

Topics :	Solution of Triangle, Vector, Sequence & Series, Continuity & Derivability						
Type of C	Questions		М.М.	, Min.			
Compreh	ension (no negative marking) Q.1 to Q.4	(3 marks, 3 min.)	[12,	12]			
Single choice Objective (no negative marking) Q.5,6,7		(3 marks, 3 min.)	[9,	9]			
Subjectiv	ve Questions (no negative marking) Q.8,9,10	(4 marks, 5 min.)	[12,	15]			

COMPREHENSION (FOR Q. 1 TO 4)

A regular heptagon (seven sides) is inscribed in a circle of radius 1. A_1A_2 A_7 be its vertices, G_1 is centriod of $\Delta A_1 A_2 A_5$ and G_2 be centroid of $\Delta A_3 A_6 A_7$. P is centriod of $\Delta OG_1 G_2$, where O (origin) is centre of circumscribing circle.

1. Angle $\angle POA_1$ is equal to

(A) $\frac{\pi}{7}$ (B)	$\frac{2\pi}{7}$ (C)	$\frac{5\pi}{7}$ (D) $\frac{6\pi}{7}$
-------------------------	----------------------	---------------------------------------

- 2. OP is equal to
 - (A) $\frac{10}{9}$ (B) $\frac{8}{9}$ (C) $\frac{1}{9}$ (D) 1
- G_3 is such that centriod of triangle $G_1G_2G_3$ is O, then (A) $3OG_3 = OA_2$ (B) $3OG_2 = A_2G_3$ (C) $2OG_3 = OA_2$ (D) $OG_3 = G_3A_2$ 3.
- PA₁ is equal to 4.
 - (A) $\frac{1}{9}\sqrt{\left(82-18\cos\frac{\pi}{7}\right)}$ (B) $\frac{1}{9}\sqrt{\left(82+18\cos\frac{2\pi}{7}\right)}$ (C) $\frac{1}{9}\sqrt{82-18\sin\frac{2\pi}{7}}$ (D) None of these
- If sine of the acute angle between two vectors $-3\hat{i}+4\hat{j}+\hat{k}$ and $-2\hat{i}-\hat{j}-\hat{k}$ be $1+\frac{1}{2}x-\frac{1}{8}x^2$ to ∞ 5. then x is equal to
 - (A) $\frac{155}{156}$ (B) $\frac{1}{156}$ (C) $\frac{-1}{156}$ (D) None of these

6. Let \vec{a} , \vec{b} , \vec{c} be three unit vectors such that $|\vec{a} + \vec{b} + \vec{c}| = 1$ and $\vec{a} \perp \vec{b}$. If \vec{c} makes angles α , β with \vec{a} , \vec{b} respectively then $\cos\alpha + \cos\beta$ is equal to (A) 3/2 (B) 1 (C) -1 (D) none of these

7. If $\vec{a} = (1, -1, 2)$, $\vec{b} = (-2, 3, 5)$, $\vec{c} = (2, -2, 4)$ and \hat{i} is the unit vector in positive x-direction, then $(\vec{a} - 2\vec{b} + 3\vec{c}) \cdot \hat{i}$ is equal to (A) 11 (B) 15 (C) 18 (D) 10

- 8. Find the sum of infinite terms of the series : $\frac{3}{2.4} + \frac{5}{2.4.6} + \frac{7}{2.4.6.8} + \frac{9}{2.4.6.8.10} + \dots$
- 9. Let $f : [a, b] \to R$ a continuous positive function, differentiable on [a, b]. Prove that there exists $c \in (a, b)$ such that $\frac{f(b)}{f(a)} = e^{(b-a)\frac{f'(c)}{f(c)}}$
- **10.** If \vec{a} and \vec{b} are two vectors such that $|\vec{a} + \vec{b}| = |\vec{a}|$ then prove that $2\vec{a} + \vec{b}$ is a perpendicular to \vec{b} .

Answers Key

1.	(A)	2.	(C)	3.	(A)	4.	(A)
5.	(C)	6.	(C)	7.	(A)	8.	1/2