Chapter 15

Statistics

Exercise 15.2

Q. 1 Find the mean and variance for each of the data.

Answer:

We know that Mean,

Mean,
$$\overline{x} = \frac{\sum_{i=1}^{8} x_i}{n} = \frac{6+7+10+12+13+4+8+12}{8} = \frac{72}{8} = 9$$

From the given data, we can form the table:

Xi	Deviation forms mean	$ (\mathbf{x}_i - \overline{\mathbf{x}}) ^2$
	$ \mathbf{x}_i - \overline{\mathbf{x}} $	
6	6 - 9 = -3	9
7	7 - 9 = -2	4
10	10 - 9 = 1	1
12	12 - 9 = 3	9
13	13 - 9 = 4	16
4	4-9=-5	25
8	8 – 9 = - 1	1
12	12 - 9 = 3	9
		$\sum x_i - \overline{x} ^2 = 74$

We know that Variance,
$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{8} (x_i - \overline{x})^2 = \frac{1}{8} \times 74 = 9.25$$

Mean = 9 and Variance = 9.25

Q. 2 Find the mean and variance for each of the data.

First 10 multiples of 3

Answer:

The 10 multiples of 3 are:

Here the number of observation, n = 10

We know that Mean,

Mean
$$\overline{x} = \frac{\sum_{i=1}^{10} x_i}{10} = \frac{165}{10} = 16.5$$

From the given data, we can form the table:

x_i	Deviations from mean	$(X_i - \bar{x})^2$
	$(x_i - \bar{x})$	
3	3 - 16.5 = -13.5	182.25
6	6 - 16.5 = -10.5	110.25
9	9 -16.5 = -7.5	56.25
12	12 - 16.5 = -4.5	20. 25
15	15 -16.5 = -1.5	2. 25
18	18 -16.5 = 1.5	2. 25
21	21 -16.5 = 4.5	20.25
24	24 -16.5 = 7.5	56.25
27	27 -16.5 = 10.5	110.25
30	30 -16.5 = 13.5	182.25
		$\sum_{f=1}^{10} (x_i - \bar{x})^2$ = 742.5

We know that Variance,
$$\sigma^2 = 1 \frac{1}{n} \sum_{i=1}^{10} (x_i - \overline{x})^2 = \frac{1}{10} \times 742.5 = 74.25$$

Ans. Mean = 16.5 and Variance = 74.25

Q. 3 Find the mean and variance for each of the data.

x_i	6	10	14	18	24	28	30
y_i	2	4	7	12	8	4	3

Answer:

Presenting the data in the tabular form, we get

x_i	f_i	$f_i x_i$	$(x_i - \bar{x})$	(x_i)	$f_i(x_i)$
				$(-\bar{x})^2$	$(-\bar{x})^2$
6	2	12	6-19 = -13	169	338
10	4	40	10-19 = -9	81	324
14	7	98	14-19 =-5	25	175
18	12	2136	18 - 19 = -	1	12
			1		
24	8	192	24-19 = 5	25	200
28	4	112	28-19=9	81	324
30	3	90	30-19 = 11	121	363
	$\Sigma f_i = N$	$\Sigma f_i x_i = 760$			$\Sigma f_i(x_i -$
	= 40				$(\bar{x})^2 = 1736$

We know that Mean,

Where N = 40

$$\therefore \overline{x} = \frac{\sum_{i=1}^{7} f_i x_i}{N} = \frac{760}{40} = 19$$

We know that Variance, $\sigma^2 = \frac{1}{n} \sum_{i=1}^{7} (x_i - \overline{x})^2 = \frac{1}{40} \times 1736 = 43.4$

Mean = 19 and Variance = 43.4

Q. 4 Find the mean and variance for each of the data.

x_i	92	93	97	102	104	109
f_i	3	2	3	6	3	3

Presenting the data in the tabular form, we get

Xi	f_i	$f_i x_i$	$ X_i - \overline{x} $	$ \mathbf{x}_{i} - \overline{\mathbf{x}} ^{2}$	$\frac{f_i x_i-x_i^2}{ x_i ^2}$
92	3	276	92 – 100 = - 8	64	192
93	2	186	93 – 100 = - 7	49	98
97	3	291	97 – 100 = - 3	9	27
98	2	196	98 – 100 = - 2	4	8
102	6	612	102 -100 = 2	4	24
104	3	312	104 -100 = 4	16	48
109	3	327	109 -100 = 9	81	243

We know that Mean,

Where N = 22

$$\therefore \overline{x} = \frac{1}{N} \sum_{i=1}^{7} f_i x_i = \frac{1}{22} \times 2200 = 100$$

We know that Variance, $\sigma^2 = \frac{1}{n} \sum_{i=1}^{7} (x_i - \overline{x})^2 = \frac{1}{22} \times 640 = 29.09$ Mean = 100 and Variance = 29.09

Q. 5 Find the mean and standard deviation using short-cut method.

Xi	60	61	62	63	64	65	66	67	68
f_i	2	1	12	29	25	12	10	4	5

Let the assumed mean, A = 64 and h = 1

We obtain the following table from the given data:

Xi	fi	$y_i = \frac{x_i - A}{h}$	y_1^2	$f_i y_i$	$f_i y_i^2$
60	2	-4	16	-8	32
61	1	-3	9	-3	9
62	12	-2	4	-24	48
63	29	-1	1	-29	29
64	25	0	0	0	0
65	12	1	1	12	12
66	10	2	4	20	40
67	4	3	9	12	36
68	5	4	16	20	80

We know that Mean,

:Mean,
$$\overline{x} = A \frac{\sum_{i=1}^{9} f_i x_i}{N} \times h = 64 + \frac{0}{100} \times 1 = 64 + 0 = 64$$

We know that Variance $\sigma 2 =$

$$\therefore \sigma^2 = \frac{h^2}{N^2} \left[N \sum_{i=1}^9 f_i x_i^2 - \left(\sum_{i=1}^9 f_i x_i \right)^2 \right]$$

$$= \frac{1}{100^2} [100 \times 286 - 0]$$

$$= 2.86$$

We know that Standard Deviation = σ

$$\therefore \sigma = \sqrt{2.86} = 1.691$$

Ans. Mean = 64 and Standard Deviation = 1.691

Q. 6 Find the mean and variance for the following frequency distributions.

Classes	0-30	30-60	60-90	90-120	120-150	150-	180-
						180	210
Frequencies	2	3	5	10	3	5	2

classes	frequency	Midpoint	$f_i x_i$	$(X_i-$	(X_i)	$f_i(X_i - \bar{X})^2$
	f_i	X_i		$ \bar{X}\rangle$	$-\bar{X}$) ²	$-\bar{X})^2$
0-30	2	15	30	-92	8464	16928
30-60	3	45	135	-62	3844	11532
60-90	5	75	375	-32	1024	5120
90-120	10	105	1050	-2	4	40
120-	3	135	405	28	784	2352
150						
150-	5	165	825	58	3364	16820
180						
180-	2	195	390	88	7744	15488
210						
	$\Sigma f_i = N =$		$\Sigma f_i X_i$			$\Sigma f_i(X_i)$
	30		= 3210			$(-\bar{X})^2$
						= 68280

Presenting the data in the tabular form, we get

We know that Mean,

Where N = 30

$$\therefore \overline{x} = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h = 105 + \frac{20}{30} \times 30 = 105 + 2 = 107$$

We know that Variance, $\sigma 2 =$

$$= \frac{h^2}{N^2} \left[N \sum_{i=1}^7 f_i x_i^2 - \left(\sum_{i=1}^7 f_i x_i \right)^2 \right]$$

$$= \frac{(30)^2}{(30)^2} [30 \times 76 - (2)^2]$$
$$= 2280 - 4$$
$$= 2276$$

Ans. Mean = 107 and Variance = 2276

Q. 7 Find the mean and variance for the following frequency distributions.

Class	0-10	10-20	20-30	30-40	40-50
Frequencies	5	8	15	16	6

Answer:

Presenting the data in the tabular form, we get

	frequency	Midpoint	$f_i x_i$	$(X_i-$	(X_i)	$f_i(X_i - \overline{X})^2$
classes	f_i	X_i		$ \bar{X}\rangle$	$(-\bar{X})^2$	$(-\bar{X})^2$
0-10	5	5	25	-22	484	2420
10-20	8	15	120	-12	144	1152
20-30	15	25	375	-2	4	60
30-40	16	35	560	8	64	1024
40-50	6	45	270	18	324	1944
	$\Sigma f_i = N =$		$\Sigma f_i X_i$			$\Sigma f_i(X_i -$
	50		= 1350			$(\bar{X})^2 = 6600$

We know that Mean,

$$\therefore \overline{x} = A + \frac{\sum_{i=1}^{3} f_i y_i}{N} \times h = 25 + \frac{10}{50} \times 10 = 25 + 2 = 27$$

We know that Variance

Ans. Mean = 27 and Variance = 132

Q. 8 Find the mean, variance and standard deviation using short-cut method

Height	70-75	75-80	80-85	85-90	90-95	95-	105-	105-
in cms						110	110	115
No. of	3	4	7	15	9	6	6	3
children								

Answer:

Let the assumed mean, A = 92.5 and h = 5

We obtain the following table from the given data:

Height	Number of	$\begin{array}{c} \text{Midpoint} \\ X_i \end{array}$	$y_i =$	y_i^2	$f_i y_i$	$f_i y_i^2$
(class)	children (X_i	$\frac{x_{1-A}}{}$			
	frequency) f_i		h h			
70-75	3	72.5	-4	16	-12	48
75-80	4	72.5	-3	9	-12	36
80-85	7	38.5	-2	4	-14	28
85-90	7	42.5	-1	1	- 7	7
90-95	15	46.5	0	0	0	0
95-100	9	50.5	1	1	9	9
100-	6	102.5	2	4	12	24
105						

105-	6	107.5	3	9	18	54
110						
110-	3	112.5	4	16	12	48
115						
	$\Sigma f_i = N$ $= 60$				$\Sigma f_i y_i$	$\Sigma f_i y_i^2 = 254$
	= 60				= 6	

We know that Mean,

$$\therefore \overline{x} = A + \frac{\sum_{i=1}^{9} f_i y_i}{N} \times h = 92.5 + \frac{6}{60} \times 5 = 92.5 + 0.5 = 93$$

We know that Variance

$$\therefore \sigma^2 = \frac{h^2}{N^2} \left[N \sum_{i=1}^9 f_i y_i^2 - \left(\sum_{i=1}^9 f_i y_i \right)^2 \right]$$

$$= \frac{(5)^2}{(60)^2} \left[60 \times 254 - (6)^2 \right]$$

$$= \frac{25}{3600} (15204) = 105.58$$

We know that Standard Deviation = σ

$$\sigma = \sqrt{105.58} = 10.275$$

Ans. Mean = 93, Variance = 105.583 and Standard Deviation = 10.275

Q. 9 The diameters of circles (in mm) drawn in a design are given below:

Diameters	33-36	37-40	41-44	45-48	49-52
No. of	15	17	21	22	25
circles					

Calculate the standard deviation and mean diameter of the circles.

[Hint: First make the data continuous by making the classes as 32.5-36.5, 36.5-40.5,

Let the assumed mean, A = 42.5 and h = 4

We obtain the following table from the given data:

Height	Number	Midpoint	$y_i =$	$f_i y_i$	$f_i y_i^2$
(class)	of	X_i	$\frac{x_{1-A}}{h}$		
	children (h h		
	frequency)				
32.5-	15	34.5	-2	-30	60
36.5					
36.5-	17	38.5	-1	-17	17
40.5					
40.5-	21	42.5	0	0	0
44.5					
44.5-	22	46.5	1	22	22
48.5					
48.5-	25	50.5	4	50	100
52.5					
	$\Sigma f_i = N$			$\Sigma f_i y_i$	$\Sigma f_i y_i^2 = 199$
	= 100			= 25	, , , ,

We know that Mean,

$$\therefore \overline{x} = A + \frac{\sum_{i=1}^{5} f_i y_i}{N} \times h = 42.5 + \frac{25}{100} \times 4 = 43.5$$

We know that Variance $\sigma 2 =$

= 30.84

We know that Standard Deviation = σ

$$\therefore \sigma = \sqrt{30.84} = 5.553$$

Ans. Mean = 43.5, Variance = 30.84 and Standard Deviation = 5.553