving
 – Loops
 – Procedure calls
 – Address calculations

3. Target code can be improved by
 – Using registers
 – Selecting instructions
 – Peephole transformations

Optimizing compiler organization
This applies
 • Control fl ow analysis
 • Data fl ow analysis
 • Transformations

Issues in design of code optimization The issues in the design of
code optimization are
 1. Target machine characteristics
 2. Target CPU architecture
 3. Functional units

Target machine Optimization is done, according to the target
machine characteristics. Altering the machine description param-
eters, one can optimize single piece of compiler code.

Target CPU architecture The issues to be considered for the opti-
mization with respect to CPU architecture
 1. Number of CPU registers
 2. RISC Instruction set
 3. CISC instruction set
 4. Pipelining

Functional units Based on number of functional units, optimiza-
tion is done. So that instructions can be executed simultaneously.

principLE sourcEs oF optiMiZation
Some code improving transformation is Local transformations and
some are Global transformations.

  Code optimization basics

  Principle sources of optimization

  Loop invariant code motion

  Strength reduction on induction variables

  Loops in fl ow graphs

  Pre-header

  Global data fl ow analysis

  Defi nition and usage of variables

  Use-defi nition (u-d) chaining

  Data fl ow equations

LEARNING OBJECTIVES

Chapter 4  •  Code Optimization  |  6.57

Local Transformations can be performed by looking
only at a statement in a basic block. Otherwise it is global
transformation.

Function Preserving Transformations
These transformations improve the program without chang-
ing the function it computes. Some of these transformations
are

	 1.	 Common sub expression elimination
	 2.	 Copy propagation
	 3.	 Dead-code elimination
	 4.	 Loop optimization
		 - Code motion
		 - Induction variable elimination
		 - Reduction in strength

Common sub expression elimination  The process of iden-
tifying common sub expressions and eliminating their com-
putation multiple times is known as common sub expression
elimination.

Example:  Consider the following program segment:

int sum_n, sum_n2, sum_n3;

int sum (int n)

{

Sum_n = ((n)*(n+1))/2;
sum_n2 = ((n)*(n+1)*(2n+1))/6;
sum_n3 = (((n)*(n+1))/2)*(((n)*(n+1))/2;
}

Three Address code for the above input is

	(0)	 Proc-begin sum
	(1)	 t

0
: = n + 1

	(2)	 t
1
: = n * t

0

	(3)	 t
2
: = t

1
/2

	(4)	 sum_n = t
2

	(5)	 t
3
: = n + 1

	(6)	 t
4
: = n * t

3

	(7)	 t
5
: 2 * n

	(8)	 t
6
: = t

5
 + 1

	(9)	 t
7
: = t

4
 * t

6

	(10)	 t
8
: = t

7
/6

	(11)	sum_n
2
: = t

8

	(12)	 t
9
: = n + 1

	(13)	 t
10

: n * t
9

	(14)	 t
11

: t
10

/2
	(15)	 t

12
: = n + 1

	(16)	 t
13

: = n * t
12

	(17)	 t
14

: = t
13

/2
	(18)	 t

15
: = t

11
 * t

14

	(19)	sum_n
3
: = t

15

	(20)	label L
o

	(21)	Proc end sum

The computations made in quadruples
(1) – (3), (12) – (14), (15) – (17) are essentially same.

That is, ((n)*(n + 1))/2 is computed.
It is the common sub expression.
This common sub expression is computed four times in

the above example.
It is possible to optimize the code to have common sub

expressions computed only once and then reuse the com-
puted values further.

∴ Optimized intermediate code will be

	 (0)	 proc-begin sum
	(1)	 t

0
: = n + 1

	(2)	 t
1
: = n * t

0

	(3)	 sultan: = t
1
/2

	(4)	 t
5
: = 2 * n

	(5)	 t
6
: = t

5
+ 1

	(6)	 t
7
: = t

1
 * t

6

	(7)	 sum_n2: = t
7
/6

	(8)	 sum_n3: sum_n * sum_n
	(9)	 proc-end sum

Constant folding  The constant expressions in the input
source are evaluated and replaced by the equivalent values
at the time of compilation.

For example 10*3, 6 + 101 are constant expressions and
they are replaced by 30, 107 respectively.

Example:  Consider the following ‘C’ code:
int arr1 [10];
int main ()
{

arr1 [0] = 3;
arr1 [1] = 4;

}
Unoptimized three address code equivalent to the above ‘C’
code is

	(0)	 proc-begin main
	(1)	 t

0
: = 0*4

	(2)	 t
1
: = &arr1

	(3)	 t
1
 [t

0
]: = 3

	(4)	 t
2
: = 1*4

	(5)	 t
3
: = &arr1

	(6)	 t
3
 [t

2
]: = 4

	(7)	 Label L
0

	(8)	 Proc – end main

In the above code, 0*4 is a constant expression its value
= 0. 1*4 is a constant expression, its value = 4.

∴ After applying constant folding, optimized code will be

	(0)	 proc-begin main
	(1)	 t

0
: = 0

	(2)	 t
1
: = &arr1

	(3)	 t
1
 [t

0
]: = 3

	(4)	 t
2
: = 4

6.58  |  Unit 6  •  Compiler Design

	(5)	 t
3
: = &arr1

	(6)	 t
3
 [t

2
]: = 4

	(7)	 label L
0

	(8)	 proc – end main

Copy propagation  In copy propagation, if there is an
expression x = y then use the variable ‘y’ instead of ‘x’. This
propagated in the statements following x = y.

Example:  In the previous example, there are two copy
statements.

	(1)	 t
0
 = 0

	(2)	 t
2
 = 4

After applying copy propagation, the optimized code will be

	(0)	 proc-begin main
	(1)	 t

0
: = 0

	(2)	 t
1
: = &arr1

	(3)	 t
1
 [0]: = 3

	(4)	 t
2
: = 4

	(5)	 t
3
: = &arr1

	(6)	 t
3
 [4]: = 4

	(7)	 Label L
0

	(8)	 proc-end main

In the three address code shown above, quadruples (1)
and (4) are no longer used in any of the following statements.

∴ (1) and (4) can be eliminated.

Three address code after dead store elimination

	(0)	 proc-begin main
	(1)	 t

1
: = &arr1

	(2)	 t
1
 [0]: = 3

	(3)	 t
3
: = &arr1

	(4)	 t
3
 [4]: = 4

	(5)	 Label L
0

	(6)	 proc-end main

In the above example, we are propagating constant val-
ues. It is also known as constant propagation.

Variable propagation  Propagating another variable instead
of the existing one is known as variable propagation.

Example:  int func(int a, int b, int c)
{	
   int d, e, f;
   d = a;
   If (a > 10)
   {
	 e = d + b;
   }
   Else
   {
	 e = d + c;
   }
   f = d*e;
   return (f);
}

Three address code (unoptimized):

	(0)	 proc-begin func

	 () :1 d a=

	(2)	 if a >10 goto L
0

	(3)	 goto L
1

	(4)	 label : L
0

	 () :5 e d b= +

	(6)	 goto L
2

	(7)	 label : L
1

	 () :8 e d c= +

	(9)	 label : L
2

() : *10 f d e=

(11)	return f
(12)	goto L

3

(13)	label : L
3

(14)	proc-end func

Three address code after variable (copy) propagation:

	(0)	 proc-begin func
	(1)	 d: = a
	(2)	 If a >10 goto .L

0

	(3)	 goto L
1

	(4)	 label: L
0

	(5)	 e: = a + b
	(6)	 goto L

2

	(7)	 label: L
1

	(8)	 e: = a + c
	(9)	 label: L

2

	(10)	 f: = a*e
	(11)	return f
	(12)	goto L

3

	(13)	label: L
3

	(14)	proc-end func

After dead store elimination:
In the above code (1) d: = a is no more used
∴ Eliminate the dead store d: = a

	(0)	 proc-begin func
	(1)	 If a > 10 goto L

0

	(2)	 goto L
1

	(3)	 label: L
0

	(4)	 e: = a + b
	(5)	 goto L

2

	(6)	 label: L
1

	(7)	 e: a + c
	(8)	 label: L

2

	(9)	 f: = a*e
	(10)	return f
	(11)	goto L

3

	(12)	label: L
3

	(13)	proc-end func

Chapter 4  •  Code Optimization  |  6.59

Dead code elimination  Eliminating the code that never
gets executed by the program is known as Dead code
elimination. It reduces the memory required by the program

Example:  Consider the following Unoptimized Interme
diate code:

	(0)	 proc-begin func
	(1)	 debug: = 0
	(2)	 If debug = = 1 goto L

0

	(3)	 goto L
1

	(4)	 label: L
0

	(5)	 param c
	(6)	 param b
	(7)	 param a
	(8)	 param lc1
	(9)	 call printf 16
	(10)	retrieve to
	(11)	label: L

1

	(12)	 t
1
: = a + b

	(13)	 t
2
: = t

1
 + c

	(14)	v
1
: = t

2

	(15)	Return v
1

	(16)	goto L
2

	(17)	label: L
2

	(18)	proc-end func

In copy propagation, debug is replaced with 0, wherever
debug is used after that assignment.

∴ Statement 2 will be changed as

If 0 = = 1 goto L
0

0 = = 1, always returns false.

∴ The control cannot flow to label: L
0

This makes the statements (4) through (10) as dead
code. (2) Can also be removed as part of dead code elimina-
tion. (1) Cannot be eliminated, because ‘debug’ is a global
variable. The optimized code after elimination of dead code
is shown below.

	 (0)	 proc-begin func
	(1)	 debug: = 0
	(2)	 goto L

1

	(3)	 label: L
1

	(4)	 t
1
: = a + b

	(5)	 t
2
: = t

1
 + c

	(6)	 v
1
: = t

2

	(7)	 return v
1

	(8)	 goto L
2

	(9)	 label: L
2

	(10)	proc-end func

Algebraic transformations  We can use algebraic identities
to optimize the code further. For example
Additive Identity: a + 0 = a
Multiplicative Identity: a*1 = a
Multiplication with 0: a*0 = 0

Example:  Consider the following code fragment:

struct mystruct
{
int a [20];
int b;
} xyz;
int func(int i)
{
xyz.a[i] = 34;
}

The Unoptimized three address code:

	(0)	 proc-begin func
	(1)	 t

0
: = &xyz

(2)  t
1
: = 0

	(3)	 t
2
: = i*4

	(4)	 t
1
: = t

2
 + t

1

	(5)	 t
0
 [t

1
] = 34

	(6)	 label: L
0

	(7)	 proc-end func

Optimized code after copy propagation and dead code elim-
ination is shown below:

The statement t
1
: = 0 is eliminated.

	(0)	 proc-being func
	(1)	 t

0
 =: = &xyz

	(2)	 t
2
: = i*4

() :3 01 2t t= +

	(4)	 t
0
 [t

1
]: = 34

	(5)	 label: L
0

	(6)	 proc-end func

After applying additive identity:

	 (0)	 proc-begin func
	(1)	 t

0
: = &xyz

	(2)	 t
2
: = i*4

() :3 1 2t t=

	(4)	 t
0
 [t

1
]: = 34

	(5)	 label: L
0

	(6)	 proc-end func

After copy propagation and dead store elimination:

	(0)	 proc-begin func
	(1)	 t

0
: = &xyz

	(2)	 t
2
 : = i*4

	(3)	 t
0
 [t

2
]: = 34

	(4)	 label: L
0

	(5)	 proc-end func

Strength reduction transformation  This transformation
replaces expensive operators by equivalent cheaper ones on
the target machine.

6.60  |  Unit 6  •  Compiler Design

For example y: = x*2 is replaced by y: = x + x as addition is
less expensive than multiplication.

Similarly
Replace y: = x*32 by y: = x << 5
Replace y: = x/8 by y: = x >> 3

Loop optimization  We can optimize loops by

	(1)	 Loop invariant code motion transformation.
	(2)	 Strength reduction on induction variable transformation.

Loop invariant code motion
The statements within a loop that compute value, which
do not vary throughout the life of the loop are called loop
invariant statements.

Consider the following program fragment:

int a [100];
int func(int x, int y)
{
int i;
int n1, n2;
i = 0;
n
1
 = x*y;

n
2
 = x – y;

while (a[i] > (n
1
*n

2
))

i = i + 1;
return(i);
}

The Three Address code for above program is

	 (0)	 proc-begin func
	(1)	 i : = 0
	(2)	 n

1
 : = x*y

	(3)	 n
2
 : = x – y

	(4)	 label : L
0

	(5)	 t
2
 : = i*4

() : &6 3t = arr

	(7)	 t
4
 : = t

3
[t

2
]

() : *8 5 1 2t n n=

	(9)	 if t
4
 > t

5
 goto L

1

	(10)	goto L
2

	(11)	label : L
1

	(12)	 i : = i + 1
	(13)	goto L

0

	(14)	label : L
2

	(15)	return i
	(16)	goto L

3

	(17)	label : L
3

	(18)	proc-end func

In the above code statements (6) and (8) are invariant.

After loop invariant code motion transformation the code
will be

	(0)	 proc-begin func
	(1)	 i : = 0
	(2)	 n

1
 : = x*y

	(3)	 n
2
 : = x-y

	(4)	 t
3
 : = &arr

	(5)	 t
5
 : n

1
*n

2

	(6)	 label : L
0

	(7)	 t
2
 : = i*4

	(8)	 t
4
 : = t

3
[t

2
]

	(9)	 if t
4
 > t

5
 goto L

1

	(10)	goto L
2

	(11)	label : L
1

	(12)	 i : = i + 1
	(13)	goto L

0

	(14)	label : L
2

	(15)	return i
	(16)	goto L

3

	(17)	label : L
3

	(18)	proc-end func

Strength reduction on induction variables
Induction variable: A variable that changes by a fixed
quantity on each of the iterations of a loop is an induction
variable.

Example:  Consider the following code fragment:

int i;
int a[20];
int func()
{
   while(i<20)
   {
   a[i] = 10;
   i = i + 1;
   }
}

The three-address code will be

	(0)	 proc-begin func
	(1)	 label : L

0

	(2)	 if i < 20 goto L
1

	(3)	 goto L
2

	(4)	 label : L
1

	(5)	 t
0
 : = i*4

	(6)	 t
1
 : = &a

	(7)	 t
1
[t

0
] : = 10

	(8)	 i : = i + 1
	(9)	 goto L

0

	(10)	label : L
2

	(11)	label : L
3

	(12)	proc-end func

Chapter 4  •  Code Optimization  |  6.61

After reduction of strength the code will be
Here (5) t

0
 = i*4 is moved out of the loop and (8) is followed

by t
0
 = t

0
 + 4.

	(0)	 proc-begin func
	(0a)	 t

0
 : = i*4

	(1)	 label : L
0

	(2)	 if i < 20 goto L
1

	(3)	 goto L
2

	(4)	 label:L
1

	(5)
	(6)	 t

1
 : = &a

	(7)	 t
1
[t

0
] : = 10

	(8)	 i : = i + 1
	(8a)	 t

0
 : = t

0
 + 4

	(9)	 goto L
0

	(10)	label : L
2

	(11)	label : L
3

	(12)	proc-end func

Loops in Flow Graphs
Loops in the code are detected during the data flow analysis
by using the concept called ‘dominators’ in the flow graph.

Dominators
A node d of a flow graph dominates node n, if every path
from the initial node to ‘n’ goes through ‘d’.

It is represented as d dom n.

Notes:
	 1.	 Each and every node dominates itself.
	 2.	 Entry of the loop dominates all nodes in the loop.

Example:  Consider the following code fragment:

int func(int a)
{	
int x, y;
x = a;
y = a;
While (a < 100)
{	
y = y*x;
x = x+1;
}	
return(y);
}

The Three Address code after local optimization will be

	(0)	 proc-begin func
	(1)	 x: = a
	(2)	 y: = a
	(3)	 label: L

0

	(4)	 if a < 100 goto L
1

	(5)	 goto L
2

	(6)	 label: L
1

	(7)	 t
0
: = y*x

	(8)	 y: = t
0

	(9)	 t
1
: = x + 1

	(10)	x: = t
1

	(11)	goto L
0

	(12)	label: L
2

	(13)	return y
	(14)	goto L

3

	(15)	label: L
3

	(16)	proc-end func

The Flow Graph for above code will be:

proc – begin func
x : = a
y : = a

Label: L0
If a < 100 goto L1

goto L2

label : L2
return y
goto L3

Label : L3
proc – end func

label : L1
t0 : = y ∗ x
y : = t0
t1 = x + 1
x = t1
goto L0

B5

B4

B2

B1

B0

B3

To reach B
2
, it must pass through B

1

∴ B
1
 dominates B

2
. Also B

0
 dominates B

2
.

dominators [B
1
] = {B

0
, B1} (or) dominators [1] = {0, 1}

The dominators for each of the nodes in the flow graph
are

dominators [0] = {0}
dominators [1] = {0, 1}
dominators [2] = {0, 1, 2}
dominators [3] = {0, 1, 3}
dominators [4] = {0, 1, 2, 4}
dominators [5] = {0, 1, 2, 4, 5}

Edge
An edge in a flow graph represents a possible flow of control.

In the flow graph, B
0
 to B

1
 edge is represented as 0 → 1.

Head and tail:  In the edge a → b, the node b is called head
and the node a is called as tail.

Back edges:  There are some edges in which dominators
[tail] contains the head.

6.62  |  Unit 6  •  Compiler Design

The presence of a back edge indicates the existence of a
loop in a flow graph.

In the previous graph, 3 → 1 is a back edge.

Consider the following table:

Edge Head Tail
Dominators

[head]
Dominators

[tail]

0 → 1 1 0 {0, 1} {0}

1 → 2 2 1 {0, 1, 2} {0, 1}

1 → 3 3 1 {0, 1, 3} {0, 1}

3 → 1 1 3 {0, 1} {0, 1, 3}

2 → 4 4 2 {0, 1, 2, 4} {0, 1, 2}

4 → 5 5 4 {0, 1, 2, 4, 5} {0, 1, 2, 4}

Example:  Consider below flow graph:

B7

B6B5

B4

B2B1

B0

B3

The dominators of each node are
dominators [0] = {0}
dominators [1] = {0, 1}
dominators [2] = {0, 2}
dominators [3] = {0, 1, 3}
dominators [4] = {0, 2, 4}
dominators [5] = {0, 1, 3, 5}
dominators [6] = {0, 2, 4, 6}
dominators [7] = {0, 7}

Edge Head Tail
Dominators

[head] Dominators [tail]

0 → 1 1 0 {0, 1} {0}

0 → 2 2 0 {0, 2} {0}

1 → 3 3 1 {0, 1, 3} {0, 1}

3 → 1 1 3 {0, 1} {0, 1, 3}

3 → 5 5 3 {0, 1, 3, 5} {0, 1, 3} Backedge

5 → 7 7 5 {0, 7} {0, 1, 3, 5}

2 → 4 4 2 {0, 2, 4} {0, 2}

6 → 2 2 6 {0, 2}
{0, 2, 4, 6}
Backedge

4 → 6 6 4 {0, 2, 4, 6} {0, 2, 4}

6 → 7 7 6 {0, 7} {0, 2, 4, 6}

Here {B
6
, B

2
, B

4
} form a loop (L

1
), {B

3
, B

1
} form another

loop (L
2
)

In a loop, the entry of the loop dominates all nodes in
the loop.

Header of the loop  The entry of the loop is also called as
the header of the loop.

Loop exit block  In loop L
1
 can be exited from the basic

block B
6
. It is called loop exit block. The block B

3
 is the loop

exit block for the loop L
2
. It is possible to have multiple exit

blocks in a loop.

Dominator tree
A tree, which represents dominate information in the form
of tree is a dominator tree. In this,

•• The initial node is the root.
•• Each node d dominates only its descendents in the tree.

Consider the flow graph

1

4

2
3

5 6

7

8

9 10

The dominators of each node are

dominators [1] = {1}
dominators [2] = {1, 2}
dominators [3] = {1, 3}
dominators [4] = {1, 3, 4}
dominators [5] = {1, 3, 4, 5}
dominators [6] = {1, 3, 4, 6}
dominators [7] = {1, 3, 4, 7}
dominators [8] = {1, 3, 4, 7, 8}
dominators [9] = {1, 3, 4, 7, 8, 9}
dominators [10] = {1, 3, 4, 7, 8, 10}

The dominator tree will be:

1

4

2 3

5 6 7

8

9 10

Chapter 4  •  Code Optimization  |  6.63

Pre-header
A pre-header is a basic block introduced during the loop
optimization to hold the statements that are moved from
within the loop. It is a predecessor to the header block.

B7

B6

B6

B4

B2

B2
B1

B1

B0

B0

B3

B3

B5

B5

Header Pre-header

After
pre-header

Header

loop L

loop L

Reducible Flow Graphs
A flow graph G is reducible if and only if we can partition
the edges into two disjoint groups:

	(1)	 Forward edges
	(2)	 Backward edges with the following properties.

		 (i)	� The forward edges form an acyclic graph in which
every node can be reached from the initial node of G.

		 (ii)	� The back edges consist only of edges whose heads
dominates their tails.

Example:  Consider previous flow graph

1

4

2
3

5 6

7

8

9 10

In the above flow graph, there are five back edges

4 → 3, 7 → 4, 8 → 3, 9 → 1 and 10 → 7
Remove all backedges.
The remaining edges must be the forward edges.
The remaining graph is acyclic.

1

4

2
3

5 6

7

8

9
10

∴ It is reducible.

Global Dataflow Analysis
Point: A point is a place of reference that can be found at

	 1.	 Before the first statement in a basic block.
	 2.	 After the last statement in a basic block.
	 3.	 In between two adjacent statements within a basic block.

Example 1:
a. = 10
b. = 20
c. = a * b B

1

Here, In B
1
 there are 4 points

Example 2: • P
1
 – B

1

  proc-begin func
• P

2
– B

1

  v
3
 = v

1
 + v

2

• P
3
 – B

1

   if c > 100 goto L
0

• P
4
 – B

1

B
1

There is 4 point in the basic block B
1
, given by P

1
 – B

1
,

P
2
 – B

1
, P

3
 – B

1
 and P

4
 – B

1
.

Path:  A path is a sequence of points in which the control
can flow.

A path from P
1
 to P

n
 is a sequence of points P

1
, P

2
,…, P

n

such that for each i between 1 and n-1, either

	 (a)	 P
i
 is the point immediately preceding a statement and

P
i+1

 is the point immediately following that statement
in the same block.

		 (OR)

	(b)	 P
i
 is the end of some block and P

i+1
 is the beginning of

a successor block.

6.64  |  Unit 6  •  Compiler Design

Example:

B1

B3

B2

B4

B0

• P3 – b1
 Goto .L1
• P4 – b1

• P0 – b0
 Proc-begin func
• P1 – b0
 v3 : = v1 + v2
• P2 – b0
 If c >100 goto L0
• P3 – b0

• P9 – b4
 Label L1
• P10 – b4
 Proc-end func
• P11 – b4

• P4 – b2
 Label L0
• P5 – b2
 v4 : = v1 + v2
• P6 – b2

 v1 : = 0
• P7 – b2

• P7 – b3
 Label L1
• P8 – b3
 V5 : = v1 + v2
• P9 – b3

Path is between the points P
0
 – b

0
 and P

6
 – b

2
:

The sequence of points P
0
 – b

0
, P

1
 – b

0
, P

2
 – b

0
, P

3
 – b

0 
,

P
4
 – b

2
, P

5
 – b

2
 and P

6
 – b

2
.

Path between P
3
 – b

1
 and P

6
 – b

2
: There is no sequence

of points.

Path between P
0
 – b

0
 and P

7
 – b

3
: There are two paths.

	(1)	 Path 1 consists of the sequence of points, P
0
 – b

0
, P

1
 – b

0
,

P
2
 – b

0
, P

3
 – b

0
, P

3
 – b

0
, P

4
 – b

1
 and P

7
 – b

3 
.

	 (2)	 Path 2 consists of the sequence of points P
0
 – b

0
, P

1
 – b

0
,

P
2
 – b

0
, P

3
 – b

0
, P

4
 – b

2
, P

5
 – b

2
, P

6
 – b

2
, P

7
 – b

2
 and

P
7
 – b

3

Definition and Usage of  Variables
Definitions
It is either an assignment to the variable or reading of a
value for the variable.

Use
Use of identifier x means any occurrence of x as an operand.

Example:  Consider the statement
x = y + z;

In this statement some value is assigned to x. It defines x and
used y and z values.

Global Data-Flow-Analysis
Data Flow Analysis (DFA) is a technique for gathering
information about the possible set of values calculated at
various points in a program.

•• An example of a data-flow analysis is reaching definitions.
•• A single way to perform data-flow analysis of program is

to setup data flow equations for each node of the control
flow graph.

Use definition (U-d) chaining
The use of a value is any point where that variable or con-
stant is used in the right hand side of an assignment or is
evaluating an expression.

The definition of a value occurs implicitly at the begin-
ning of the whole program for a variable.

A point is defined either prior to or immediately after a
statement.

Reaching definitions
A definition of a variable A reaches a point P if there is a
path in the flow graph from that definition to P, such that no
other definitions of A appear on the path.

Example:
B1

B3

B4

B2

B5

if A = B goto B5

A : = 3

P :

A : = 2

if A = B goto B3

The definition A: = 3 can reach point p in B
5
.

To determine the definitions that can reach a given pro-
gram first assign distinct numbers to each definition, since
it is associated with a unique quadruple.

•• For each simple variable A, make a list of all definitions of
A anywhere in the program.

•• Compute two sets for each basic block B.

Gen [B] is the set of generated definitions within block B
and that reach the end of the block.

	 1.	 Kill [B], which is the set of definitions outside of B that
define identifiers that also have definitions within B.

	 2.	 IN [B], which are all definitions reaching the point just
before B’s first statement.

Once this is known, the definitions reaching any use of A
within B are found by:

Let u be the statement being examined, which uses A.

	 1.	 If there are definitions of A within B before u, the last
is the only one reaching u.

	 2.	 If there is no definition of A within B prior to u, those
reaching u are in IN [B].

Data Flow Equations
	 1.	 For all blocks B,

OUT [B] = (IN [B] – KILL [B]) U GEN [B]
A definition d, reaches the end of B if

Chapter 4  •  Code Optimization  |  6.65

	 (a)	 d ∈ IN [B] and is not killed by B.
		 (or)
	(b)	 d is generated in B and is not subsequently redefined

here.

	 2.	 IN [B] = U OUT [P]
∀ P preceding B

		 A definition reaches the beginning of B iff it reaches
the end of one of its predecessors.

Computing U-d Chains
If a use of variable ‘a’ is preceded in its block by a definition
of ‘a’, this is the only one reaching it.

If no such definition precedes its use, all definitions of
‘a’ in IN [B] are on its chain.

Uses of U-d Chains
	 1.	 If the only definition of ‘a’ reaching this statement

involves a constant, we can substitute that constant for
‘a’.

	 2.	 If no definitions of ‘a’ reaches this point, a warning can
be given.

	 3.	 If a definition reaches nowhere, it can be eliminated.
This is part of dead code elimination.

Exercises

Practice Problems 1

Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.

	 1.	 Replacing the expression 2 * 3.14 by 6.28 is
	 (A)	 Constant folding
	 (B)	 Induction variable
	 (C)	 Strength reduction
	 (D)	 Code reduction

	 2.	 The expression (a*b)*c op … where ‘op’ is one of ‘+’,
‘*’ and ‘↑’ (exponentiation) can be evaluated on CPU
with a single register without storing the value of (a*b)
if

	 (A)	 ‘op’ is ‘+’ or ‘*’
	 (B)	 ‘op’ is ‘↑’ or ‘+’
	 (C)	 ‘op’ is ‘↑’ or ‘*’
	 (D)	 not possible to evaluate without storing

	 3.	 Machine independent code optimization can be applied
to

	 (A)	 Source code
	 (B)	 Intermediate representation
	 (C)	 Runtime output
	 (D)	 Object code

	 4.	 In block B if S occurs in B and there is no subsequent
assignment to y within B, then the copy statement
S : x = y is

	 (A)	 Generated	 (B)	 Killed
	 (C)	 Blocked	 (D)	 Dead

	 5.	 If E was previously computed and the value of variable
in E have not changed since previous computation, then
an occurrence of an expression E is

	 (A)	 Copy propagation
	 (B)	 Common sub expression
	 (C)	 Dead code
	 (D)	 Constant folding

	 6.	 In block B, if x or y is assigned there and s is not in B,
then s : x = y is

	 (A)	 Generated	 (B)	 Killed
	 (C)	 Blocked	 (D)	 Dead

	 7.	 Given the following code
	 A = x + y;
	 B = x + y;
	 Then the corresponding optimized code as
	 –––––
	 –––––
	 C = x + y;
	 –––––
	 A = C;
	 –––––
	 B = C;

		 When will be optimized code pose a problem?
	 (A)	 When C is undefined.
	 (B)	 When memory is consideration.
	 (C)	 C may not remain same after some statements.
	 (D)	 Both (A) and (C).

	 8.	 Can the loop invariant X = A – B from the following
code be moved out?

	 For i = 1 to 10
	 {
	 A = B * C;
	 X = A – B;
	 }
	 (A)	 No
	 (B)	 Yes
	 (C)	 X = A – B is not invariant
	 (D)	 Data insufficient

	 9.	 If every path from the initial node goes through a par-
ticular node, then that node is said to be a

	 (A)	 Header	 (B)	 Dominator
	 (C)	 Parent	 (D)	 Descendant

6.66  |  Unit 6  •  Compiler Design

Common data for questions 10 and 11: Consider the fol-
lowing statements of a block:
a: = b + c
b: = a – d
c: = b + c
d: = a – d

	10.	 The above basic block contains, the value of b in 3rd
statement is

	 (A)	 Same as b in 1st statement
	 (B)	 Different from b in 1st statement
	 (C)	 0
	 (D)	 1

	11.	 The above basic block contains
	 (A)	 Two common sub expression
	 (B)	 Only one common sub expression
	 (C)	 Dead code
	 (D)	 Temporary variable

	12.	 Find the induction variable from the following code:
	 A = –0.2;
	 B = A + 5.0;
	 (A)	 A
	 (B)	 B
	 (C)	 Both A and B are induction variables
	 (D)	 No induction variables

	13.	 The analysis that cannot be implemented by forward
operating data flow equations mechanism is

	 (A)	 Interprocedural
	 (B)	 Procedural
	 (C)	 Live variable analysis
	 (D)	 Data

	14.	 Which of the following consist of a definition, of a vari-
able and all the uses, U, reachable from that definition
without any other intervening definitions?

	 (A)	 Ud-chaining	 (B)	 Du-chaining
	 (C)	 Spanning	 (D)	 Searching

	15.	 Consider the graph

1

2 3

	 The graph is
	 (A)	 Reducible graph
	 (B)	 Non-reducible graph
	 (C)	 Data insufficient
	 (D)	 None of these

Practice Problems 2
Directions for questions 1 to 15:  Select the correct alterna-
tive from the given choices.

	 1.	 In labeling algorithm, let n is a binary node and its chil-
dren have L

1
 and L

2
, if L

1
 = L

2
then LABEL (n):

	 (A)	 L
1
 – 1	 (B)	 L

2
 + 1

	 (C)	 L
1
 + L

1
	 (D)	 L

1
 + 1

	 2.	 The input for the code generator is a:
	 (A)	 Tree at lexical level
	 (B)	 Tree at semantic level
	 (C)	 Sequence of assembly language instructions
	 (D)	 Sequence of machine idioms

	 3.	 In labeling algorithm, let n is a binary node and its chil-
dren have i

1
 and i

2
, LABEL (n) if i

1
 ≠ i

2
 is

	 (A)	 Max (i
1
, i

2
)

	 (B)	 i
2
 + 1

	 (C)	 i
2
 – 1

	 (D)	 i
2
 – i

1

	 4.	 The following tries to keep frequently used value in a
fixed register throughout a loop is:

	 (A)	 Usage counts
	 (B)	 Global register allocation
	 (C)	 Conditional statement
	 (D)	 Pointer assignment

	 5.	 Substitute y for x for copy statement s : x = y if the fol-
lowing condition is met

	 (A)	� Statements s may be the only definition of x reach-
ing u

	 (B)	 x is dead
	 (C)	 y is dead
	 (D)	 x and y are aliases

	 6.	 Consider the following code

	 for (i=0; i<m; i++)
	 {
	 for (j=0; j<m; j ++)
	 If (i%2)
	 {
	 a = a + (14*j+5*i);
	 b = b + (9 + 4*j);
	 }
	 }

	 Which of the following is false?

	 (A)	 There is a scope of common reduction in this code
	 (B)	 There is a scope of strength reduction in this code.
	 (C)	� There is scope of dead code elimination in this

code
	 (D)	 Both (A) and (C)

	 7.	 S
1
: In dominance tree, the initial node is the root.

	 S
2
: Each node d dominates only its ancestors in the tree.

	 S
3
: if d≠n and d dom n then d dom m.

		 Which of the statements is/are true?
	 (A)	 S

1
, S

2
 are true

	 (B)	 S
1
, S

2
 and S

3
 are true

Chapter 4  •  Code Optimization  |  6.67

	 (C)	 Only S
3
 is true

	 (D)	 Only S
1
 is true

	 8.	 The specific task storage manager performs:
	 (A)	 Allocation/Deallocation of storage to programs
	 (B)	� Protection of storage area allocated to a program

from illegal access by other programs in the system
	 (C)	 The status of each program
	 (D)	 Both (A) and (B)

	 9.	 Concept which can be used to identify loops is:
	 (A)	 Dominators
	 (B)	 Reducible graphs
	 (C)	 Depth first ordering
	 (D)	 All of these

	10.	 A point cannot be found:
	 (A)	 Between two adjacent statements
	 (B)	 Before the first statement
	 (C)	 After the last statement
	 (D)	 Between any two statements

	11.	 In the statement, x = y*10 + z; which is/are defined?
	 (A)	 x	 (B)	 y
	 (C)	 z	 (D)	 Both (B) and (C)

	12.	 Consider the following program:

	 void main ()
	 {
		 int x, y;
		 x = 3; y = 7;

		 if (x<y)
		 {
		 int x;

		 {
		 int y;
		 y = 9;

		 x = 2*y;
		 }

		 x = x + y;
		 printf (“%d”, x);
		 }

		 printf (“%d”, x);
		 }

	 The output is
	 (A)	 3 – 25	 (B)	 25 – 3
	 (C)	 3 – 3	 (D)	 25 – 25

	13.	 The evaluation strategy which delays the evaluation of
an expression until its value is needed and which avoids
repeated evaluations is:

	 (A)	 Early evaluation	 (B)	 Late evaluation
	 (C)	 Lazy evaluation	 (D)	 Critical evaluation

	14.	 If two or more expressions denote same memory
address, then the expressions are:

	 (A)	 Aliases	 (B)	 Definitions
	 (C)	 Superiors	 (D)	 Inferiors

	15.	 Operations that can be removed completely are called:
	 (A)	 Strength reduction
	 (B)	 Null sequences
	 (C)	 Constant folding
	 (D)	 None of these

	 1.	 In a compiler, keywords of a language are recognized
during:� [2011]

	 (A)	 parsing of the program
	 (B)	 the code generation
	 (C)	 the lexical analysis of the program
	 (D)	 dataflow analysis

	 2.	 Consider the program given below, in a block struc-
tured pseudo-language with lexical scoping and nest-
ing of procedures permitted.� [2012]

	 Program main;
	 Var …
	 Procedure A

1
;

	 Var …
	 Call A

2
;

	 End A
1

	 Procedure A
2
;

	 Var …
	 Procedure A

21
;

	 Var …
	 Call A

1
;

	 End A
21

	 Call A
21

;
	 End A

2

	 Call A
1
;

	 End main
	� Consider the calling chain: Main → A

1
 → A

2
 → A

21

→ A
1

	� The correct set of activation records along with their
access links is given by:

Previous Years’ Questions

6.68  |  Unit 6  •  Compiler Design

	 (A)	 Main

A1

A1

A2

A21
FRAME
POINTER

ACCESS
LINKS

	 (B) Main

A1

A1

A2

A21

FRAME
POINTER

ACCESS
LINKS

	 (C)	 Main

A1

A2

A21

FRAME
POINTER

ACCESS
LINKS

	 (D)	 Main

A1

A1

A2

A21

FRAME
POINTER

ACCESS
LINKS

Common data for questions 3 and 4: The following code
segment is executed on a processor which allows only reg-
ister operands in its instructions. Each instruction can have
atmost two source operands and one destination operand.
Assume that all variables are dead after this code segment.

c = a + b;
d = c * a;
e = c + a;
x = c * c;
If (x > a) {
 y = a * a;
}
Else {
	 d = d * d;
	 e = e * e;
}

	 3.	 What is the minimum number of registers needed
in the instruction set architecture of the processor to

compile this code segment without any spill to mem-
ory? Do not apply any optimization other than opti-
mizing register allocation.� [2013]

	 (A)	 3	 (B)	 4
	 (C)	 5	 (D)	 6

	 4.	 Suppose the instruction set architecture of the proces-
sor has only two registers. The only allowed compiler
optimization is code motion, which moves statements
from one place to another while preserving correct-
ness. What is the minimum number of spills to mem-
ory in the compiled code?� [2013]

	 (A)	 0	 (B)	 1
	 (C)	 2	 (D)	 3

	 5.	 Which one of the following is NOT performed during
compilation? � [2014]

	 (A)	 Dynamic memory allocation
	 (B)	 Type checking
	 (C)	 Symbol table management
	 (D)	 Inline expansion

	 6.	 Which of the following statements are CORRECT?�
� [2014]

	 (i)	� Static allocation of all data areas by a compiler
makes it impossible to implement recursion.

	 (ii)	� Automatic garbage collection is essential to im-
plement recursion.

	 (iii)	� Dynamic allocation of activation records is es-
sential to implement recursion.

	 (iv)	� Both heap and stack are essential to implement
recursion.

	 (A)	 (i) and (ii) only	 (B)	 (ii) and (iii) only
	 (C)	 (iii) and (iv) only	 (D)	 (i) and (iii) only

	 7.	 A variable x is said to be live at a statement S
i
 in a

program if the following three conditions hold simul-
taneously:� [2015]

		 1.  There exists a statement S
j
 that uses x

		 2. � There is a path from S
i
 to S

j
 in the flow graph cor-

responding to the program.

		 3. � The path has no intervening assignment to x
including at S

i
 and S

j
.

3

4

2

u = s * v
s = p + q
p = q + r

q = v + r

q = s * uv = r + u

1

		 The variables which are live both at the statement in
basic block 2 and at the statement in basic block 3 of
the above control flow graph are

	 (A)	 p, s, u	 (B)	 r, s, u
	 (C)	 r, u	 (D)	 q, v

Chapter 4  •  Code Optimization  |  6.69

	 8.	 Match the following� [2015]

P.  Lexical analysis 1. Graph coloring

Q. Parsing 2. DFA minimization

R. Register allocation 3. Post-order traversal

S.  Expression evaluation 4. Production tree

	 (A)	 P–2, Q–3, R–1, S–4	 (B)	 P–2, Q–1, R–4, S–3

	 (C)	 P–2, Q–4, R–1, S–3	 (D)	 P–2, Q–3, R–4, S–1

	 9.	 Consider the following directed graph:

a

b c

 e

f

d

		 The number of different topological orderings of the
vertices of the graph is _______ .� [2016]

	10.	 Consider the following grammar:
stmt	 − > if expr then expr else expr; stmt | Ò
expr	 − > term relop term | term
term	 − > id | number
id		 − > a | b | c
number	 − > [0 − 9]

		 where relop is a relational operator (e.g., <, >,…), Ò
refers to the empty statement, and if, then, else are
terminals.

		 Consider a program P following the above gram-
mar containing ten if terminals. The number of con-
trol flow paths in P is__________. For example, the
program

if e
1
 then e

2
 else e

3

		 has 2 control flow paths, e
1
 → e

2
 and e

1
 → e

3.
� [2017]

	11.	 Consider the expression (a—1) ∗ (((b + c)/3) + d)).
Let X be the minimum number of registers required
by an optimal code generation (without any register
spill) algorithm for a load/store architecture, in which
(i) only load and store instruction can have memory
operands and (ii) arithmetic instructions can have
only register or immediate operands. The value of X
is 	 .� [2017]

	12.	 Match the following according to input (from the left
column) to the compiler phase (in the right column)
that processes it:� [2017]

(P) Syntax tree (i) Code generator

(Q) Character stream (ii) Syntax analyzer

(R) Intermediate representation (iii) Semantic analyzer

(S) Token stream (iv) Lexical analyzer

	 (A) P → (ii), Q → (iii), R → (iv), S → (i)

	 (B) P → (ii), Q → (i), R → (iii), S → (iv)

	 (C) P → (iii), Q → (iv), R → (i), S → (ii)

	 (B) P → (i), Q → (iv), R → (ii), S → (iii)

Answer Keys

Exercises

Practice Problems 1
	 1.  A	 2.  C	 3.  B	 4.  A	 5.  B	 6.  B	 7.  C	 8.  B	 9.  B	 10.  B
	11.  B	 12.  D	 13.  C	 14.  B	 15.  B

Practice Problems 2
	 1.  D	 2.  B	 3.  A	 4.  B	 5.  A	 6.  D	 7.  D	 8.  D	 9.  D	 10.  D
	11.  A	 12.  B	 13.  C	 14.  A	 15.  B

Previous Years’ Questions
	 1.  C	 2.  D	 3.  B	 4.  B	 5.  A	 6.  D	 7.  C	 8.  C	 9.  6	 10.  1024
	11.  2	 12.  C

	Unit 6: Compiler Design
	Chapter 4: Code Optimization
	Code Optimization Basics
	Principle Sources of Optimization
	Loops in Flow Graphs
	Global Dataflow Analysis
	Exercises
	Previous Years’ Questions
	Answer Keys

