Prepare N/20 Solution Of Oxalic Acid. Using this Solution, Find Out Strength & normality Of the Given Potassium Permanganate Solution

Prepare N/20 solution of oxalic acid. Using this solution, find out strength and normality of the given potassium permanganate solution.

Chemical equations

Molecular equations

Ionic equations

$$\begin{array}{c} MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O\] \times 2 \\ C_2O_4^{\ 2-} \longrightarrow 2CO_2 + 2e^-\] \times 5 \\ \hline \\ 2MnO_4^- + 16H^+ + 5C_2O_4^{\ 2-} \longrightarrow 2Mn^{2+} + 8H_2O + 10CO_2 \end{array}$$

Indicator

KMnO₄ is a self-indicator.

Endpoint

Colourless to permanent pink colour (KMnO₄in burette).

Procedure

- 1. Rinse and fill the burette with the given KMnO₄ solution.
- 2. Weigh exactly 1.58 g of oxalic acid crystals and dissolve in water to prepare 500 ml of
 - its solution using a 500 ml measuring flask. Rinse the pipette with the N/20 oxalic acid
 - solution and pipette out 20 ml of it in a washed titration flask.

- 3. Add one test tube (~ 20 ml) full of dilute sulphuric acid (~ 4 N) to the solution in , titration flask.
- 4. Note the initial reading of the burette.
- 5. Heat the flask to 60-70°C and add KMnO₄ solution from the burette till a permanent light pink colour is just imparted to the solution in the titration flask.
- 6. Note the final reading of the burette.
- 7. Repeat the above steps 4-5 times to get three concordant readings.

Observations

Normality of oxalic acid solution = $\frac{N}{20}$.

Volume of oxalic acid solution taken for each titration = 20.0 ml.

S. No.	Initial reading of the burette	Final reading of the burette	Volume of the KMnO ₄ solution used
1.	-	_	— ml
2.	_		— ml
3.			— ml
4.		_	— ml

Concordant volume = x ml (say)

CALCULATIONS

(a) Normality of the KMnO₄ solution

x ml of the given KMnO₄ solution are equivalent for 20 ml of $\frac{N}{20}$ oxalic acid solution.

Applying normality equation,

$$N_1V_1 = N_2V_2$$
Oxalic acid KMnO₄

$$\frac{1}{20} \times 20 = N_2 \times x$$

- ∴ Normality of KMnO₄, $N_2 = \frac{1}{x}$.
- (b) Strength of the KMnO₄ solution

Strength (in g/litre) = Normality \times Eq. mass

$$=\frac{1}{x}\times 31.6$$

[: Eq. mass of $KMnO_4 = 31.6$]

Instructions for the Preparation of Solutions

Provide the following:

- 1. Oxalic acid crystals
- 2. N/20 $KMnO_4$ solution (1.58 g/litre)
- 3. 4N H₂SO₄.