Continuity and Diffenentiability

- Continuity: Suppose f is a real function on a subset of the real numbers and let c be a point in the domain f. Then f is continuous at c if $\lim_{x \to a} f(x) = f(c)$
- Discontinuity: A function said to be discontinuous at point x = a, if it is not continuous at this point. This point x = a where the function is not continuous is called the point of discontinuity.
- Theorem 1 Suppose f and g be two real functions continuous at a real no. then,
- (1) f+g is continuous at x=c (3) $f\cdot g$ is continuous at x=c (2) f-g is continuous at x=c (4) $\left(\frac{f}{g}\right)$ is continuous at x=c, $\left\{pxovided\ g(c)\neq 0\right\}$
- Theorem 2 Suppose f and g are real valued functions such that (fog) is defined at c. If g is continuous at c and if f is continuous at g(c), then (fog) is continuous at c.
- ✓ Differentiability: Suppose f is a real function and c is a point in its domain. The derivative of f at c defined by $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ provided this limit exists. Denivative of f at c is denoted by f'(c) on $\frac{d}{dx}[f(x)]_c$. The function defined by $f'(x) = \lim_{x \to \infty} \frac{f(x+h) - f(x)}{f(x)}$ wheneven the limit exists is defined to be the derivative of f. The derivative denoted by f'(x) on d[f(x)] on if y = f(x) by dy on y'.
- Algebna of denivaties:

(i)
$$(u \pm v)' = u' \pm v'$$

(ii) $(uv)' = u'v + uv'$

(Leibnitz on product rule)

(iii)
$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$
, whenever $v \neq 0$

(Quotient Rule)

- Theonem 3. If a function f is differentiable at a point c, then it is also continuous at that point.
- Note: Every differentiable function is continuous.
- Thain Rule: Let f be a neal valued function of which is a composite of two functions u and v i.e. f = vou; Suppose t = u(x) and if dtand dv exist, we have af = dv. dt dr dt

Suppose f is real valued function which is a composite of three functions u, v and w; i.e. f = (wou) ov and if t = v(x) and s = u(t) then

$$\frac{df}{dx} = \frac{d(wou)}{dt} \cdot \frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$$

of Logonithmic function Some properties

$$\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$$

$$\log_b x = \frac{1}{\log_x b}$$

	40 27 26
-	Note
V	NULC

Exponential foлт	loganithim fonm
2 ³ = 8	10g28 = 3
$b^1 = b$	$log_bb = 1$
b° = 1	log 1 = 0

Some standard denivative

$$\frac{d}{dx}(c) = 0$$

$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$

$$\frac{d}{dx}$$

$$\frac{d}{dx}(e^{x}) = e^{x}$$

$$\frac{d}{dx}(\log x) = \frac{1}{x}$$

$$\frac{d}{dx}(a^{x}) = a^{x} \log_{e} a$$

$$\frac{d}{dx}(\log_a x) = \frac{1}{x}\log_a e$$

$$d(Sinx) = Cosx$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

$$\frac{d}{dx}(\tan x) = Sec^2x$$

$$d(\cot x) = -\cos ec^2 x$$

$$\underline{d}$$
 (Cosecx) = - Cosecx. Cotx dx

$$\frac{d(\sin^{-1}x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\left(\cos^{-1}x\right) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx} \left(\tan^{-1} x \right) = \frac{1}{1 + x^2}$$

$$\frac{d}{dx}\left(\cot^{-1}x\right) = \frac{-1}{1+x^2}$$

$$\frac{d}{dx} \left(Sec^{-1}x \right) = \frac{1}{x \sqrt{x^2-1}}$$

$$\frac{d}{dx}\left(\cos ec^{-1}x\right) = \frac{-1}{x\sqrt{x^2-1}}$$

1 loganithmic differentiation

$$y = f(x) = [u(x)]^{v(x)}$$

laking log both sides.

$$logy = v(x) log [u(x)]$$

using chain nule to differentiate

$$\frac{1 \cdot dy}{y} = v(x) \cdot \underline{1} \cdot u'(x) + v'(x) \cdot log[u(x)]$$

$$\frac{dy}{dx} = y \left[\frac{v(x)}{u(x)} \cdot u'(x) + v'(x) \cdot log \left[u(x) \right] \right]$$

Denivative of functions in

Panametric forms

$$x = f(t) = g(t)$$
 parametric form with t as a parameter.

$$\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{dx}{dt}$$

$$\frac{dy}{dx} = \frac{dt}{dx} \left[\begin{array}{c} wheneven \ \frac{dx}{dt} \neq 0 \end{array} \right]$$

dt

$$\frac{dy}{dx} = \frac{g'(t)}{f'(t)} \left[\text{as } dy = g'(t) \text{ and } \frac{dx}{dt} = f'(t) \right] \left[\text{provided } f'(t) \neq 0 \right]$$

Second onden denivative

Note: Highen onden denivative may be defined similarly

Let
$$y = f(x)$$

$$\frac{dy}{dx} = f'(x) - (i)$$

differenciate (i) again w.n.t to x,

$$\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}\left[f'(x)\right] \Rightarrow \frac{d^2y}{dx^2} = f''(x) \quad \text{Denoted} \quad D^2y \quad \text{on} \quad y''$$

- Rolle's Theorem: If $f:[ab] \to R$ is continuous on [a,b] and differentiable on (a,b) such that f(a) = f(b) then there exists some C in (a,b) such that f'(c) = 0
- Language Theorem on Mean value theorem: If $f:[a,b] \to \mathbb{R}$ is continuous on [a,b] and differentiable on (a,b). Then there exists some c in (a,b) such that

$$f'(c) = \underbrace{f(b)-f(a)}_{b-a}$$