z+ Z=a+ib+ a—ib=2a=2Re(z) as Re(z) = a

ZEZ = Re(2)

z—7=a+ib—a+ib=2ib=2ilm(z) as Im(z) = b

-7 _

z=7 &S atib=a—-ib&sS b=-bS2h=0 b =0.

Thus, z = 7 if and only if z is real.

Modulus of a complex number :

Modulus of a complex number z = a + ib is defined as 1,(12 +b? and is denoted by | z |.

Thus: |Z| = "a2+b2

Note that | z | is a real number and | z | =2 0, Vz € C.
As an example, if z =3 + 4i, then | z | = J9+16 = ¥25 =5

Notice that if z is a real number (i.e. z = a + 0i ) then, | z | = ¥a®> =| a |, where | z | is the

modulus of the complex number and | a | is the absolute value of the real number (recall that for any

real number a we have ¥a> = | a |).

Properties of modulus :

1. |z|=0ifand only if z=0 2. |z|2|Re(@) |, | z]| 2] Im) |
3. zz=|zP 4. |z|=|7z|

Z 2%
5. |z|=|-z] 6. ézm,wherezzato

{1 |Z1|
7o lzizp | =1z |12 | 8. Z=?2|wherezz;¢0
9. |z, +z | < |z |+]|2z| (Triangular inequality) (Why triangular ?)
10, |zy =z | 2|z | —1]2]]

Let us verify some of the above properties :

|z|=0<:>‘/a2+b2 =0 +P=02a=0,b=0z=0
|z 2 =d + b? = (Re(2))? + (Im(2))? = (Re(z))?
| z | 2| Re(z) | Similarly, | z | = | Im(2) |

22 =(a+ ib)a—ib)y=a*>+ b* =z |

lzl=la+ib|=Ja2+p? and | Z = a—bi|= o + (b = o+

so, |z |=]|7]
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7. 212y |2 = (217) (E)
= (%) (2_15)

= (517 (53)

=1z |2 | 2, |2

Sl =l 2

9. |z +z P =( +z2)(z_1 + Z_z)

=1z T T T oy

=]z |2+|22 |2+2122+2122 (lezzzlzzzzlzz)
= | 7 |2 + | Z5 |2 + 2Re(le2)
Sl P+l P+2z 0]z |
:|Z1|2+|Z2|2+2|Z1||Zz|
=(|Zl|+|22|)2
Szt [ Sz |+ 2|
lzy =zt =1z S|z =z | +]z|
|Z1|_|22|S|Z1_Zz|
Similarly, | z, | = |z, [ S|z, —z; | = |z, — 2, |
But, |z [ = |z |or|z |~z |=|lz =1z @fa€ R then |a]|=a or —a)
Sl =lnl [ Szl o [z =2 2]z | =]zl
Example 5 : Find the conjugate and modulus of (1) (2 = 3i)° (2) 33

Solution : (1) 2 = 3i)2 =4 —12i — 9 =—5 — 12}
Complex conjugate of (2 — 3#)% is —5 + 12i and
|2—=3)2|=12—-3iP=4+4+9=13

—3+7i

(2) Let z= ———

3470 % 1—i
T+ 1—i

B4+3i+7i —7i%
1—i2

44100
2

Z=2—5iand|z|="22.|_52 = J29

1-34+7i1  J49+9
2l =TT = n vy

=2+ 5i

or
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Example 6 : If z=x + yiand | 3z | = | z — 4 |, then prove that x> + y2 + x = 2.
Solution : We have | 3z | =]z — 4 |
[3x+3yi | =] (x —4) +yi |

3t +y? = -4+
92 +12) = (x — 42 +?

9x? + 9% = x> — 8x + 16 + )7
8x2 + 8x + 82 =16

x2 +y2 +x=2

Example 7 : If z; = 3 + 4i and z, = 12 — 5i, verify the following :
Wan =az Qla+nl<lzl+inl @lzznl=lzllz5]
Solution : We have z; = 3 + 4i and z, = 12 — 5i
(1) zz = 3 + 4)(12 — 5i) =36 — 15i + 48i — 2042
=36 — 15i + 48i + 20
=56 + 33i

2z =56 — 33i

Now, 2122 = (3 — 4i)(12 + 5i) = 36 — 48i + 15i — 202 = 56 — 33i

Hence, 712p = 71 2p is verified.

2) zy+zy,=3+4i+12—-5=15—1i
1 2

|z + 2, | = J225+1 = J226
Also, |z | = Jo+16 =5, |z, | = Ji44+25 = 13
Also, | zy |+ ]z, | =5+ 13 =18 = /324
Clearly,%<@

Hence, | z; + 2z, | < | z; | + | z, | is verified.

(3) |21z | = {562 +332 = 3136 +1089 = 4225 = 65 (by (1))
Also, | zy | | zy | =513 = 65
Hence, | 2z, | = | z{ | | 2, | is verified.
Example 8 : (1) If z € C and | z + 3 | £ 8, find the maximum and minimum values of
lz—2].
2)Ifze Cand | z— 4| <4, find the maximum and minimum values of | z + 1.
Solution : (1) We have | z +3 | < 8
lz=2|=]CE+3)=5|<|z+3|+]-5] (Triangular Inequality)
<S8+5=13
lz—2]<13
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If wetake z=—11then |z+3|=|—-11+3|=8and|z—-2|=13
So the maximum value of | z — 2 | subject to | z + 3 | < 8 is 13.
Now, | z — 2 | 2 0 is always true.
Forz=2,|z+3|<8istrueand | z—2|=0.

So the minimum value of | z — 2 | subject to | z + 3 | < 8 is 0.

(2) We have |z —4|<4

lz+1|=|C=—dH+5|<|z—-4|+]|5] (Triangular Inequality)
<4+45=9
lz+1]<9

If wetake z=8then|z—4|=4and|z+ 1]|=09.

So the maximum value of | z + 1 | subject to | z — 4 | < 4 is 9.
lz+1]20.Ifweletz=-1,]z+ 1] would be zero.

But, |[z—4|=|—-1—-4|=5¢ 4.

Thus the condition | z — 4 | £ 4 is violated if z = —1.

Now, [z+ 1 [=[E=H+5]=[C-H - 2|lz-4]|-[5]

lzi—=% 12|z 1= 121

\V

5—4=1
[z+1] 21
Ifwetake z=0then |z—4|=4and |z+1]|=1.

So, the minimum value of | z + 1 | subject to | z — 4 | < 4 is 1.

. -1 . . .
Example 9 : If z(# —1) is a complex number such that % is purely imaginary, then show that
|z |=1.
Solution : Let z = x + iy.

z—1 _ X+iy—-1 (x=D+iy (x+D—iy (X2 +y* —1)+2iy
Then 797 = x+iy+l — (x+D+iy T (x+D—iy  (x+12+)2

— —1
Since i_-l-i is purely imaginary, we have Re(%) =0

X +y -1

(x+12+y? 0

x2+y2= 1

lz|= (z|= x2+y2)

2.7 Argand Plane and Polar representation

Historically, the geometric representation of a complex number as a point in the plane is
useful because it relates the whole idea of a complex number as an ordered pair in R2. We know
that corresponding to each ordered pair of real numbers (x, y), we get a unique point in the
XY-plane and vice-versa. The complex number x + iy which corresponds to the ordered pair (x, y)
can be represented geometrically as the unique point P(x, y) in the XY-plane and vice-versa.
(Figure 2.1)
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Some complex numbers such as 2 + 3i, =2 + 3i, =2 — 3i, 2 — 3i, 0 + 2i, 2 + i0 which correspond
to the ordered pairs (2, 3), (=2, 3), (=2, —=3), (2, =3), (0, 2), (2, 0) are represented geometrically by the
points A, B, C, D, E, F respectively in the figure 2.2.

The plane having a complex number assigned to each of its point is called the Complex Plane or
the Argand Plane. The points on the x-axis correspond to the complex numbers of the form a + i0 (real
numbers) and the points on the y-axis correspond to the complex numbers of the form 0 + ib (purely
imaginary numbers). The X-axis and Y-axis in the Argand plane are called the real axis and the imaginary
axis respectively.

(Jean-Robert Argand (1768 — 1822) was a gifted amateur mathematician. In 1806, while
managing a bookstore in Paris, he published the idea of geometrical interpretation of complex numbers
known as the Argand diagram.)

Geometrical representation of modulus of a complex number :

Y
P@xy)
In the Argand plane, the modulus of the
24y complex number x + iy is the distance between the
point P(x,y) and the origin O(0,0). (Figure 2.3)
< =X
0(0, 0)
Figure 2.3
¢ Y
Geometrical representation of the conjugate T
of a complex number : P(z)

The representations of a complex number

z=x + iy and its conjugate z = x — iy in the Argand

E
L
~

plane are the points P(x,y) and Q(x,—y) respectively. o

Geometrically, the point Q(x,—y) is called the mirror

image of the point P(x,)) with respect to the real axis. Q)
(Figure 2.4)

Figure 2.4
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Geometrical representation of the sum of two complex numbers :

Y

Figure 2.5

From the figure 2.5, in the argand plane P, Q
and R represent z,, z, and z; + z, respectively,

where z; = x; + iy, and z, = x, + iy,. Mid-point of

— — . (xq+x +
OR and PQ is (%,¥)

OR and ﬁ bisect each other.

Here, we have assumed that O, P and Q are
non-collinear points.

The absolute values of z;, z, and z; + z, are
geometrically given by |z, [ = OP, | z, | = OQ = PR
and | z; + z, | = OR. We know that the sum of any
two sides of a triangle is greater than the third side.

Hence, in AORP, we have OR < OP + PR implying | z; + z, | < |z, | +|z,|. That is why this
inequality for the absolute values of complex numbers is called the triangular inequality. (When does

equality occur in | z; + z, | S|z, [ +]z,] ?)
Polar representation of a complex number :

There is an alternate form to represent a complex

number z = x + iy which is known as polar

representation. Let us understand how we can express P, y)

any complex number into polar form. Let z = x + iy
be a non-zero complex number represented by the point y

—_— >
P(x, ). (Figure 2.6) Draw PM L OX. Then OM = x 4
-

and PM = y. Draw OP. Let OP = and mZMOP = 0. < o M »X

Then x = rcosO and y = rsinB.

Therefore z = x + iy = r(cosO® + isin0)
Note : Here P lies in the first-quadrant.

Figure 2.6

. x>0, y> 0. Butif P(x, y) lies anywhere in the Argand plane except for origin, then also

x = rcos0, y = rsin® are true.
z=x+ iy = r(cos® + isin0)
Here, 2 = x2 + )2

I

r=1/x2+y2 =|z|and tan9=%

(r = OP > 0)

r > 0)

The form z = r(cos® + i sinB) is called the polar form of the complex number z. Also 0 is known

as amplitude or argument of z, written as arg(z). Since sine and cosine functions are periodic, there

are many values of O satisfying x = rcosO and y = rsin®. Each of these O is an argument of z. The

unique value of O such that -t < 0 < T for which x = rcosO@ and y = rsin@ is known as the
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principal value of arg(z). While reducing a complex number to polar form, we always take the principal
value of arg(z). Unless specified the notation arg(z) means principal value of arg(z). To find the value
of arg(z), one has to take care of the position of the point in the plane. Argument of the complex
number 0 is not defined (Why ?)

G+ ) {0, if x>0 0+ 5) L, if y>0
arg(x + i0) = . arg iy) =
m, if x<0 —g,if y<0
Argument of positive real number is 0 and that of negative real number is 0. Similarly

argument of purely imaginary number yi is % or —% according as y > 0 or y < 0 respectively.

Also, cos® = & sin@ = i and —T < 0 < T

"
(i Ifx >0,y >0, then we can get 6, 0 < 0 < %, such that cos@ = %, sin® = %
(i) Ifx <0,y >0, then we find O such that cosQl = lirl, sinQlL = %

0< OL<%. Let © = T — . Then cosO =%,sin9 =%.
(i) If x <0, y <0, then we find O such that cosOl = lirl, sinQL = %

O<0€<%. Let O = —1t + o.. Then cos© =%,sin9 =%
(iv) If x > 0, y <0, then we find O such that cosQl = %, sinQl = llrl

0<a< % Let O = —0t. Then cos® = %, sin@ = %

Example 10 : Write the following complex numbers in polar form. Determine the modulus and the
principal value of the argument in each case :

(1) 1+ ) -1 + J3i G) =3 —i A1 —i
(5) -3 (6) —2i (M1 (8) 2i
Solution : (1) Letz=1+i=x + iy

x=1,y=1

S I":"_xz-kyz :ﬁ
l:

0-X - L 0 = L
cosO - =75 and sin® - =7
P(0) lies in the first quadrant.
=1
0 4
The polar form of z is 42 (cas%+isin %)
|z|=r=ﬁ,argz=9=%.
() Letz=—1+J3i=x+iy

-xz_layz\/g
r=|z|=‘/1+3=2

COMPLEX NUMBERS 37




cos9=_—l=_—1andsin9=£=£
r 2 r 2

— 1 gino = 3

cosQl z,smO(, 5

o==L
Since x < 0, y > 0, P(0) lies in the second quadrant.

6=n—0c=7t—§=277t

The polar form of z is 2(Cos27n+isin27n).
Als0,|z|=r=2,argz=9=27n.
BG)Letz=—3 —i=x+iy

x=—ﬁ,y=—1

r=|z|=‘/3+1=2
—3

cos0 3 and sin0© >
cosOl = @, sinQl = %

_ T

6
Since x < 0, y < 0, P(0) lies in the third quadrant.

- _ - _ I _ 51
0=—-T+ o T+ ¢ =

The polar form of z is 2 (COS(—%)"'Z'SI'”(—%E)).

Also,|z|=r=2,argz=9=i6n.
@) Letz=1—i=x+1iy
x=1,y=-1

r=|z|=‘/1T=\/5

1 _ L : -1 _ =1
n
cos0 PR d sin® Pl

1 . 1
cosOl = f, sinQl = ﬁ

-y
o 4

Since x > 0, y < 0, P(0) lies in the fourth quadrant.
=—=—-=I
0=-0a=-%

The polar form of z is ﬁ(cos(—%)+ iSin(—%)).

Also,|z|=r=ﬁ,argz=9=—%.
(5) Letz=-3.Herez=x+1i0 and x < 0.
Its polar form is 3(cosTt + i sinTr)

Also, |z | =3, argz =0 =T.

(x| =1,y = 3)

(x|=43,1p1=1

(x[=4L|yl|=1
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10.
11.

12.

13.
14.

15.

(6) Letz=—2i. Here z=0 + iy and y < 0.
Its polar form is 2(cos(—-§=)+isin(—-§=))

Also, | z | = 2, argz=9=—%.
(7) Letz = 1. Here z=x + i0 and x > 0. So Its polar form is 1(cos0 + isin0).
Also, | z|=1,argz=0=0.

(8) Letz =2i. Here z=0 + iy and y > 0. So its polar form is 2(c0s%+isin %)

Also,|z|=2,argz=9=%.

Exercise 2.2

Find the absolute value and the principal argument of the following complex numbers :

; 2 . .
W 5oy @) e @ 5 sy

1

If z = 3 + 2i, then verify the following :

M z1=12] @-:zISR@<[z] G 7'=77

If z; =3 + 2i and z, = 2 — i, then verify the following :

WHatn=2z1+7z, Qua-n=z;,-2, B axr =712, & (Zz) %

If z is a non-zero complex number, show that (z'l) = (Zy L

If (a + ib)* = :, show that a* + b2 = 1.

If z; and z, are two complex numbers such that | z; | = | z, |, then is it necessary that

z; = z, 7 Justify your answer.
. z-1
A complex number z = a + ib is such that arg (m) = % Show that a® + b — 2b = 1.

Find the maximum value of | 1 +z + 22 + 23 |, ifz€ Cand |z | < 3.
(1) Ifz=a+iband 2/z— 1] =]z — 2| prove that 3(a* + b?) = 4a.
(2) Ifz € C such that |2z — 3| =3z — 2|, prove that | z | = 1.

(3) Ifze Csuchthat |2z —1|=]z—2]|, prove that | z | = 1.

Show that complex number —3 + 2i is closer to the origin than 1 + 4i.

Represent the points —2 + 3i, —2 — i and 4 — i in the Argand diagram and prove that they are vertices
of a right angled triangle.

Find the complex number z whose modulus is 4 and argument is 56TC

If (1 = 5i)z; — 22y =3 — 7i, find z; and z,, where z; and z, are conjugate complex numbers.
If (a + ib)? = x + iy prove that x2 + y? = (a? + b?)%

(1+1)?

If 5=

x + iy, then find the value of x + y.

*
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2.8 Square Roots of a Complex Number
If (@ + ib)? = z = x + iy, we say that @ + ib is a square root of z.
Let z = x + iy and let a square root of z be the complex number a + ib, if it exists.
x + iy = (a + ib)?
x + iy = (@* — b*) + (Qab)i
a* — b? = x and 2ab = y @)

Now, @ + b2 = [~ +4a%? = [P+ =z | (by (@) (ii)

From (i) and (ii) we get 24> = |z | + xie. a = £ IZI% and b = £ R

If y > 0, then a and b both positive or both negative as y = 2ab.

. zZl+x . [lzZl—Xx
Therefore, the square roots of x + iy are i(\/ 5 +l‘/ 5 ]

If y < 0, then out of @ and b, one is positive and another is negative.

) IZl+x . [lzZl—x
Therefore, the square roots of x + 7y are i(\/ ) —lJ ) ]

Now, we have proved that every complex number has two square roots.
Example 11 : Find the square roots of (1) J3—i 2) 7+ 24i
Solution : (1) Let z = J3 — i Here x = \/5, y=—-1<0

21= 2y = BT =2

. . lzl+x . Jlzl—Xx
We know that if y < 0, then the square roots of x + iy are i(J 3 —IJ 3 ]

‘/2+J§ .‘/2—‘/3
Hence the square roots of J3 —iaret 7! 2 .

2
Now 2 + ﬁ = 4+22‘/§ = (‘E;l)

~/§+1_.J§—1). i3 =)

The square roots of z = J§ — i are i(T i~——

(2) Letz=7+24i Herex=7,y=24>0
|z | = 1/x2+y2 = J49+576 =25

. lzl+x . [lzl—X
We know that if y > 0, then the square roots of x + iy are i(\/ > +ZJ 5 ]

25+7 . [25-1
Hence the square roots of 7 + 24i are i(J 5 'HJ 5 ] =14 + 3i).

Example 12 : Find the square roots of (1) 1 (2) =1 (3)i (4) —i

(1) Letz=1
| z | = 1. Let the square roots of z be a + ib.
(a + ib)? =1

A —b+2abi=1=1+0i
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a* — b2 =1, 2ab = 0. From 2ab = 0 we have a = 0 or b = 0.
From a = 0, we have —b2 = 1 which is not possible as » € R. So a # 0.
2ab = 0 gives b = 0

a =1
a=*1
a+ib=7*1

Square roots of 1 are 1.
Note : In R, we know square roots of 1 are *1.
(2) Let z = —1. Let the square root of z be a + ib.
(a + ib)? = —1
a> — b? + 2abi = —1
a? —b>=—1,2ab =0
2ab = 0 gives a =0 or b =0
But b = 0 gives a*> = —1 which is not possible as @ € R. So b # 0.
a=0and b =1

b ==l
Square roots of —1 are *i. (as we expected since 2 = —1)
Remember 2 = —1.

Similarly the square roots of —4 are 12i,
the square roots of —3 are +J3i.

(3) Let z =a + ib be a square root of i.

(a + ib)? =i

a’ — b% + 2iab = i

a* — b* =0 and 2ab = |

a=b or a=—b

But a = —b gives —2a = 1 using 2ab = 1.

This is not possible.

a=band 24> = 1

a= iﬁ. Since a = b we have b = iﬁ.

; =+ L+Lj
Square roots of i are _( Lt a)

(4) Let z = —i. From (3) above a* — b* = 0, 2ab = —1
a=b or a=-b

If @ = b, then 24*> = —1 which is not possible.
a=—band 24> = |

a=%,b=—fanda=—f,b=ﬁ
The square roots of —i are i(%-%)
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2.9 Quadratic Equations having Complex Roots

We have studied quadratic equations and solved them in the set of real numbers when the
value of discriminant is non-negative. i.e. when D = 0. Now we can answer the unanswered
question, ‘“What happens when D < 0 ?°

Now let us try to solve quadratic equation ax> + bx + ¢ =0, a b c € R, a # 0,
where D = b2 — 4ac < 0.

ax?+bx+c = i (a*x* + abx + ac)

=é [(ax+%)2 +ac—%}

2 dac-b?
_ 1| (ax+2) +
L (o) e
b2 b* — 4ac
Ifax2+bx+c=0,then(ax+5) = 7

Now, b2 —4ac < 0

b _

Square root of ax + 5=

2 i f4ac—b?
Square root of b 44ac that is #.

2
. 2
y = “hEijsac—b® (a # 0)

—b*iVy-D

If D < 0, roots of ax? + bx + ¢ = 0 are 52

Fundamental Theorem of Algebra :

Every polynomial equation having complex coefficients and degree = 1 has at least one
complex root.

Example 13 : Solve ()22 +3=0@2) 22 +x+ 1 =0 3) /3x2 — J2x + 343 =0
Solution :
() ¥2+3=0
. x2=_3
s ox =130
(2) Here,a=2,b=1,c=1
b —dac=1-4-2-1=-7<0

Therefore, the solutions are given by x =

3) Here,a=s/§,b=—‘/§,c=3s/§

P2—dac=2—4J3 .33 =2-36=-34<0
—b+iJ-D _ J2 i34 _1EV1T

Therefore, the solutions are given by x = > 5 7c
2.10 Cube Roots of Unity

-b+tiy-D _ -1t J7i
2a 4

Let z be a cube roots of unity.
Then, z3 = 1
2—-1=0
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C—DEZ+z+1)=0
z=lorzZ2+z+1=0
z=1,%‘/§" @=1,b=1¢=1,D = -3)

—14+3 —-1-3

Hence, the cube roots of unity are 1, 5 5

Properties of Cube Roots of Unity :

(1) Each of the two non-real cube roots of unity is the square of each other.

N\2
- j —1+43 =
Let ® = l—gﬁl.Then 0)2=(T‘/—l] =%(1 —21/3i+3i2)= 12\/51

Also, (0)2)2 = ®* = @’® = ®. Hence cube roots of unity are 1, , o?.
(2) We observe that sum of the cube roots of unity is 0. i.e. I + ® + ®* =0
(3) It can easily verify that product of cube roots of unity is 1.i.e. 1 - @+ ®? =®3 =1

—1+3i —1-43i
2 2

(4) Representing 1, in the Argand plane as A, B, C respectively then A is

3 3
(1, 0), B is (—%%) and C is (—5—%). Note that AB = BC = AC = /3. Thus A, B,

C are the vertices of an equilateral triangle. (Figure 2.7)

Y
B Pas. ]
£ o .A » X
sl
Figure 2.7
Exercise 2.3
1. Solve:
MHx2+2=0 Qx+x+1=0 A V52 +x+J5=0

1
WP2+x+ [ =0 OF+F+1=0 (O3 —dx+Z=0

2. Find the square roots of :
(M a+4d3i (2)5—12i (3)—48+ 14i (4)3 — 4410
1 1 1 1 1
(5)%+i—2+i—3 tat5+7%6 (6) 4i (7)) —16i (8) =25 (9)—10
3.  When do we have | z; +z, | = [z, | + |z, | ? Prove your contention.
4. Prove that in the Argand plane if P represents z and Q represents iz, then OP = OQ and
mZPOQ = % State geometrical meaning.
5. Prove points representing z, iz, —z and —iz in Argand plane form a square.
6. What is the relation between representation of z and Z in the Argand plane ?
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Miscellaneous Problems :

Example 14 : Find all the complex numbers z satisfying the condition 7 = z2,

Solution : Let z = x + iy be such that 7 = z2.
x— iy =% =)+ iQ2x)

By definition of equality of complex numbers, we have x = x2 — y% and —y = 2xy.

From the second result we have either y = 0 or x = —%.
Assume first y = 0. Then from x = x2 — 32, we have x = x?
x=0orx=1 =0
So in this case z = 0 or z = 1
. —_1 1 _ 1 —
Now,lfx——z,then—i—z—yz (x =x2—)?)
—+3
Y3
So in the second case z = —% + i@ or z = —% - ié
Consequently, there are four complex numbers 0, 1, —% + i@, —% - ig satisfying the equation
> = 52
zZ = z%

. 3+ 2isin®
Example 15 : Find real 0 such that T—25m0 18 real. Also find the number.

. b 3+2isin® 3 +2isin0 1+ 2isin®
Solution : We have, 77758 = 7250 X T+ 2i5m0

3+ 6isin® + 2isin® + 4i%sin’0
1+ 45in0

3— 4sin29 8sinB
1+4sin?® "1+ 4s5in’0

If the given complex number is real, its imaginary part is zero.

8sin®
Therefore, L+ 45in20 — 0
sin@ = 0
O=km ke Z
34+0
This number is T—o = 3

Exercise 2

' 25 s—ai
1. Reduce : (1) [118 +(%) } 2) (1—14i - lii) ( 5+il) to the standard form.

. 1+1i 1—1
2. Find the modulus of =5~ 15

3. For any two complex numbers z; and z,, prove that Re(z,z,) = Re(z|)Re(z,) — Im(z|)lm(z,).
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10.
11.
12.

13.

14.

15.
16.

17.

18.

19.
20.
21.

Find the value of Re(f(z)) and Im(f (z)) for f (z) = ﬁ at z = 7 + 2i.

Show that the point set of the equation | z— 1| =|z + i | represents a line through the origin whose
slope is —1.
Prove that | 2Z + 5)(W2 — i) | = V3] 2z + 5 |.

L~
1-212,

If z; and z, are distinct complex numbers with | z, | = 1, then find the value of

1
If a+p T a-i{ib = 1, where O, [, @ and b real, express b in terms of O and 3.

If (x + iy)® = a + ib, prove that % + % = 4(x2 — y?).
Solve : (l)x2—2x+%=0 2)27x2 —10x+1=0 3)21x2 —28x + 10=0
If z€ Cand|z| <2, find the maximum and minimum values of | z — 3 |.

For z = 3 — 2i show that z2 — 6z + 13 = 0. Hence obtain the value of z* — 423 + 622 — 4z + 17.

N
If (IJ”.j = 1, then find the least positive integral value of m.

1—1
] a—ib a’ +b?
If (x — iy)? = ~ ;4> prove that (x? +yz)2 =2+l

Find the value of z which satisfies the equation | z | —z = | + 2i.

If the complex numbers z,, z,, z; represent the vertices of an equilateral triangle such that
| z; | =1 2y | = z3 |, then show that z; + z, + z3 = 0.

Show that the area of the triangle in the Argand diagram formed by the complex numbers z, iz and

.
z+12153|z|2.

i
fz=x+iyand w = z—li’

If z = =5 + 4i, show that z* + 923 + 3522 — z + 164 = 0.
If z=x+ iy, prove that | x |+ | y | £ J2| z |.

show that | w | = 1 = z is real.

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the
right so that the statement becomes correct :

(1) Solution of | z— 4| < |z —2|is given by ... ]
(a) Re(z) > 0 (b) Re(z) < 0 (c) Re(z) > 3 (d) Re(z) > 2

(2) If|z—1 2=z >+ 1, then z lies on......in the Argand diagram. L]
(@ x2+y2=1 (b) the imaginary axis
(c) the real axis (d2x+3=0

(3) If | z+ 4 | £ 3, then the maximum value of | z + 1 | is ... ]
(a) 6 (b) 0 (c) 4 (d) 10

(4) The conjugate of a complex number is z+1 Then that complex number is ... 1]
(@) 75 (b) 75 © 747 A 757

B5) "+ T+ t2 4+ T3 s equal to ... [ ]
(a) 1 (b) —1 () 0 (d) "
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3+47

(6) The multiplicative inverse of ;— is ... ]
8 31 . 8 31 . 8 31 . 8 31 .

(a) —g + gl (b) 25 - 2—51 (C) —g - 2—51 (d) 25 + 2—51

7) Ifx+iy=5tx,thenx2+y2= ........ ]
(a) 1 (b) —1 ©) 0 ) 2

(8) The smallest positive integer n for which (1 + )% = (1 — i)*" is ... [ ]
(a) 4 (b) 8 ©) 2 d) 12

o

(9) On the Argand plane the complex number 11+_ il lies in the ..... quadrant. ]
(a) first (b) second (c) third (d) fourth

(10) arg(—1) = ...... ]
(@ 0 (b) T (c) % (d) —m

(11)The complex numbers sinx + icos2x and cosx — isin2x are conjugate of each other, for...[ |
(@ x=kn ke Z (b)yx=0
() x = (k +%)ﬂ:, ke Z (d) no value of x

(12)If a complex number lies in the third quadrant, then its conjugate lies in the ...... quadrant. [__|
(a) first (b) second (c) third (d) fourth

(13)The complex number with modulus 2 and argument 2Tn is ... ]
@-1+i#3  m-l1-iF @+ +E @i-HB

(14)Argument of 1 — i3 is ... C ]
@ & (b) 2 ) -% (d -2

(15)If the cube roots of unity are 1, M, M2, then 1 + ® + ®> = ...... ]
(a) 1 (b) 0 (c) -1 (d) ®

*
Summary

We studied following points in this chapter :

1. A number of the form a + ib, where a and b are real numbers, is called a complex number
where 2 = —1.

2. Letz; =a+iband z, = ¢ + id be any two complex numbers.
zytzy=(@+co)+ilb+d), z1zy = (ac — bd) + i(ad + bc)

3. (a+ ib)a — ib) = a* + b?

4. Multiplicative inverse of a non-zero complex number z = a + ib is L_1-_a —bi

=Z ar .
Z a+b*  a’+b?

5. Mo Akl A2 g k3 —
° b >

i =—1,1 =—i
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6. For complex number z = a + bi, its complex conjugate is z = a — bi.
7. Modulus of a complex number z = a + ib is | z | = ‘/az +p2.

8. The complex number x + iy which corresponds to the ordered pair (x, y) can be represented

geometrically as the unique point P(x, y) in the XY-plane and vice-versa.

. Izl+x . [1Z1—x
9. Square roots of x + iy are i(\/ 5 ‘”\/ ) ),y>0

1zI+ . flzl—
i(JZZ x—l‘/zzx),y<0

10. The cube roots of unity are 1, ® = —1-;J§i , @ = _—1—2\/51'

, 2 g
11. If b2 — 4ac < 0, the solutions of ax? + bx + ¢ =0 where @, b, c € R, a # 0 are w.
a

— ‘ —
L X

Brahmagupta was the first to use zero as a number. He gave rules to compute with zero.
Negative numbers did not appear in Brahmaphuta siddhanta but in the Nine Chapters on the
Mathematical Art (Jiu zhang suan-shu) around 200 BC. Brahmagupta's most famous work is his
Brahmasphutasiddhanta.

Brahmagupta gave the solution of the general linear equation in chapter eighteen of
Brahmasphutasiddhanta.

The difference between rupas, when inverted and divided by the difference of the unknowns,
is the unknown in the equation. The rupas are [subtracted on the side] below that from which
the square and the unknown are to be subtracted which is a solution equivalent to x = %,
where rupas represents constants. He further gave two equivalent solutions to the general quadratic
equation.

Diminish by the middle [number] the square root of the rupas multiplied by four times the
square and increased by the square of the middle; divide the remainder by twice the square. the
middle.

Whatever is the square root of the rupas multiplied by the square [and] increased by
the square of half the unknown, diminish that by half the unknown [and] divide [the remainder]
by its square. [The result is] the unknown which are, respectively, solutions equivalent to,

_ Ydac+b* —b .
2a

Brahmagupta then goes on to give the sum of the squares and cubes of the first » integers.

The sum of the squares is that [sum] multiplied by twice the [number of] step[s] increased
by one [and] divided by three. The sum of the cubes is the square of that [sum] Piles of these with
identical balls [can also be computed].

It is important to note here Brahmagupta found the result in terms of the sum of the first
n integers.

He gives the sum of the squares of the first » natural numbers as n(n + 1)(2n + 1)/6 and

nm + 1) \2
> .

the sum of the cubes of the first » natural numbers as (
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Chapter 3

BINOMIAL THEOREM J

The laws of nature are but the mathematical thoughts of God.

— Euclid

%

I like mathematics because it is not human and has nothing particular to do with this planet
or with the whole accidental universe, because like Spinoza’s God, it won’t love us in return.

— Bertrand Russell
3

If there is God, he is a great mathematician.
— Paul Dirac

3.1 Introduction
In earlier classes, we have learnt about expansions like,
(@a+ b =a+b
(a + b)Y = a* + 2ab + b2
(a + by} = @ + 3a%h + 3ab®> + b3 and even (a + b)* as a product of
(a + b)® with (a + b)

ie. (a+ b)* = a* + 4a3b + 6a*b* + 4ab® + b*.

However, the expansions of (a + b)°, (a + b)°, ... become difficult by using multiplication.

It is believed that in the eleventh century, Persian poet and mathematician Omar Khayyam gave
the general formula for (a + b)?, where n is a positive integer. This formula or expansion is called
the Binomial Theorem.

Euclid (Fourth B.C.) a Greek mathematician gave a specific example of Binomial Expansion
for n = 2. An Indian mathematician Pingla (Third Century B.C.) had given the idea about the higher
order expansions. In the tenth century an Indian mathematician Halayadha was aware of general
binomial theorem and Pascal's Triangle. Persian mathematician Al-Karaji and in 13th century Chinese
mathematician Yang hui have also obtained such results.

The coefficients of the consecutive terms in the expansion of (a + b)", for n =1, 2, 3, ... can also
be obtained from a row from triangular arrangement of numbers, known as Pascal's Triangle
named after French mathematician Blaise Pascal (1623-1662).
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Index Coefficients

: AN
3 / \+/ \+/ \
) 1/ \:/ \?/ \I’/ \1

In Pascal's Triangle first and last element of any row is 1, while the other elements are obtained
by adding the numbers of the upper row which are at the beginning of the arrows.

Pascal's Triangle : The first row is 1 1

ie. (o) ()

The second row is 1 2 1

Here the first and last entry is 1 and the middle term is obtained as sum of the two terms of 1st

() + ()= (7))

Similarly, the third row is 1 3 3 1, the first and last term is 1, the second term is obtained as

the sum of 1st and 2nd term of 2nd row i.e. 1 +2 =3 as ((2)) + (%) = G) and 3rd term is obtained as

row, because ((1)) + (i) = (%)

the sum of 2nd and 3rd terms of 2nd row ie. 2+ 1 =3 as (%) + (%) = (;)

In the same manner, let us check 5th row in the light of above discussion.

4th row : 1 4 6 4 1
) () G G ()
the 5th row : 1 (1+4 4 +06) (6 +4) @4+ 1
1 5 10 10 5 1

( _ n+1))

By using the formula (:,l) = W 0 <7 < n, and also ( ) =1= ( ) the Pascal's triangle

can be written as,
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Index Coefficients

Observing above array, we can write the coefficients of the terms in the expansion of (a + b)", for

any index n, without writing the earlier rows. For example, for index 7,
we have the coefficients of the terms as ((7)), (Z), (;), (;), (Z), (g), (Z), (;)

Now, we are in a position to write the binomial expansion of (a + b)" for any positive integral
value of n.

3.2 Binomial Theorem
@+by=(p)am+(T)a=tp+ (5)a =202+t (F)a b .4+ (1) ne N
We shall prove this theorem using the principle of mathematical induction.
Let, P(n) : (a+ by = (§ )+ ()= 1ot + (5)ar =202 4ot (F)ar =7 ot ()b ne N
Let n = 1
LHS. =@+ b =a+b
RHS. = (g)al + (})al =1 b =a+b

. P(1) is true.
Let P(k) be true.

co@r b= (D)a+ (V- rp + (Bt 22 4

+ (r]fl)ak RGN A (],f)ak— rep L+ (Ilﬁ)bk
Now, (a + b)f " 1= (a + b)(a + b

-t o8+ (et (B o

+ (r]fl)ak Y (lﬁ)ak TN At (llﬁ)bk]

On multiplying both the factors and rearranging the terms, we get,

(@+ bft1= (’5)@“ I+ [(18) + (lf)]ak-b + [(’f) + (’;)]a’f- Lp? + .

+ [(r’il) +(f)]ak-<r- Depr+ ... +(§)bk+1
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Now,weknowthat;(g)=l=(2) and(’;)+(r’11)=( r ),lSrSn
@t = (R ek (a0 (R b2 4

k+1 1
+( :]a(k‘*1)_"-b"+...+(zil)bk+1

. Ptk + 1) is true.

“. By the principle of mathematical induction, P(n) is true, Vi € N.

Some Corollaries :

(1) Substituting @ = 1, b = x in the binomial expansion of (a + b)", we have,
A+xyr=(0)+ (Nx+ ()2 + et (B +.+ () Vne N

(2) Replacing b by —b, we obtain
@=by = (g = (P)ar=1b + (5)ar =202 = (3)ar = 3-0% + ..+

y-(F)ar = rm 4o+ =y ()
(3) Taking x =1 in (1), we get

=)+ (D) + )+t )+t ()

6+ (1) + (3) e (7] et (1) =2

(4) Substituting x = —1 in (1), we have
o= ()= 1)+ ()= 2) +cn () 0

Aso, 2= (1) + 1)+ (1) (2) b (2 i

. Adding respective terms of (i) and (ii), we have,
2 =2(5) + (3) + (§) + -]
0+ (2)+ (1) b2 i

(N + G+ =)+ (5) +.=2n- (From (i) and (iii)) (iv)

Note : From the expansion of (a + b)", we observe the following points :

(1) There are (n + 1) terms in the expansion.

(2) The index of ‘@’ in the first term is » and the index of ‘a’ decreases by 1 in the successive
terms and simultaneously the index of b is zero in the first term and the index of b increases by 1 in the
successive terms.

(3) Degree of each term (i.e. the sum of indices of @ and b) is n, the index of (a + b).
n
()
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(4) The coefficients of the terms in order are (g), (rlz), (721),




(5) As we know that, (’;) = (nfr), so the co-efficients of terms in the expansion are

symmetrically situated successively from left or right i.e. (’3) = (Z), (’11) = (n’i 1); (’21) = (n’lzj,

5

Example 1 : Expand : (%+i ,xZ0
Solution : Here a = %, b= %, n=>5

Substituting these values in the binomial theorem, we get,

4
Example 2 : Expand : (2x—1+%) ,x#0
Solution : Taking a = 2x, b =1 — %, n = 4 in the corollary (2).
4 4
_1+4) = (141
(20-1+2) [Zx (1 x)}

~(s)ewt - (Neo(i-4) + (Bev(i-2) - (ea(i-4 + ()04

1 4-3 2,1 4-3-2 303
o1+ 00 120 - e ()

[0 - () + (0 - (G + @)

= 16x) = 3203 + 322 + 242 — 48y +24 — 8y + 24 — 2 4
6 4 1
+1_%+7_7+7
— 16 — 323 + 562 — Sex + 49 — B 4 5 L L
X X X X

Example 3 : Evaluate (0.99)° using binomial theorem.

Solution :
(0.99)° = (1 — 0.01)°

=(5) = (D)on + (3)0.0n2 = (3).013 + (3)0.01* —(3) 0.01)3

=1—5(0.01) + 10(0.0001) — 10(0.000001) + 5(0.00000001) — (0.0000000001)
=0.9509900499
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Example 4 : Which is smaller ? (1.1)190000 o 100000

3.3

Solution : (1.1)100000 = (1 4 (.1)100000

- (100(?00) + (1001000) (0.1) + Sum of some positive terms

=1+ 10000 + Sum of positive terms
> 10000
10000 is smaller out of (1-1)19900 and 10000.

Excercise 3.1

Expand the following :
(1) (+? +§)5, x#£0) @QU0-20" @) Bx—2° @ (x—ﬁ)s, (x # 0)

Expand : (1) (1 +x +x)* (2) (1 —x + x2)3

Evaluate by using binomial theorem :

(1) (0.98)*  (2) 99*  (3) (101)S

Using binomial theorem, indicate which one is larger ? (1.01)10000 or 100
%k

General and Middle Term

The expansion of (a + b)" contains (n + 1) terms. If we consider T, T,, T, ..., T, , 4

as the first, second, third, ... (m + 1)th terms respectively in the expansion of (a + b)", then

T, = (G)a”, T, = (’11)0” “lp, Ty = (’21)61” “2p LT, = (Z)bn'

We may take the general term as T , , = (I;Ja" “rp,0<r<n

h
If in (a + b)"; n is even, then n + 1 is odd. So the middle term is (%+ 1)t term.

th n+2\h . :
So (%+ 1) term = (T) term is the middle term.

term.

For example, in the expansion of (2x + )!, the middle term is 10;— 2 = 6th term. If n is odd,
th th

then n + 1 is even, so there are two middle terms : (Tj term and (T) term.
F . . 9 . 9+1 _ 9+3 _

or example, in the expansion of (2x + y)’, the middle terms are —— = 5th term and — = 6th

Example 5 : Find the fourth term in the expansion of (3x — y).
Solution : Here, a =3x, b= -y, n =17
n\ o, —

Now, T, . | = (r)a” Y4
To find T,, we let r =3 r+1=4
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Ty=Ts o = (3)307 73 = To3@lxh )

= —2835x%3
16
Example 6 : Find the coefficient of x~2 in the expansion of (x —#j ,(x#0)

Solution : Here, a = x, b = —3, n =16

Ty (e

= (lr6) (x)16 - r_(_?)r - (1’?) (_l)r_x16 - 3r

For the index of x to be —2, we must have 16 — 3r = =2 i.e. r = 6.

16 -
Tg, | = (6)(_1)6,x16 3(6)

Coefficient of x 2 is (166 ) or 8008.

11
Example 7 : Find the constant term in the expansion of (2x2 —%) , if it exists. (x #0)

Solution : Suppose the constant term (i.e. term in which index of x is zero) exists and it is

(r + Dth term.

Here, a = 2x2, b = —é, n=11

0oy = (e

_ (1r1)(2x2)11 - r,(_l)r _ (lrl)(z)u (1Y .x22 - 3

X
For the constant term, index of x is zero.
22 —-3r=0
r=2¢N
Our assumption is wrong.

Constant term does not exist in the expansion.

9
Example 8 : Find the middle term / terms in the expansion of ( +3y)

Solution : As n = 9 is odd, so we have two middle terms namely,

n+l _ 9+1

— = = 5th term and n+t3 _ 943

— = 6th term

Here,a=%,b=3y,n=9

0oy = (e

TS_T4+1_(4)'(§) GV =T33 32 (81 ) = g XY
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ENE r+1=6)

TG54
7()16_6)(243325) — 15209 x4y5

Middle terms are 2193 xy* and % xh.

16
12
Example 9 : Obtain the term independent of x in the expansion of (‘/% +‘,ﬁ] . x>0
. 12—-r r
. — X 3
Solution : Here, T, , |= (r)( 3j ( 2x2)
_(12y V3" 1 s_L_
- (2) e o
(12 1 1 6L
—(r)'wx(ﬁ)rXx 2
For the term independent of x, we let 6 — % =0
r=4
T. = (12). 11 _ 12'11'10.9.L _ 55
5 4 (ﬁ)“ (ﬁ)“ 1-2-3-4 36 4

Exercise 3.2

15
1. Find the coefficient of : (1) x® in (x + 2)° (2) ¥*2 in (x“ —#j , (x # 0)

2. Find the constant term in the expansion of :

10 9
(1) (%+@j x>0 () (%—%) . (x #0)

n
3. The coefficients of x” and x® in the expansion of (2 +%) are equal, find n.

4. Find the middle term or terms in the expansion of :

() (2—%3]7 @ (£+3) 6 (%—%)20,(”0) (4) Gx + 28

5. If the coefficient of x3 in the expansion of (1 + x)” is 20, find .

6. If the coefficients of fifth, sixth and seventh terms in the expansion of (1 + x)” are
in arithmetic progression, find ».

Miscellaneous Problems :
Example 10 : Find the coefficient of x° in the expansion of the product (1 — x)!3 - (I + 3x)%.

Solution : Applying binomial theorem to get (1 — x)!> and (1 + 3x)*, we have
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(1 - x)15 = (105) — (115)x + (125)x2 — (135)x3 + .- (g)x” and
(1 +39% = Gx + ) = ()30t + (1) + (3)e0? + (B)en + (3) -1

Now, we want to find the coefficient of x° in the product (1 — x)!> - (1 + 3x)*, we shall

simply collect the terms containing x> from the product, without finding complete product.

They are, () - (1)27) = (V)x- (F)oxd + (52 ()0 = (5)- ()

15-14-13 -

4-3 15-14 .
2.3 V°

4273 — 15 -x-— . 9x2
1-4-27x 15:x 77 9% + 73

x2-4.3x—

(108 — 810 + 1260 — 455)x3 = 103x3
Coefficient of x3 in (1 — x)!5 - (1 + 3x)* is 103.

10
Example 11 : If the middle term in the expansion of (%+ 3) is 8064, find x.

Solution : Here n = 10
n+2 10+2

n is even, so middle term is — T 6th term
10-5
_ _ (10} (x

Tﬁ‘T5+1‘(5)'(?) -3

~10-9-8-7-6 45
8064 = 33775 '3_5'3
8064 5
252
¥ =32=25
x =2

Example 12 : Prove that (3 + J§)5 + 3 - \/§)5 = 6726. Hence deduce that,
6725 < (3 + 4/8)5 < 6726. Hence obtain [(3 + +/8)°].

Solution = (3 + ¥8)* = (3)3)° + (})3*WB) + (3)3PWE? + (3) 3B}
+ (3 + (3B 0
G- V8 = ()3’ - )38 + (3)3rPWE1 - (3)32(B)?

+ (3B - 2)WB» i
Adding (i) and (ii), we have

G+ V8 + 3 - V8 =2()3 + (3)3PWE)2 + (3)3)B8)]

=2[1.243+%-27-8+5-3-64] ((2)=(?))

= 2[243 + 2160 + 960]
= 2[3363]
= 6726
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Now, 3+ V/8)3 — V/8)=9—8=1and 3+ +/8) > 0. Hence 3 — V8 > 0.
Also 3 + J/8)> 1

3-8 <1

0<3-4J8<1

0<GB—V8)Y <1

G+BY <B+8)P +3—V8)5=6726<@+ 85 +1

(3 + 8)’ <6726 and 6726 < (3 + J8)5 + 1

6725 < (3 + J8)3 < 6726

According to definition of integer part, [(3 + J3 )] = 6725

Example 13 : The sum of the coefficients of powers of x in the first three terms in the expansion

n
of (x*=2) (x # 0) is 127, find n. (2 € N)

2

Solution : In the expansion of (xz —;)n, the first three terms are (g)(xz)”, ('11)(x2)” - L (_72) and

n\o o -2, (=22)? ' -
( 2)(x ) ) As the sum of the coefficients of these terms is 127, we have,

(6) = (T2 +(3)-4 =127
Ann—1
2

1 —2n+ 2n(n — 1) = 127

1 —2n+2n2—2n—127=0
2n* — 4n — 126 = 0
n—2n—63=0
n—9)n+7 =0
n=9orn=-7 But—7¢& N
n=9

1 —2n+ =127

Example 14 : Use the binomial theorem to show that dividing 8” — 7n by 49 leaves the remainder 1.

Solution : 8”7 = (1 + 7)"

L+ ()7+ )72+ (5)B + .+ ()7

L+ +72[(5) + (5)7 +.+ ()7 7]

8" — 7n =1+ 49m, where m = [(5) + (3)7+ ..+ ()72 e N

Dividing 8" — 7n by 49 leaves the remainder 1.
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Example 15 : Prove that : (g)z + (’11)2 + (’21)2 +.+ (Z)z _ an! Vne N

(n !)2 s
. . 2n)! em! 2n
Solution : [Motlvatlon : See the R.H.S. = ahnh) — @n—minl (n ),

which is the coefficient of x”? in the expansion of (1 + x)z”.]

A +x2 =0 +x)" @+ 1)
=[(6) + (F)x + (5) + ot (2 = 1 ()]
[+ (=t )2t (W) + ()]

Now coefficient of x” in the expansion of (I + x)2" is (2,;1 ) and

coefficient of ¥ in R.H.S. = (g)z + (7)2 + ..+ (2)2 (Taking product term wise)

G e G = ()
em!  en!
nl-n! = ((nh?

Example 16 : Prove that : (g)(’f) + (’11)(’;) + (g)(’;) +..+ (nril)(Z) = #%, Vne N

2n)!
Solution : [Motivation : See R.H.S. = [2n—(n(— li]!(n—l)! = (nzfl). It is the coefficient of

x" =~ lin the expansion of (1 + x)zn.]

A+ x> =0 +x(x+ 1)y
=[0) + (e G+t (2 )=t ()]
[(6)x + (P =t (=2 (S =3+ o+ (3]
Now coefficient of " = !in (1 + 2 is () and
the coefficient of » = 1 in RH.S. is (§)(T) + (1)(3) + (5)(5) + ..+ (") (3)
w () + )+t PG = () = G
Example 17 : Prove that : () +3(7) +5(5) + .+ @n+ D(}) = w + 127, Vn e N
Solution : Let (§) +3(7) +5(5) ++ @ = D(,%)) + @n+ D(}) = (i)

Using (’;) = ( n " r) and taking terms in the reverse order, we have

@n+ 1(§) +@n =) + @ =3() + .+ 5(,",) +3(,%) + (7)) =s (ii)

Adding corresponding terms of (i) and (ii), we have

aoten+ () re+ren-n(f) +c+en-m%) +..+

@1 =3 +5(,",) + @ =1 +3(," )+ @+ D+ D) =25
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e 2(5)+ 1)+ () +.v (2] -
2(n + 1):2" = 28§
S=@m+ 1)2"
So. (5) +3(7) +5(5) + ot @n+ () = (@ + D2
Example 18 : If in the expansion of (x — 2y)", the sum of fifth and sixth term is zero then find the
value of % If n = 8 then find %

Solution : Here, T5 = (’Z) «x" ~ 4. (=2y)* and Te = (';) <X T3 (=2y)

Now, Ts + Ty = 0. So, T5 = =T

(Z)-(—2)4-x"‘4-y4=—(’;)°(—2)5°xn"5'y5

n!

_ —n! _
-l - 16-x" tot = S5 " (32) " 24y
XAyt n! aln—-4!
oy o slm=s Xl X g
x  Hu-Hn-s)
y 5-4l(n—>5)!
X _n—4
y = X 2
Taking n = 8§, we have

=§
5

<=

Example 19 : Obtain the sum of the last thirty coefficients in the expansion of (1 + x)3°.
Solution : There are 60 terms in the expansion of (1 + x)%.

Sum of the coefficients of last thirty terms is,

s=(30) + (1) + () + -+ (3) + (3) (first 30 coefficients (). (7). .(30)) @
e s=(X)+ () + )+ .+ (D) +() (using ()= (,",)) @

28 = (509) + (519) + ...+ (gg) (adding respective sides of (i) and (ii))

Exercise 3

1. Obtain the ratio of the coefficients of x” in the expansion of (1 + x)2" and (1 + x)2* ~ .

2. If the coefficients of (» — 2)th and (2 — 5)th terms in the expansion of (1 + x)¢ are equal,
find 7.

3. Find x, y and # in the expansion of (x + )", if the first three terms in the expansion are 64, 960
and 6000.

4. The 2nd, 3rd and 4th terms in the expansion of (a + b)" are 240, 720 and 1080, find @, » and n.
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10.

11.

Prove that 2 + v/3)7 + (2 — J/3)7 = 10084,

Hence deduce that, 10083 < (2 + J3 ) < 10084.

Find n, if the ratio of the fourth term to the fourth term from the end in the expansion of
5 LY

(ﬁ +%) is6:1.

Find the coefficient of x* in the expansion of (1 — x)12- (1 + 2x)°.

n
The sum of the coefficients of the first three terms in the expansion of (x2 —%) (x #0) is 376,

find the coefficient of x8.
Using the binomial theorem, show that 327 — 8n — 1 is divisible by 64, for n € N.

Prove the following identities : (Vn € N)

M (B +2(f) +30) +t a+ D) =+ 221

n 1({n 1 (n 1 (ny 2"
@ (o) +%(1) +30) + ot () = 5
Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the

right so that the statement becomes correct :

(1) If the coefficients of 5th and 19th terms in the expansion of (1 + x)? are equal, then

n= .. ]
(a) 18 (b) 24 () 22 () 20

(2) If the coefficients of (» — 6)th and (27 — 2)th terms in the expansion of (1 + x)*2 are equal,
then » = ...... ]
(a) =2 (b) 14 (c) 34 (d) 20

(3) The coefficient of x2! in the expansion of (x + x2)20 is ...... ]

20 20 20 20

@ () ®) () © (%) @ (75)

(4) The number of terms in the expansion of (2x + 3y + 4z)° of type x?. 0. z¢ is ..... ]
(a) 10 (b) 15 (©) 21 (d) 42

) FQC+V)+C =3 =x+ /3, then y = ... ]
(@) 0 (b) 56 (©) 112 () 97

(6) If T, _ | is the middle term of (a + 5)!°, then r = ...... [ ]
(a) 6 (b) 5 (c) 7 (d) 8

12

(7) Constant term in the expansion of (2x2 —%) ,(x Z0)is ... ]

(a) 7920 (b) 495 (c) —7920 (d) —495
—1 —1 —1

@ T+ (0T = > .

(a) 2" (b) 27— 1 (c)2" — 1 (d2r-1-1
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8
(9) Middle term in the expansion of (2x +L) is ...... (x #0) 1]

S
@ (3) ® (5)e0 © (3)(55) @ (3@
(10) Sum of the coefficients of x13)2 and x2y!3 in the expansion of (x + »)!5 is ....... ]
@ (5) b 2(13) © (5) @2(5)
)
Summary

We studied following points in this chapter :

1. The Binomial Expansion for » € N is given by the binomial theorem as
@+by=(g)an+ (V)ar=to+ (5)ar =202 4.4 (F)ar =t .4+ (3) b ne N

2. The coefficients of binomial theorem are arranged in an array, known as Pascal's Triangle.

3. The general term of the expansion (a¢ + b)" is T, , | = (’;)an —rep,

2 \th e n+1\th
J term, if » is even and (T)

4. The middle term in the expansion of (a + b)" is (% + 1) or (n er

n+3\th ) .
as well as terms are the middle terms, if » is odd.

2

— ‘ —
L X

Brahmagupta's formula \
Brahmagupta's most famous result in geom- / °

etry is his formula for cyclic quadrilaterals. Given the

lengths of the sides of any cyclic quadrilateral,

Brahmagupta gave an approximate and an exact

formula for the figure's area.

C

The approximate area is the product of the halves of the sums of the opposite sides of
a quadrilateral. The accurate [area] is the square root the product of the half of the sum
of the sides diminished by [each] side of the quadrilateral.

So given the lengths p, ¢,  and s of sides of a cyclic quadrilateral, the approximate area

. +r SIS X ) +ag+r+ .
1S (pz )(q ) ) while, letting ¢ = Lrs’ the exact area is

2

JaE=p)(t—q)t-r)(t—s)

Heron's formula is a special case of this formula and it can be derived by setting one of the
sides equal to zero.
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Chapter

ADDITION FORMULAE
AND FACTOR FORMULAE

Music is the pleasure the human mind experiences from
counting without being aware that it is counting.

— Gottfried Leibnitz

4.1 Introduction
We have studied the fundamental ideas and properties of trigonometric functions. Now, we will
see how to express values of trigonometric functions with variables 0t + [3 and ot — [ in terms of values

of trigonometric functions with variables O and [3, where O and [} are real numbers. These
formulae are known as addition formulae. With the help of these formulae, we will derive factor
formulae and study their uses.

If f(x) = ax, x € R is a linear function, then
fx —y)=alx —y) =ax —ay = f(x) = f(»)
Thus, fix —y) = f(x) = f()

Now, consider the trigonometric function f(x) = cosx, 0. = = and B = %

3
For these values of O and [3, o — [3 = % - %. So cos(0L — [3) = cos% = %
—_ = T _ T _ l — ‘/5 — l_ﬁ \/5
But cosOt cosB cos3 cos¢ > 5 5 % 5

Thus, cos(0L — B) # cosol — cosf3
Thus, what is true for a linear function may not be true for trigonometric functions. Similarly
other results can also be quoted. Now, we will obtain the formula of cos(0t — ) using cos0L, cosf,

sinQL, sinB.
4.2 The Addition Formulae
We shall first prove a formula for cos(Ol — B) and cos(O. + B).

Let us see the expression for cos(Ol — [3).
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Theorem 1 : For o, B € R Y

G

F

of trichotomy.
They are ) o0 > B (i) oe=P (i) <P
i oa>p
Suppose the trigonometric points on the unit circle

corresponding to o, 3 and o0 — 3 are P, Q and R

respectively.

W

Figure 4.1

By definition, P(Qt) = (cosQ., sinQL),
Q(B) = (cosP. sinP) and R(ot = B) = (cos(ar — P, sin(o — P)).
Also A is (1, 0).
As shown in figure we have l(@) =0Q., I(KQ) = [3 and I(AT{) =0 — [3
AsPB<aand Qe AP,
(PQ) = ((AP) — (AQ)
(PQ) =0 — B =(AR)
PQ = AR
Chords corresponding to congruent arcs of the same circle are congruent.
PQ = AR
PQ? = AR?
Now using distance formula,
PQZ = (cosOt — cosB)2 + (sinQl — sinB)2
= cos?0L — 2cosO. cosP + cos?P + sin®0L — 2sin0l sinf + sin’3
= cos®0L + sin?0L + cos?B + sin?B — 2coso cosP — 2sinon sinfd
=2 — 2(cos. cosP + sin0t sinf3)
ARZ= (1 — cos(o — )2 + (0 — sin(0L — B))>
=1 — 2cos(O — B) + cos* (0L — B) + sin® (0 — B)
=2 — 2cos(00 — [3)
But AR? = PQ?
2 — 2cos(0L — [3) =2 — 2(cosQl cosf) + sinOL sinB)
—2cos(0. — ) = —2(cos0t cosP + sinQ. sinfd)
cos(0. — ) = cosol cosP + sinal sinf}

(1) cos(0. — PB) = cosa cosP + sinQ. sinf3 e R(o.—P)

(2) cos(OL + B) = cosQ cosB — sinQL sinB /Q{ )
Proof : Case (1) : Let ¢, B € [0, 2m). )

We have three possibilities for o and B by law Q A(1,0) n

X
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(ii) Suppose O = B
Then, L.H.S. = cos(0l — B) = cos(0L — Q) = cos0 =1
R.H.S. = cosOl cosP + sint sinfd
= cosO cosOl + sinOl sinCl
= cos?0l + sinoL = 1
L.H.S. = R.H.S.
(i) Suppose o0 < [
Then, . — B=—( — o)

cos(0t — B) = cos(—(f — @)
= cos([.)) - Q) (cosine is an even function.)
= cosB cosOl + sinB sinQl ([3 > o)

cos(0. — B) = coso cosP + sin0L sinf3
Case (2) : O, B € R
For the given O, B € R, we can find O, [31 € [0, 2m),
such that 00 =2mm + O, and B=2nnw + B, mne Z
o—B=2mn+a, — 2+ B)
=2(m —nm + O — Bl
=2k + O — Bl,wherek=m—n e Z
As sin and cos are periodic functions whose principal period is 2T
cosOl = cosQly, cosP = cos[fi1 and cos(0t — PB) = cos(0ly — Bl)
Thus, cos(CL — B) = cos(0l; — Bl)
= cosQ; cosBl + sinQ sin[.))l (Case (1))

cosQL cosB + sinQl sin[.))
cosQL cosB + sinQl sinB

cos(OL — B)
From case (1) and case (2) we see that for all O, B € R
cos(0. — B) = cos® cosP + sinol sinf3
(2) We have, cos(0L + B) cos(OL — (—B))
cosQl cos(—B) + sinQl sin(—B)

= cost, cosP — sino. sinf} (cos(—B) = cosP, sin(—P) = —sinfP)
cos(OL + B) = cosQl cosB — sinQl sinB
Corollay 1 : (1) cos(%—e) = sin® ) sin(%—e) = cos0

Proof : (1) We know that for all O, [3 € R,
cos(0. — ) = cos0l cosP + sindt sinf3
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We substitute Ol = % and B = 0 in the above identity. We get,

T . .
COS(T_G) = COS% COSG + Sll’l% szne

=0-cosO + 1-sind

= sin®
cos(Z-8) = sind
(2) If we replace © by £ — 6 in cos(Z-0) = sinb, we get
co 3= (5-0)] - sin3-0)
cos® = sin(£-6)
sin(Z-6) = cos®

Theorem 2 : (1) sin(0t — P) = sin0l cosP — cosat sinfd
(2) sin(0L + B) = sinQL cosB + cosOL sinB

Proof : (1) sin(0L — B)= cos % - (o — B)] (cos(%—e) = sine)
- cof(&-a) + ]
= cos(%—d) cosB - sin(%—a) sinB

= sinQL cosB — cosOl sinB
sin(0L — [3) = sinQL cosB — cosQOL sinB

@) sin(ot + B) = sin [0t — (—P)]
= sinQ. - cos(—B) — cosQL » sin(—B)
= sinQL - cosB + cosOL - sinB (cos(—0) = cosO and sin(—0) = —sin0)

sin(OL + [3) = sinQl - cosﬁ + cosOL - sinB
4.3 Other Formulae for Allied Numbers

We have seen from theorems 1 and 2 that for all real numbers O and J3.

cos(0L — B) = cost cosP + sin0t sinf} i)
cos(OL + B) = cosOL cosB — sinQl sinB (i)
sin(OL — B) = sinOl cosB — cosOL sinB (iii)
sin(0L + B) = sino cosP + cosat sinf3 (iv)

We have also seen that for all O € R,

sin(%— 9) = cos0, cos(%— 9) = sin0

e
tan(%—e) = S’"( 9) = cob _ 0

cos( —6) - sin®

SIER RS
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Putting ot = & and B 0 in (iv) and (ii) respectively, we get

sin(%"'e) = sin% cosO + cos% sin® = 1-cosO + 0-sin@ = cosO

sin(% + 9) = cosO

T ) ) ) .
cos(7+9) = cos% cosO — sm% sin® = 0-cos® — 1 - s5in0 = —sin®

cos(% + 6) = —sin®

and hence, tan(%‘Fe) = —cot0

Similarly putting, Ot = 3—TE and B =0 in (i) to (iv), we get

sin(%— 9) = —cos0, cos(%— 9) = —sin0
tan(T7t - ) cot®
Similarly, sm(%c + 9) —cos0, cos(%c + 9) = sin®

tan(377t + 6) = —cot®

Again putting 00 = T, = 0 and o0 = 27, B = 0 in (i) to (iv), we can prove the following :

sin(T — 0) = sin0, cos(mt — 0) = —cos0O, tan(t — 0) = —tan®

sin(T + 0) = —sin0, cos(T + 0) = —cos0, tan(T + 0) = tand

sin(2T — 0) = —sind, cos2T — 0) = cos0, tan(2T — 0) = —1and

sin(2T + 0) = 5inB, cos2T + 0) = cos0, tan(2T + 0) = tand

We will be using these formulae frequently for solving examples, so it would be very useful to
remember them. As an aid to memory, remember the following.

First of all, it is enough to consider values of trigonometric functions sinQl, cosO. etc. where
0 < O < 2T, because if O € R then 0 = 2nT + 0, 0 < 0L < 27T. We let 0 < B < % Then typical real
numbers % - B, % + B, 37n — B and 377{ + B correspond to the trigonometric points which
lie in the I, II, III, IV quadrants respectively.

. . From figure 4.2 for any real value, trigonometric function change as
4+ & . .
2 B 2 B under, sin — cos, cos — sin, tan — col, col —> tan, sec —> cosec,
3m B am oy B cosec —» sec.
2 2
i .
I )
Figure 4.2 P( > B) is in second quadrant.

In the second quadrant sin(%"' B) > 0.

Note : Choice of sign is according to the original function on the left.
sin(%Jr B) = cosf

P(‘%t— [3) is in the third quadrant and in the third quadrant cos(‘%t— B) is —ve.
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