Chapter 7. Solving Systems of Linear Equations and Inequalities

Answer 1PT3.

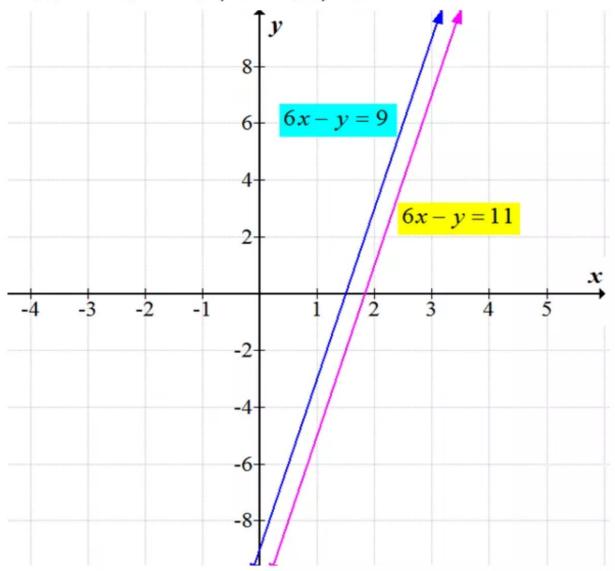
1.

A system of equations with two parallel lines is inconsistent (no solution)

Consider the following example,

6x - y = 9 (1)

6x - y = 11 (2)


Since the coefficients of the *y* terms, 6 and 6 and the coefficients of *x*, are the same, we can eliminate the *x* and *y* terms by subtracting the equations.

	6 <i>x</i>	-	у	=	9	Write the equations in column form and subtract
(-)	6 <i>x</i>	-	y	=	11	
	0	-	0	=	-2	Notice that the x and y variable eliminated

0 = -2 Simplify

The result is a false statement. Hence the system has no solution.

The graph of the equations 6x - y = 9 and 6x - y = 11 is shown below:

From the graph, observe that the lines are non-intersecting, so the equation has **no** solution. That is system is **inconsistent**.

2.

A system of equations is said to be **consistent** if the system with at least one ordered pair that satisfies both the equations.

Consider the following example,

$$-5x + 3y = 6$$
(1)

$$x - y = 4$$
 (2)

Eliminate x

-5x + 3y = 6 x - y = 4 Multiply by 5 -5x + 3y = 6 (+)5x - 5y = 20 -2y = 26 Add the equations $\frac{-2y}{-2} = \frac{26}{-2}$ Divide each side with -2y = -13 Simplify Now substitute -13 for y in either equation to find the value of x

x - y = 4	Second Equation
x - (-13) = 4	Substitue -13 for y
x + 13 = 4	Simplify
x + 13 - 13 = 4 - 13	Subtract 13 from each side
x = -9	Simplify

The system is **consistent** and the solution is (-9, -13)

3

A system of equations may be solved using elimination method

Consider the following examples,

$$x + y = -3$$
 (1)
 $x - y = 1$ (2)

Since the coefficients of the y terms, -1 and 1, are additive inverses, we can eliminate the y terms by adding the equations.

	x	+	у	=	-3	Write the equations in column form and add
(+)	x	-	y	=	1	
	2 <i>x</i>			=	-2	Notice that the y variable eliminated
$\frac{2x}{2} =$	$\frac{-2}{2}$	Divi	de e	ach	side	with 2

x = -1 Simplify

Now substitute -1 for x in either equation to find the value of y.

x - y = 1 Second equation

-1 - y = 1 x = -1

-1-y+1=1+1 Add 1 to each side of the equation

$$-y = 2$$
 Simplify

 $(-y) \times -1 = 2 \times -1$ Multiply each side with -1

v = -2 Simplify

The solution is (-1, -2)

Answer 1STP.

Consider the equation

4x-2(x-2)-8=0 (1)

4x - 2x + 4 - 8 = 0 Use the Distributive Property

2x - 4 = 0 Combine Like terms

2x = 4 Add 4 to each side

 $\frac{2x}{2} = \frac{4}{2}$ Divide each side of the equation

x = 2 Simplify

Hence the solution to the equation is x = 2

The Correct Option is B

Substitute x = -2 in the equation (1)

4x - 2(x - 2) - 8 = 0 First equation 4(-2) - 2(-2 - 2) - 8 = 0 Substitute - 2 for x -8 - 2(-4) - 8 = 0 -8 + 8 - 8 = 0-8 = 0 False

Option A is not Correct.

Substitute x = 2 in the equation (1)

4x-2(x-2)-8 = 0 First equation 4(2)-2(2-2)-8 = 0 Substitute 2 for x 8-2(0)-8 = 0 8-8 = 00 = 0 True

Option B is Correct.

Substitute x = 5 in the equation (1)

4x-2(x-2)-8=0	First equation
4(5)-2(5-2)-8=0	Substitute 5 for x
20-2(3)-8=0	
20 - 6 - 8 = 0	
6 = 0	False

Option C is not Correct.

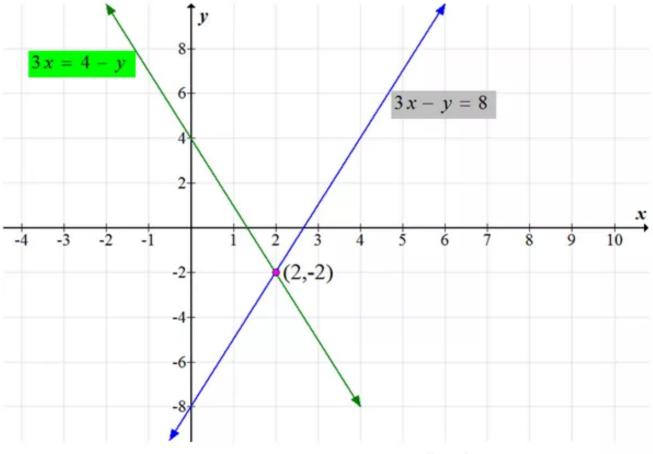
Substitute x = 6 in the equation (1)

4x-2(x-2)-8 = 0 First equation 4(6)-2(6-2)-8 = 0 Substitute 6 for x 24-2(4)-8 = 0 24-8-8 = 08 = 0 False

Option D is not Correct.

Answer 1VC.

If the graphs intersect or coincide, the system of equations is said to be consistent.


Consistent equations can be independent or dependent. If a system has exactly one solution, it is **independent**

Consider the following example,

$$3x - y = 8$$
 (1)

$$3x = 4 - y$$
 (2)

The graph of the equations is shown below:

The graphs appear to intersect at the point with coordinates (2, -2)

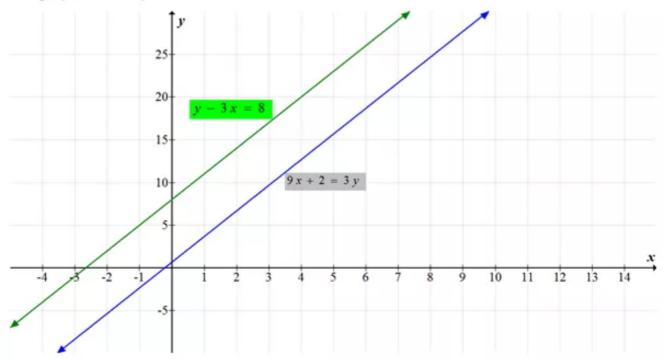
Since the system of equations has only one solution, so it is independent

Answer 2STP.

Let the cost of a CD is \$x The cost of a CD (including 7% tax) is x + 7% of x = \$17.1 x + 0.07x = 17.1 x(1.07) = 17.1 Combine like terms $x = \frac{17.1}{1.07}$ Divide each side with 1.07 $x \approx 15.99$ Simplify Hence the cost of the CD is \$15.99 The correct option is **C**

Answer 2VC.

If the graphs are parallel, the system of equations is said to be inconsistent.


There are no order pairs that satisfy both equations.

Consider the following example,

$$9x + 2 = 3y$$
 (1)

$$y - 3x = 8$$
 (2)

The graph of the equations is shown below:

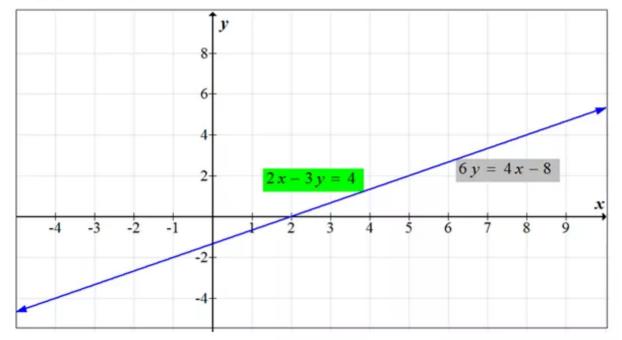
Since the graphs 9x + 2 = 3y and y - 3x = 8 are parallel, there are **no solutions**. That is system is **inconsistent**.

Answer 3STP.

Consider,

f(x) = 2x-3 f(3) = 2(3)-3 Substitute x = 1 in the function f(3) = 6-3 f(3) = 3 f(x) = 2x-3 f(4) = 2(4)-3 Substitute x = 4 in the function f(4) = 8-3 f(4) = 5 f(x) = 2x-3 f(5) = 2(5)-3 Substitute x = 5 in the function f(5) = 10-3 f(5) = 7The correct option is **B**

Answer 3VC.


If the graphs intersect or coincide, the system of equations is said to be consistent.

Consistent equations can be independent or dependent. If a system has infinitely many solutions, it is **dependent** Consider the following example,

$$2x - 3y = 4 \dots (1)$$

$$6y = 4x - 8$$
 (2)

The graph of the equations is shown below:

Since the graphs 2x - 3y = 4 and 6y = 4x - 8 are coincide, there are infinitely many solutions.

Since the system of equations has infinitely many solutions, so it is dependent

Answer 4PT.

Consider the equations,

$$y = x + 2$$
 (1)

y = 2x + 7 (2)

Since y = x + 2, substitute x + 2 for y in the second equation

$$2x + 7 = x + 2$$

2x+7-x=x+2-x Subtract x from each side

x + 7 = 2 Simplify

x+7-7=2-7 Subtract 7 from each side

$$x = -5$$
 Combine like terms

Use y = x + 2 to find the value of y

y = x + 2 First equation

$$y = -5 + 2$$
 $x = -5$

y = -3 Simplify

The solution is (-5, -3)

Answer 4STP.

Consider the following table,

Number of hours, x	1	3	4	6
Number of birds, y	6	14	18	26

Now we check each option

Option	Number of hours, x	1	3	4	6
A	y = x + 5	6	8	9	11
В	y = 3x + 3	6	12	15	21
с	y = 3x + 5	8	14	17	23
D	y = 4x + 2	6	14	18	26

The option A and B matches only at one point at x = 1 and for remaining points it does not match with the above table.

The option C matches only at one point at x = 2 and for remaining points it does not match with the above table.

The option D matches at each point.

The correct option is D

Answer 4VC.

If the graphs of the equations in a system have same slope and different y intercepts, the graph of the system is a pair of **parallel lines**.

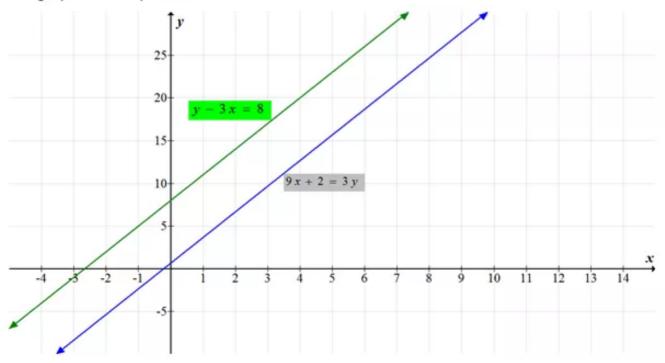
Consider the following example,

9x + 2 = 3y (1) y - 3x = 8 (2)

Slope intercept form of equation (1)

9x + 2 = 3y 9x + 2 = 3y $y = 3x + \frac{2}{3}$ First equation Divide each side with 3 $y = 3x + \frac{2}{3}$ Slope intercept form

Slope m = 3 and y-intercept is $\frac{2}{3}$


Slope intercept form of equation (2)

y-3x=8	First equation
y = 8 + 3x	Add $3x$ to each side
y = 3x + 8	Slope intercept form

Slope m = 3 and y-intercept is 8

The slopes of the two lines are the same but y intercepts are different.

The graph of the equations is shown below:

Since the graphs 9x + 2 = 3y and y - 3x = 8 are parallel, there are **no solutions**. That is system is **inconsistent**.

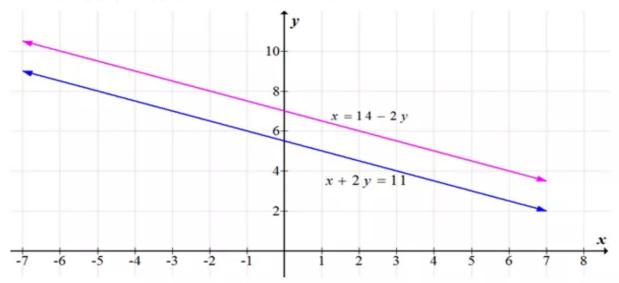
Answer 5PT.

Consider the equations,

 $x + 2y = 11 \dots (1)$

x = 14 - 2y (2)

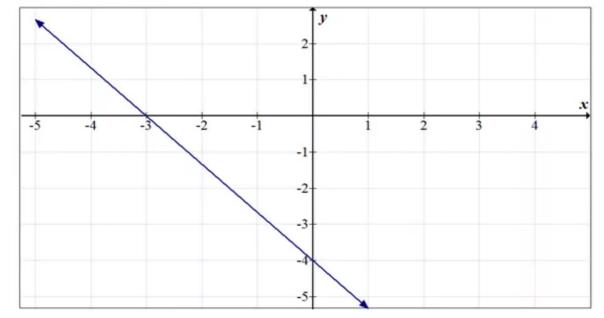
Since x = 14 - 2y, substitute 14 - 2y for x in the First equation


x + 2y = 11 First equation

14 - 2y + 2y = 11

14 = 11 Simplify

The result is false statement (14 = 11), the system has no solution.


The following graph supports the above conclusion:

The two lines are parallel, and they never intersect. So, the system has no solution.

Answer 5STP.

Consider the following graph:

The x intercept of the line -3 is and y intercept of the line is -4

Now check each option whose x and y intercepts are -3 and -4 respectively

Option A

3y - 4x = -12	First equation
-4x + 3y = -12	
$\frac{-4x+3y}{-12} = \frac{-12}{-12}$	Divide each side with -12
$\frac{x}{3} + \frac{y}{-4} = 1$	Intercept form of a line

The x intercept of the line 3 is and y intercept of the line is -4 False Option Option B

4y + 3x = -16	First equation
3x + 4y = -16	
$\frac{3x+4y}{-16} = \frac{-16}{-16}$	Divide each side with -16
$\frac{x}{-\frac{16}{3}} + \frac{y}{-4} = 1$	Intercept form of a line

The x intercept of the line $-\frac{16}{3}$ is and y intercept of the line is -4 False Option

Option C

3y+4x = -12 4x+3y = -12 $\frac{4x+3y}{-12} = \frac{-12}{-12}$ Divide each side with -12 $\frac{x}{-3} + \frac{y}{-4} = 1$ Intercept form of a line

The x intercept of the line -3 is and y intercept of the line is -4 True Option

Option D

$$3y + 4x = -9$$

$$4x + 3y = -9$$

$$\frac{4x + 3y}{-9} = \frac{-9}{-9}$$

Divide each side with -9

$$\frac{x}{-\frac{9}{4}} + \frac{y}{-3} = 1$$

Intercept form of a line

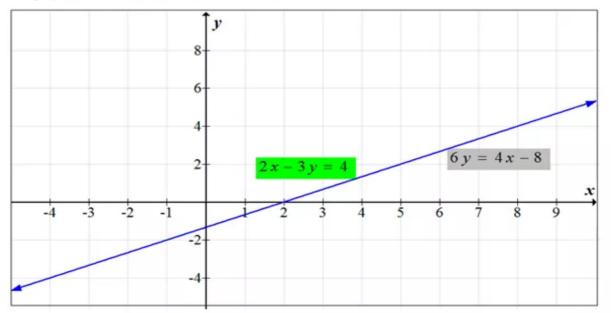
The x intercept of the line $-\frac{9}{4}$ is and y intercept of the line is -3 False Option Hence the correct option is **C**

Answer 5VC.

If the graphs of the equations in a system have same slope and y intercept, the system has infinitely many solutions.

Consider the following example,

2x - 3y = 4(1)


$$6y = 4x - 8$$
 (2)

Slope intercept form of equation (1)

2x-3y = 4 2x-4 = 3y $y = \frac{2}{3}x - \frac{4}{3}$ Slope intercept form Slope $m = \frac{2}{3}$ and y-intercept is $-\frac{4}{3}$ Slope intercept form of equation (2) 6y = 4x - 8First equation $y = \frac{4x-8}{6}$ Divide each side with 6 $y = \frac{2}{3}x - \frac{4}{3}$ Slope intercept form Slope $m = \frac{2}{3}$ and y-intercept is $-\frac{4}{3}$

The slopes and y intercepts of the two lines are the same.

The graph of the equations is shown below:

Since the graphs 2x - 3y = 4 and 6y = 4x - 8 are coincide, there are infinitely many solutions.

Answer 6PT.

Consider the equations,

 $3x + y = 5 \dots (1)$ $2y - 10 = -6x \dots (2)$ From the equation (1) 3x + y = 5 3x + y - 3x = 5 - 3xSubtract 3_x from each side y = 5 - 3xSince y = 5 - 3x, substitute $5 - 3_x$ for y in the Second equation 2y - 10 = -6xFirst equation 2(5 - 3x) - 10 = -6x 10 - 6x - 10 = -6xUse Distributive Property

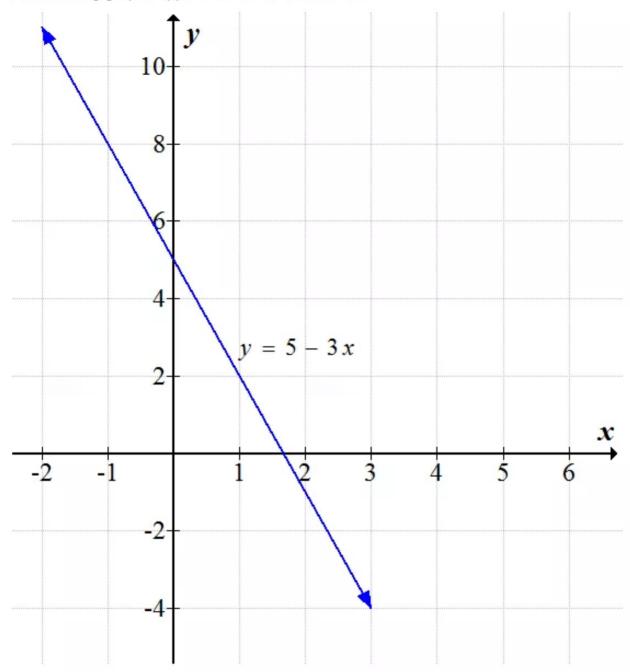
-6x = -6x Simplify

The statement is true. This means that there are **infinitely many solutions** of the system of equations.

Slope intercept form of equation (1) is y = 5 - 3x

From the equation (2)

2y - 10 = -6x


2y = -6x + 10 Add 10 to each side

y = 5 - 3x Divide each side with 2

Slope intercept form of equation (2) is y = 5 - 3x

This is because the slope intercept form of the both the equations is y = 5 - 3x

That is, the equations are equivalent, and they have the same graph.

The following graph supports the above conclusion:

Answer 6STP.

The two lines are parallel if the lines having the same slope Consider the equation,

y-3x = 6 (1) The slope intercept form the equation (1), y = 3x + 6The equation y = 3x + 6 is compared with y = mx + cThen the slope of the line y = 3x + 6 is m = 3Now check each option whose slope is 3 Option A The slope of the line y = -3x + 4 is m = -3 False Option Option B The slope of the line y = 3x - 2 is m = 3 True Option Option C The slope of the line $y = \frac{1}{3}x + 6$ is $m = \frac{1}{3}$ False Option Option D The slope of the line $y = -\frac{1}{3}x + 4$ is $m = -\frac{1}{3}$ False Option

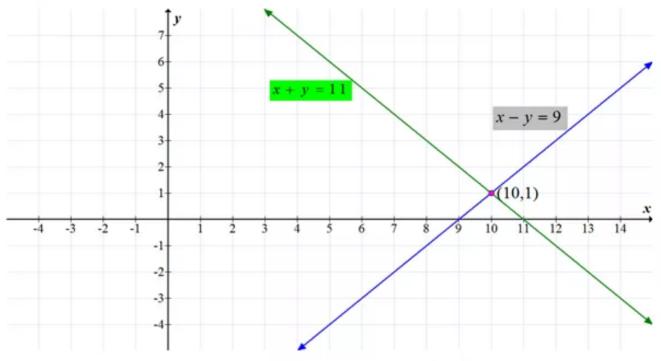
Hence the correct option is B

Answer 6VC.

If the graphs intersect or coincide, the system of equations is said to be **consistent**. That is, it has at least one order pair that satisfies both the equations.

If the graphs are parallel, the system of equations is said to be **inconsistent**. There are no ordered pairs that satisfy both equations.

Since the system of equations has one solution (3, -5). The system is consistent.


Answer 7E.

Consider the equations,

$$x - y = 9$$
 (1)

 $x + y = 11 \dots (2)$

The graph of the equations is shown below:

The graphs appear to intersect at the point with coordinates (10,1)

Check:

x - y = 9	First equation
10 - 1 = 9	Substitue 10 for x and 1 for y
9 = 9	
x + y = 11	First equation
10 + 1 = 11	Substitue 10 for x and 1 for y
11=11	

Hence the solution to the system of equations is (10,1)

Answer 7PT.

Consider the equations,

 $2x + 5y = 16 \dots (1)$ $5x - 2y = 11 \dots (2)$ Eliminate x $2x + 5y = 16 \quad \text{Multiply by 5} \qquad 10x + 25y = 80$ $5x - 2y = 11 \quad \text{Multiply by 2} \qquad 10x - 4y = 22$ $29y = 58 \quad \text{Subtract the equations}$ $\frac{29y}{29} = \frac{58}{29} \quad \text{Divide each side with 29}$ $y = 2 \quad \text{Simplify}$

Now substitute 2 for y in either equation to find the value of x

2x + 5y = 16		First Equation	
2x+5(2)=16		Substitue 2 for y	
2x + 10 = 16		Simplify	
2x + 10 - 10 = 16	-10	Subtract 10 from each side	
2x = 6		Simplify	
$\frac{2x}{2} = \frac{6}{2}$	Divide	each side with 2	
x = 3	Simplif	ý	
The solution is	(3,2)		

Answer 7STP.

Let \$d, the amount she needs to deposit

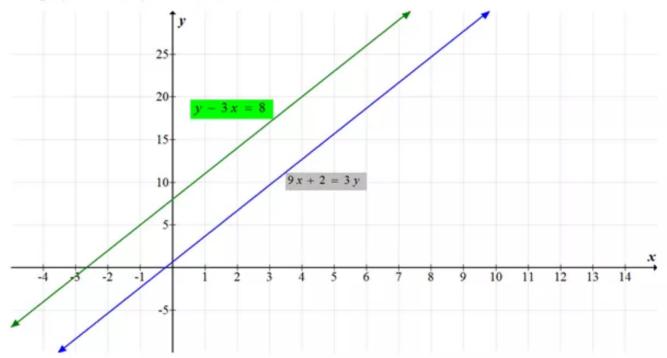
The amount required for car payment is \$230

The amount in the bank is \$185

Since she is withdrawing \$230 from bank for car loan, the equation for minimum deposit would be

 $185 + d - 230 \ge 200$

Hence the correct option is D


Answer 8E.

Consider the equations,

9x + 2 = 3y (1)

y - 3x = 8 (2)

The graph of the equations is shown below:

Since the graphs 9x + 2 = 3y and y - 3x = 8 are parallel, there are **no solution**

Answer 8PT.

Consider the equations,

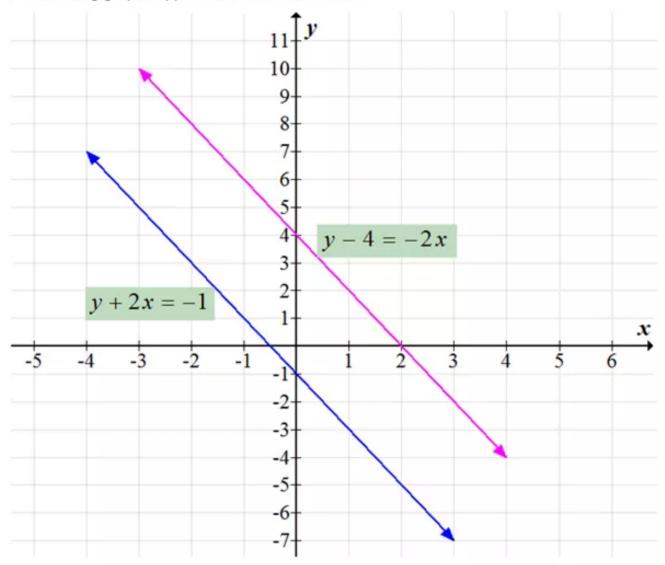
y + 2x = -1 (1) y - 4 = -2x (2) From the equation (2) y - 4 = -2x

y - 4 + 4 = -2x + 4

y = 4 - 2x

Since y = 4 - 2x, substitute 4 - 2x for y in the first equation

y + 2x = -1 First equation


4 - 2x + 2x = -1 y = 4 - 2x

4-0=-1 Combine like terms

4 = -1 Combine like terms

The result is false statement (4 = -1), the system has no solution.

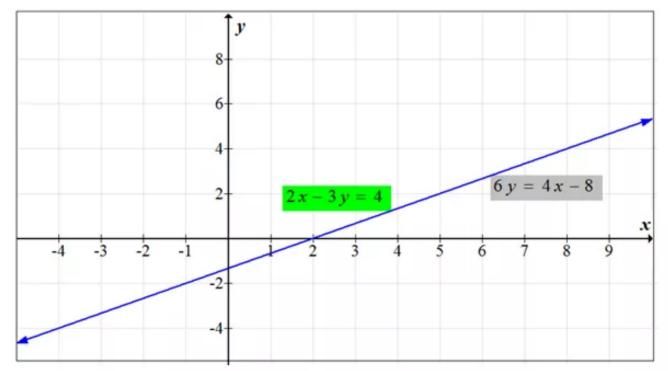
The following graph supports the above conclusion:

The two lines are parallel, and they never intersect. So, the system has no solution.

Answer 8STP.

Let the length of the rectangle be l feet Let the width of the rectangle be w feet The perimeter of the rectangle is 2l + 2wSince the perimeter of the rectangle is 68 feet, so 2l + 2w = 68 (1) The length of the garden is 4 more than twice the width. That is l = 2w + 4 (2) From the first equation, the options may be **A** or **B** or **D**

From the equation (2), the correct option is B


Answer 9E.

Consider the equations,

2x - 3y = 4(1)

6y = 4x - 8 (2)

The graph of the equations is shown below:

Since the graphs 2x - 3y = 4 and 6y = 4x - 8 are coincide, there are infinitely many solutions.

Answer 9PT.

Consider the equations,

2x + y = -4 (1) 5x + 3y = -6 (2) Eliminate x 2x + y = -4 Multiply by 5 10x + 5y = -20 5x + 3y = -6 Multiply by 2 10x + 6y = -12y = -8

+6y = -12-y = -8 Subtract the equations

 $\frac{-1y}{-1} = \frac{-8}{-1}$ Divide each side with -1y = 8 Simplify

Now substitute 2 for y in either equation to find the value of x

2x + y = -4	First Equation
2x + (8) = -4	Substitue 8 for y
2x + 8 = -4	Simplify
2x + 8 - 8 = -4 - 8	Subtract 8 from each side
2x = -12	Simplify
2 2	de each side with 2
x = -6 Simplet	plify
The solution is $(-6,8)$]

Answer 9STP.

Let the cost of the shirt be x

The cost of the jeans is x+6

The total cost of the pair of jeans and a shirt is \$64

That is x+6+x=64

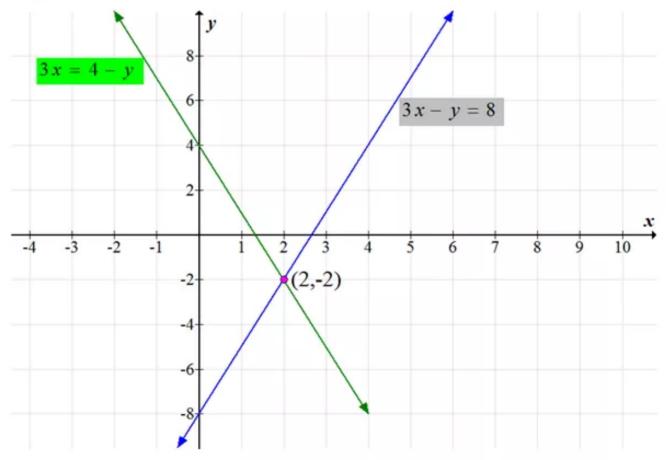
x + 6 + x = 64

2x+6=64 2x-6=64-6 2x=58 x=29Add
Subtract 6 from each side
Simplify
Divide each side with 2

The cost of the jeans is \$29 + 6 = \$35

The cost of the shirt is \$29, this is option B. But the question is the cost of jeans, that is \$35, so the option is ${f C}$

Hence the correct option is ${\ensuremath{\textbf{C}}}$


Answer 10E.

Consider the equations,

3x - y = 8 (1)

3x = 4 - y (2)

The graph of the equations is shown below:

The graphs appear to intersect at the point with coordinates (2, -2)

Check:

3x - y = 8	First equation	
6 - (-2) = 8	Substitue 2 for x and -2 for y	
8 = 8	Verified	
3x = 4 - y	First equation	
3(2) = 4 - (-2)	Substitue 2 for x and -2 for y	
6 = 6	Verified	

Hence the solution to the system of equations is (2, -2)

Answer 10PT.

Consider the equations,

$$y = 7 - x \dots (1)$$

$$x - y = -3$$
 (2)

Since y = 7 - x, substitute 7 - x for y in the second equation

x - y = -3 Second equation

x - (7 - x) = -3 y = 7 - x

x - 7 + x = -3 Use Distributive property

2x-7 = -3 Subtract 7 from each side

2x-7+7=-3+7 Combine like terms

2x = 4 Simplify

 $\frac{2x}{2} = \frac{4}{2}$ Divide each side with 2

x = 2 Simplify

Use y = 7 - x to find the value of y

y = 7 - x First equation

$$y = 7 - 2$$
 $x = 2$

y = 5 Simplify

The solution is (2,

2,5)

Answer 10STP.

Consider the equations,

3x + 4y = 8 (1) 3x + 2y = -2 (2)

Since the coefficients of the x terms, 3 and 3, are the same, we can eliminate the x terms by subtracting the equations.

	3x	+	4y	=	8	Write the equations in column form and subtract
(-)	3x	+	2y	=	-2	
			2y	=	10	Notice that the x variable eliminated
2y	10	Divid	de ea	rh s	ide with 2	

 $\frac{2y}{2} = \frac{10}{2}$ Divide each side with 2 y = 5 Simplify

However, the question asks for the value of y. The answer is C

Answer 11E.

Consider the equations,

 $2m + n = 1 \dots (1)$

m - n = 8 (2)

From the equation (2)

m-n=8	Second equation
m-n+n=8+n	Add n to each side
m = 8 + n	Simplify
m = n + 8	Simplify

Since m = n + 8, substitute n + 8 for m in the first equation

2m+n=1 Second equation

$$2(n+8)+n=1$$
 $m=n+8$

2n+16+n=1 Use Distributive property

3n+16=1 Combine like terms

3n+16-16=1-16 Subtract 16 from each side

3n = -15 Simplify

 $\frac{3n}{3} = \frac{-15}{3}$ Divide each side with 3

$$n = -5$$
 Simplify

```
Use m = n + 8 to find the value of m
```

m = n + 8

m = -5 + 8 Substitute -5 for nm = 3 Simplify

Hence the solution is (3,-5)

Answer 11PT.

Consider the equations,

$$x = 2y - 7$$
 (1)

$$y - 3x = -9$$
 (2)

Since x = 2y - 7, substitute 2y - 7 for x in the second equation

y - 3x = -9 Second equation

$$y-3(2y-7) = -9$$
 $y = 7-x$

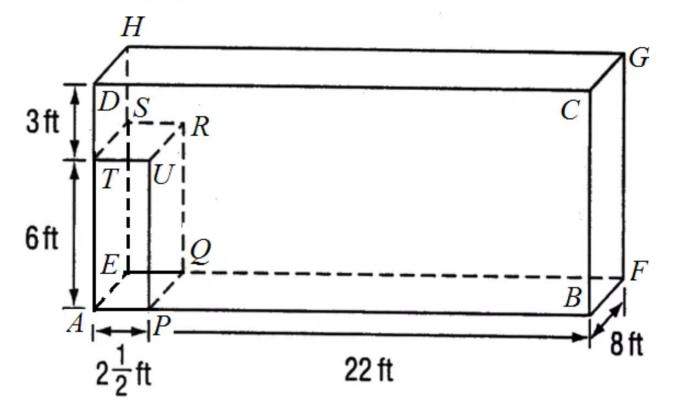
y-6y+21=-9 Use Distributive property

- -5y+21=-9 Combine like terms
- -5y+21-21=-9-21 Subtract 21 from each side
- -5y = -30 Simplify

 $\frac{-5y}{-5} = \frac{-30}{-5}$ Divide each side with -5

- y = 6 Simplify
- Use x = 2y 7 to find the value of x
- x = 2y 7 First equation

$$x = 2(6) - 7 \quad y = 6$$


$$x = 12 - 7$$
 Simplify

$$x = 5$$

The solution is (5,6)

Answer 11STP.

Consider the following figure,

From the picture

AP = 2.5 ft PB = 22 ft BF = PQ = 8 ft AT = 6 ft TD = 3 ft

Volume of the box is $V = l(\text{Length}) \times w(\text{Width}) \times h(\text{Height})$

Volume of the box is ABCDEFGH

$$V_{1} = (AP + PB) \times (BF) \times (AT + TD)$$

= (2.5 + 22) \times (8) \times (6 + 3)
= 24.5 \times 8 \times 9
= 1764

Volume of the box is APQETURS

$$V_2 = (AP) \times (PQ) \times (AT)$$
$$= (2.5) \times (8) \times (6)$$
$$= 120$$

The required volume is $V = V_1 - V_2$

$$V = 1764 - 120$$
$$V = 1644 \text{ cubic feet}$$

Answer 12E.

Consider the equations,

x = 3 - 2y(1)

2x + 4y = 6 (2)

Since x = 3 - 2y, substitute 3 - 2y for x in the second equation

2x + 4y = 6 Second equation

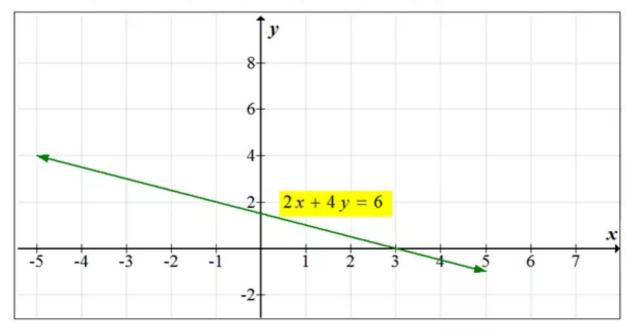
2(3-2y)+4y=6 x=3-2y

6-4y+4y=6 Use Distributive property

6 = 6 Combine like terms

The statement (6=6) is true. This means that there are infinitely many solutions of the system of equations.

From the equation (1)


x = 3 - 2y	First equation
x + 2y = 3	Add $2y$ to each side
2y = 3 - x	Subtract x from each side
$y = -\frac{1}{2}x + \frac{3}{2}$	Divide each side with 2

From the equation (2)

2x + 4y = 6	First equation
4y = 6 - 2x	Subtract $2x$ from each side
$y = -\frac{1}{2}x + \frac{3}{2}$	Divide each side with 4

This is true because the slope intercept form of both the equations is

That is the equations are equivalent, and they have the same graph as shown below:

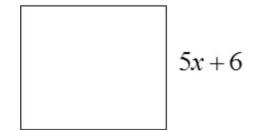
Answer 12PT.

Consider the equations,

$$x + y = 10$$
 (1)
 $x - y = 2$ (2)

Eliminate y

x + y = 10 x - y = 22x = 12 Add the equations


$$\frac{2x}{2} = \frac{12}{2}$$
 Divide each side with 2
x = 6 Simplify

Now substitute 3 for x in either equation to find the value of y

x + y = 10	First Equation
6 + y = 10	Substitue 6 for x
6 + y - 6 = 10 - 6	Subtract 6 from each side
y = 4	Simplify

The solution is (6,4)

Consider the following figure,

The Perimeter of the square is

P = 4 (Length of the side)

Given that the Perimeter of the Square is 204 feet

That is 4(Length of the side) = 204

4(5x+6) = 204 Substitute the length of the side

20x + 24 = 204 Use the Distributive Property

20x = 180 Subtract 24 from both sides

$$x = \frac{180}{20}$$
 Divide each side with 20

x = 9 Simplify

Hence, the value of x is 9

Answer 13E.

Consider the equations,

3x - y = 1 (1)

2x + 4y = 3 (2)

From the equation (1)

3x - y = 1First equation3x - y - 3x = 1 - 3xSubtract 3x from each side-y = -3x + 1Simplifyy = 3x - 1Divide each side with -1

Since y = 3x - 1, substitute 3x - 1 for y in the second equation

2x + 4y = 3 Second equation

2x+4(3x-1)=3 x=3-2y

- 2x+12x-4=3 Use Distributive property
- 14x 4 = 3 Combine like terms
- 14x 4 + 4 = 3 + 4 Add 4 to each side of the equation
- 14x = 7 Simplify

 $\frac{14x}{14} = \frac{7}{14}$ Divide each side with 14

$$x = \frac{1}{2}$$
 Simplify

Use
$$y = 3x - 1$$
 to find the value of y

$$y = 3x - 1$$

$$y = 3\left(\frac{1}{2}\right) - 1$$
 Substitute $\frac{1}{2}$ for x

$$y = \frac{3}{2} - 1$$
 Simplify

$$y = \frac{1}{2}$$
 Simplify

$$\boxed{(1 - 1)}$$

Hence the solution is $\left(\frac{1}{2}, \frac{1}{2}\right)$

Answer 13PT.

Consider the equations,

 $3x - y = 11 \dots (1)$ $x + 2y = -36 \dots (2)$ Eliminate x $3x - y = 11 \qquad 3x - y = 11$ $x + 2y = -36 \quad \text{Multiply by 3} \qquad 3x + 6y = -108$ $-7y = 119 \quad \text{Subtract the equations}$ $\frac{-7y}{-7} = \frac{119}{-7} \quad \text{Divide each side with } -7$ $y = -17 \quad \text{Simplify}$

Now substitute -17 for y in either equation to find the value of x

3x - y = 11	First Equation
3x - (-17) = 11	Substitue -17 for y
3x + 17 = 11	Simplify
3x + 17 - 17 = 11 - 17	Subtract 17 from each side
3x = -6	Simplify
$\frac{3x}{3} = \frac{-6}{3}$ Divide x = -2 Simplif	each side with 3
The solution is $(-2, -17)$	
(2, 17)	

Answer 13STP.

Consider the equation,

4x + 3y = 12

To find the x intercept of the equation 4x + 3y = 12, substitute y = 0 in the given equation and solve for x

4x + 3y = 12	
4x+3(0)=12	Substitute 0 for y
4x = 12	Simplify
x = 3	Divide each side with 4
x = 5	Divide each side with 4

Hence, the x intercept is $\boxed{3}$

Answer 14E.

Consider the equations,

0.6m - 0.2n = 0.9 (1)

n = 4.5 - 3m (2)

Since n = 4.5 - 3m, substitute 4.5 - 3m for *n* in the first equation

0.6m - 0.2n = 0.9 First equation

0.6m - 0.2(4.5 - 3m) = 0.9 n = 4.5 - 3m

0.6m - 0.9 + 0.6m = 0.9 Use Distributive property

1.2m - 0.9 = 0.9 Combine like terms

1.2m - 0.9 + 0.9 = 0.9 + 0.9 Add 0.9 to each side

1.2m = 1.8 Simplify

 $\frac{1.2m}{1.2} = \frac{1.8}{1.2}$ Divide each side with 1.2

$$m = 1.5$$
 Simplify

Use n = 4.5 - 3m to find the value of m

n = 4.5 - 3mSecond equation n = 4.5 - 3(1.5)Substitute 1.5 for m n = 4.5 - 4.5Simplify n = 0Simplify

Hence the solution is (1.5,0)

Answer 14PT.

Consider the equations,

3x + y = 10 (1) 3x - 2y = 16 (2)

Eliminate x

$$3x + y = 10$$

$$3x - 2y = 16$$

$$3y = -6$$
 Subtract the equations

 $\frac{3y}{3} = \frac{-6}{3}$ Divide each side with 3 y = -2 Simplify

Now substitute -2 for y in either equation to find the value of x

3x + y = 10	First Equation
3x + (-2) = 10	Substitue -2 for y
3x - 2 = 10	Simplify
3x - 2 + 2 = 10 + 2	Add 2 to each side
3x = 12	Simplify
$\frac{3x}{3} = \frac{12}{3}$	Divide each side with 3
x = 4 S	implify
The solution is $(4,$	-2)

Answer 14STP.

Slope intercept form:

The equation y = mx + c is called Slope intercept equation.

Here m is the slope of the line and c is y intercept of the line

Consider the equation,

4x - 2y = 5

To find the slope and x intercept of the equation 4x - 2y = 5, reduce the equation to slope intercept form.

4x-2y=5 4x-2y-4x=5-4xSubtract 4x from each side -2y=-4x+5Combine like terms $y=2x-\frac{5}{2}$ Divide each side with -2
The equation $y=2x-\frac{5}{2}$ is compared with slope intercept equation, y=mx+c.
Then m=2 and $c=-\frac{5}{2}$

Hence, the **slope** of the line is 2 and the **y** intercept of the line is $-\frac{5}{2}$

Answer 15E.

Consider the equations,

$$x + 2y = 6$$
 (1)

x - 3y = -4 (2)

Since the coefficients of the x terms, 1 and 1, are the same, we can eliminate the x terms by subtracting the equations.

<i>x</i> +	2y =	6	Write the equations in column form and subtract
(-) x -	3y =	-4	
	5y =	10	Notice that the x variable eliminated
$\frac{5y}{5} = \frac{10}{5}$ Divi	ide each	side with §	5
y = 2 Simpli	fy		

Now substitute 2 for y in either equation to find the value of x.

x-3y = -4 Second equation x-3(2) = -4 y = 2 x-6 = -4 Simplify x-6+6 = -4+6 Add 6 to each side of the equation x = 2 Simplify The solution is (2,2)

Answer 15PT.

Consider the equations,

$$5x - 3y = 12$$
 (1)

$$-2x + 3y = -3$$
 (2)

Eliminate y

$$5x - 3y = 12$$

-2x + 3y = -3
$$3x = 9$$
 Add the equations

 $\frac{3x}{3} = \frac{9}{3}$ Divide each side with 3 x = 3 Simplify

Now substitute 3 for x in either equation to find the value of y

5x - 3y = 12		First Equation
5(3) - 3y = 12		Substitue 3 for x
15 - 3y = 12		Simplify
15 - 3y - 15 = 12 -	15	Subtract 15 from each side
-3y = -3		Simplify
$\frac{-3y}{-3} = \frac{-3}{-3}$	Divide	e each side with -3
y = 1	Simpli	fy
The solution is (3	1)	

The solution is (3,1)

Answer 15STP.

Consider the equations,

$$5x - y = 10$$
 (1)
 $7x - 2y = 11$ (2)

From the equation (1)

5x - y = 10 5x - y + y = 10 + y 5x = 10 + y 5x - 10 = y y = 5x - 10First equation Add y to each side Simplify Subtract 10 from each side

Since y = 5x - 10, substitute 5x - 10 for y in the second equation

$$7x-2(5x-10)=11$$

- 7x 10x + 20 = 11 Use the Distributive property
- -3x+20=11 Combine like terms
- -3x+20-20=11-20 Subtract 20 from each side
- -3x = -9 Combine like terms
- $\frac{-3x}{-3} = \frac{-9}{-3}$ Divide each side with -3 x = 3 Simplify
- $\lambda = 0$ company

Use y = 5x - 10 to find the value of y

- y = 5x 10
- y = 5(3) 10 x = 3
- y = 15 10 Simplify
- y = 5 Simplify

The solution is (3,5)

Answer 16E.

Consider the equations,

2m-n=5 (1)

2m + n = 3 (2)

Since the coefficients of the *n* terms, -1 and 1, are additive inverses, we can eliminate the *n* terms by adding the equations.

2m - n = 5 Write the equations in column form and add $\frac{(+) \ 2m + n = 3}{4m}$ Notice that the *n* variable eliminated $\frac{4m}{4} = \frac{8}{4}$ Divide each side with 4 m = 2 Simplify

Now substitute 2 for m in either equation to find the value of n.

2m + n = 3 Second equation 2(2) + n = 3 m = 2 4 + n = 3 Subtract 4 from each side of the equation 4 + n - 4 = 3 - 4 Simplify n = -1 Simplify The solution is (2, -1)

Answer 16PT.

Consider the equations,

2x + 5y = 12 (1) x - 6y = -11 (2) Eliminate x 2x + 5y = 12x - 6y = -11 Multiply by 2

2x + 5y = 12 2x - 12y = -2217y = 34 Subtract the equations

 $\frac{17y}{17} = \frac{34}{17}$ Divide each side with 17 y = 2 Simplify

Now substitute 2 for y in either equation to find the value of x

2x + 5y = 12		First Equation
2x+5(2)=12		Substitue 2 for y
2x + 10 = 12		Simplify
2x + 10 - 10 = 12	-10	Subtract 2 from each side
2x = 2		Simplify
$\frac{2x}{2} = \frac{2}{2}$ Divide each side with 2		
x = 1	Simplify	y
The solution is $(1,2)$		

Answer 16STP.

Let the first number be x and the second number is y

Two times one number minus three times another number is -11

That is 2x - 3y = -11 (1)

The sum of the first number and three times the second number is 8

That is x + 3y = 8 (2)

Eliminate y

2x - 3y = -11	First equation
x + 3y = 8	Second equation
3x = -3	Add the equations
x = -1	Divide each side with 3

Now substitute -1 for x in either equation to find the value of y

x + 3y = 8	Second Equation
-1 + 3y = 8	Substitue -1 for x
3y = 9	Add 1 to each side
$\frac{3y}{3} = \frac{9}{3}$	Divide each side with 3
y = 3	Simplify

Hence the numbers are x = -1 and y = 3

Answer 17E.

Consider the equations,

 $3x - y = 11 \dots (1)$

x + y = 5 (2)

Since the coefficients of the y terms, -1 and 1, are additive inverses, we can eliminate the y terms by adding the equations.

3x - y = 11Write the equations in column form and add $\underbrace{(+) \quad x + y = 5}_{4x \quad = 16}$ Notice that the *y* variable eliminated $\frac{4x}{4} = \frac{16}{4}$ Divide each side with 5 x = 4Simplify

Now substitute 4 for x in either equation to find the value of y.

x + y = 5 Second equation

$$4 + y = 5 \quad x = 4$$

4+y-4=5-4 Subtract 4 from each side of the equation

y = 1 Simplify

The solution is

Answer 17PT.

Consider the equations,

$$x + y = 6$$
 (1)

$$3x - 3y = 13$$
 (2)

Eliminate y

x + y = 6 Multiply by 3 3x + 3y = 183x - 3y = 13 3x - 3y = 13

6x = 31 Add the equations

$$\frac{6x}{6} = \frac{31}{6}$$
 Divide each side with 6
$$x = \frac{31}{6}$$
 Simplify

Now substitute $\frac{31}{6}$ for x in either equation to find the value of y

$$x + y = 6$$
First Equation
$$\frac{31}{6} + y = 6$$
Substitue
$$\frac{31}{6} \text{ for } x$$

$$y = 6 - \frac{31}{6}$$
Subtract
$$\frac{31}{6} \text{ from each side}$$

$$y = \frac{36 - 31}{6}$$
Simplify
$$y = \frac{5}{6}$$
Simplify
The solution is
$$\left[\frac{31}{6}, \frac{5}{6}\right]$$

Answer 18E.

Consider the equations,

3x+1=-7y(1)

6x + 7y = 0 (2)

Since the coefficients of the *y* terms, 7 and 7, are the same, we can eliminate the *y* terms by subtracting the equations.

3x + 7y = -1 $(-) \quad 6x + 7y = 0$ -3x = -1Write the equations in column form and subtract Notice that the y variable eliminated $\frac{-3x}{-3} = \frac{-1}{-3}$ Divide each side with -3 $x = \frac{1}{3}$ Simplify

Now substitute $\frac{1}{3}$ for x in either equation to find the value of y.

6x + 7y = 0 Second equation

$$6\left(\frac{1}{3}\right) + 7y = 0 \quad x = \frac{1}{3}$$

$$2+7y=0$$
 Simplify

2+7y-2=0-2 Subtract 2 from each side of the equation

$$7y = -2$$
 Simplify
 $\frac{7y}{7} = \frac{-2}{7}$ Divide each side with -7
 $y = -\frac{2}{7}$ Simplify
The solution is $\left[\frac{1}{3}, -\frac{2}{7}\right]$

Answer 18PT.

Consider the equations,

$$3x + \frac{1}{3}y = 10 \dots (1)$$
$$2x - \frac{5}{3}y = 35 \dots (2)$$

Eliminate y

$$3x + \frac{1}{3}y = 10$$
 Multiply by 5
 $2x - \frac{5}{3}y = 35$
 $15x + \frac{5}{3}y = 50$
 $2x - \frac{5}{3}y = 35$
 $17x = 85$ Add the equations

 $\frac{17x}{17} = \frac{85}{17}$ Divide each side with 17 x = 5 Simplify

Now substitute 5 for x in either equation to find the value of y

$$3x + \frac{1}{3}y = 10$$

$$3(5) + \frac{1}{3}y = 10$$

$$\frac{1}{3}y = 10 - 15$$

$$\frac{1}{3}y = -5$$

$$y = -15$$

The solution is (5, -15)
First Equation
Substitue 5 for x
Subtract 15 from each side

$$\frac{1}{3}y = -5$$

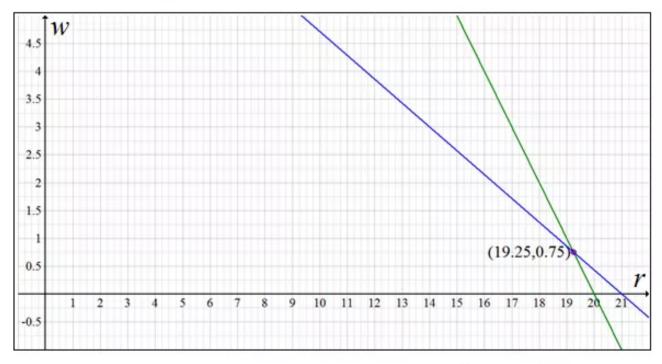
Simplify
Simplify

Answer 18STP.

(a)

Let *r* represent the number of miles Mark ran and *w* represent the number of miles Mark walked.

The total distance is 20 miles


That is r + w = 20 (1)

Mark either ran at a speed of 7 miles per hour or walked at a speed of 3 miles per hour. He completed 20 miles in 3 hours.

That is
$$\frac{r}{7} + \frac{w}{3} = 3$$
 (2)
 $\frac{r}{7} \cdot \frac{3}{3} + \frac{w}{3} \cdot \frac{7}{7} = 3$
 $\frac{3r + 7w}{21} = 3$
 $3r + 7w = 63$

(b)

The graphs of r + w = 20 and 3r + 7w = 63 are shown below:

The two lines r + w = 20 and 3r + 7w = 63 intersect at the point (19.25, 0.75)

Hence the number of miles ran by Mark is 19.25 and number of miles walked is 0.75

Answer 19E.

Consider the equations,

$$x-5y = 0 \dots (1)$$

$$2x-3y = 7 \dots (2)$$
Eliminate x
$$x-5y = 0 \quad \text{Multiply by 2} \qquad 2x-10y = 0$$

$$2x-3y = 7 \qquad \qquad 2x-3y = 7$$

$$-7y = -7 \quad \text{Subtract the equations}$$

$$\frac{-7y}{-7} = \frac{-7}{-7} \quad \text{Divide each side with } -7$$

$$y = 1 \quad \text{Simplify}$$

Now substitute 1 for y in either equation to find the value of x

x-5y=0First Equation x-5(1)=0Substitue 1 for y x-5=0Simplify x-5+5=5Add 5 to each side x=5Simplify The solution is (5,1)

Answer 19PT.

Let the unit's digit be y and 10's place digit is x. Hence the number is xy

The units digit of a two digit number exceeds twice the tens digit by 1. That is

$$y = 2x + 1$$
 (1)

The sum of its digits is 10. That is

$$x + y = 10 \dots (2)$$

Since y = 2x+1, substitute 2x+1 for in the second equation

x + y = 10 First equation

x + 2x + 1 = 10 y = 2x + 1

3x+1=10 Combine like terms

3x+1-1=10-1 Subtract 1 from each side

3x = 9 Simplify

 $\frac{3x}{3} = \frac{9}{3}$ Divide each side with 3

x = 3 Simplify

Use y = 2x + 1 to find the value of y

y = 2x + 1 First equation

y = 2(3) + 1 x = 3

y = 6 + 1 Simplify

$$y = 7$$

Hence the two digit number is xy = 37

Answer 19STP.

(a)

Let *a* represent the number of adult tickets sold and *c* represent the number children tickets sold

The total number of tickets sold is 650

That is a + c = 650 (1)

The total amount collected from the adult and children tickets be \$3675

That is 7.50a + 4.50c = 3675 (2)

(b)

Eliminate a from the equation (1),

a + c = 650	First equation
a+c-c=650-c	Subtract c from each side
a = 650 - c	Simplify

Substitute a = 650 - c in the equation (2)

7.50a + 4.50c = 3675	Second equation
7.50(650 - c) + 4.50c = 3675	Substitute $650 - c$ for a
4875 - 7.50c + 4.50c = 3675	Simplify
4875 - 3c = 3675	Combine like terms
4875 - 3c - 3675 = 0	Subtract 3675 from each side

1200 - 3c = 0	Simplify
3c = 1200	Add 3c to each side
c = 400	Divide each side with 3

Use a = 650 - c to find the value of a

a = 650 - ca = 650 - 400Substitute 400 for ca = 250Simplify

Hence the number of adult tickets sold 250 and the number of children tickets sold

400

Answer 20E.

Consider the equations,

 $x-2y = 5 \dots (1)$ $3x-5y = 8 \dots (2)$ Eliminate x $x-2y = 5 \quad \text{Multiply by 3} \qquad 3x-6y = 15$ $3x-5y = 8 \qquad \qquad 3x-5y = 8$ $-y = 7 \quad \text{Subtract the equations}$ $\frac{-y}{-1} = \frac{7}{-1} \quad \text{Divide each side with } -1$

y = -7 Simplify

Now substitute -7 for y in either equation to find the value of x

x-2y=5	First Equation
x-2(-7)=5	Substitue 1 for y
x + 14 = 5	Simplify
x + 14 - 14 = 5 - 14	Subtract 14 from each side
x = -9	Simplify
The solution is $(-9, -7)$)

Answer 20PT.

Let x be the length of the rectangle and y be the width of the rectangle

The difference between the length and width of the rectangle is 7 centimeters. That is

x - y = 7 (1)

The Perimeter of the rectangle is 50 centimeters. That is

2x + 2y = 50 (2)

Eliminate y

x-y=7 Multiply by 2 2x-2y=14 2x+2y=504x=64 Add the equations

 $\frac{4x}{4} = \frac{64}{4}$ Divide each side with 4 x = 16 Simplify Now substitute 16 for x in either equation to find the value of y

x - y = 7	First Equation
16 - y = 7	Substitue 16 for x
16 - y - 16 = 7 - 16	Simplify
-y = -9	Subtract 16 from each side
y = 9	Simplify

Hence the length of the rectangle, x = 16 cm and width of the rectangle, y = 9 cm

Answer 21E.

Consider the equations,

$$2x + 3y = 8 \dots (1)$$

$$x - y = 2$$
 (2)

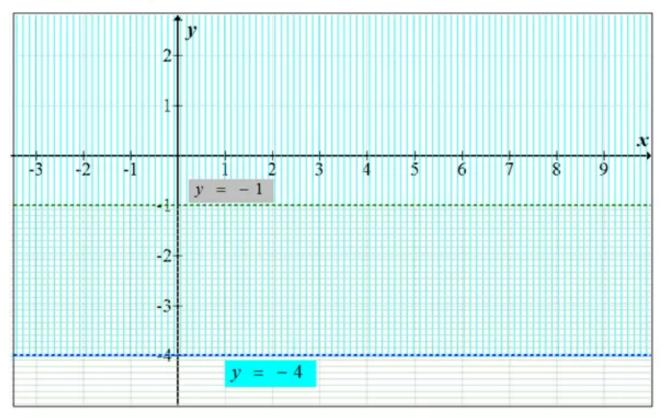
Eliminate y

2x + 3y = 8		2x + 3y = 8	
x - y = 2	Multiply by 3	3x - 3y = 6	
		5x = 14	Add the equations

$$\frac{5x}{5} = \frac{14}{5}$$
 Divide each side with 5
$$x = \frac{14}{5}$$
 Simplify

Now substitute $\frac{14}{5}$ for x in either equation to find the value of y x-y=2 Second Equation $\frac{14}{5}-y=2$ Substitue $\frac{14}{5}$ for x $\frac{14}{5}-y-\frac{14}{5}=2-\frac{14}{5}$ Subtract $\frac{14}{5}$ from each side

$$-y = -\frac{4}{5}$$
 Simplify
$$y = \frac{4}{5}$$
 Simplify
The solution is $\left(\frac{14}{5}, \frac{4}{5}\right)$


Answer 21PT.

Consider the inequalities,

y > -4 (1)

y < -1 (2)

The graph of the inequalities is shown below:

The solution includes the order pairs in the intersection of the graphs of y > -4 and y < -1

This solution region is shaded as

The graphs of y = -4 and y = -1 are boundaries of this region.

The graph of y = -4 and y = -1 is dashed and not included in the graph of y > -4 and y < -1

Answer 22E.

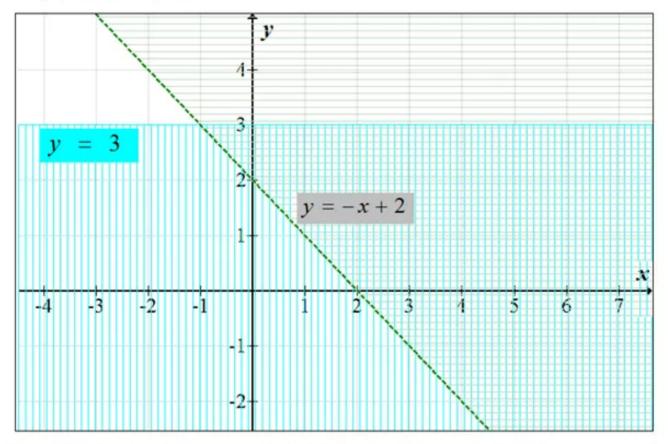
Consider the equations,

 $-5x + 8y = 21 \dots (1)$ $10x + 3y = 15 \dots (2)$ Eliminate x $-5x + 8y = 21 \quad \text{Multiply by 2} \qquad -10x + 16y = 42$ $10x + 3y = 15 \qquad 10x + 3y = 15$ $19y = 57 \quad \text{Add the equations}$

 $\frac{19y}{19} = \frac{57}{19}$ Divide each side with 19 y = 3 Simplify

Now substitute 3 for y in either equation to find the value of x

10x + 3y = 15 Second Equation 10x + 3(3) = 15 Substitue 3 for y 10x + 9 = 15 Simplify 10x = 6 Subtract 9 from each side $x = \frac{6}{10}$ Simplify The solution is $\left[\frac{3}{5}, 3\right]$


Answer 22PT.

Consider the inequalities,

 $y \le 3$ (1)

 $y > -x + 2 \dots (2)$

The graph of the inequalities is shown below:

The solution includes the order pairs in the intersection of the graphs of $y \le 3$ and y > -x+2This solution region is shaded as

The graphs of y = 3 and y = -x + 2 are boundaries of this region.

The graph of y = -x + 2 is dashed and not included in the graph of y > -x + 2

The graph of y = 3 is included in the graph of $y \le 3$

Answer 23E.

Consider the equations,

$$y = 2x$$
 (1)

$$x + 2y = 8$$
 (2)

Since y = 2x, substitute 2x for y in the second equation

x + 2y = 8 Second equation

$$x+2(2x)=8 \quad y=2x$$

x + 4x = 8 Simplify

5x = 8 Combine like terms

 $x = \frac{8}{5}$ Divide each side with 5

Use
$$y = 2x$$
 to find the value of y

$$y = 2x$$

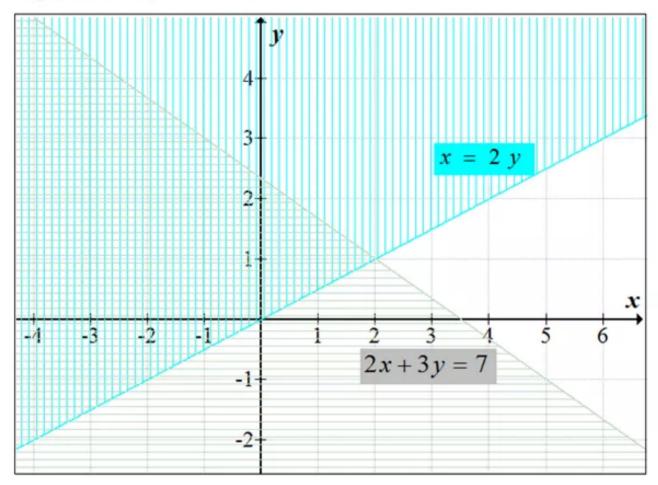
First equation
$$y = 2\left(\frac{8}{5}\right)$$

Substitute $\frac{8}{5}$ for x
$$y = \frac{16}{5}$$

Simplify

Hence the solution is

$$\left(\frac{8}{5},\frac{16}{5}\right)$$


Answer 23PT.

Consider the inequalities,

 $x \leq 2y \dots (1)$

 $2x + 3y \le 7$ (2)

The graph of the inequalities is shown below:

The solution includes the order pairs in the intersection of the graphs of $x \le 2y$ and

 $2x + 3y \le 7$

This solution region is shaded as

The graphs of x = 2y and 2x + 3y = 7 are boundaries of this region.

The graph of x = 2y and 2x + 3y = 7 is included in the graph of $x \le 2y$ and $2x + 3y \le 7$

Answer 24E.

Consider the equations,

 $9x + 8y = 7 \dots (1)$ $18x - 15y = 14 \dots (2)$ Eliminate x $9x + 8y = 7 \quad \text{Multiply by 2} \qquad 18x + 16y = 14$ $18x - 15y = 14 \qquad 18x - 15y = 14$ $31y = 0 \quad \text{Subtract the equations}$ 31y = 0

 $\frac{31y}{31} = \frac{0}{31}$ Divide each side with 31 y = 0 Simplify

Now substitute 0 for y in either equation to find the value of x

18x - 15y = 14 Second Equation 18x - 15(0) = 14 Substitue 0 for y 18x - 0 = 14 Simplify $18x = \frac{14}{18}$ Simplify $x = \frac{7}{9}$ Simplify The solution is $\left[\frac{7}{9}, 0\right]$

Answer 24PT.

Suppose \$ x invested at the rate of 6% and \$ y invested at the rate of 8%.

Then 6% of x is
$$x \times \frac{6}{100} = 0.06x$$
 and 8% of y is $y \times \frac{8}{100} = 0.08y$

The total amount invested \$10,000. That is

$$x + y = 10000$$
 (1)

Interest he got from the total amount is \$760. That is 6% of x + 8% of x = \$760

0.06x + 0.08y = 760 (2)

Eliminate x

x + y = 10000 Multiply by 100 6x + 6y = 60000 0.06x + 0.08y = 760 Multiply by 100 6x + 8y = 76000-2y = -16000 Subtract the equations

 $\frac{-2y}{-2} = \frac{-16000}{-2}$ Divide each side with -2y = 8000 Simplify

Now substitute 8000 for y in either equation to find the value of x

x + y = 10000	First Equation
x + 8000 = 10000	Substitue 8000 for y
x + 8000 - 8000 = 10000 - 8000	Subtract 8000 from each side
x = 2000	Simplify

Hence \$2000 invested at the rate of 6% and \$8000 invested at the rate of 8%

Answer 25E.

Consider the equations,

$$3x + 5y = 2x \dots (1)$$

$$x + 3y = y$$
 (2)

From the equation (1)

3x + 5y = 2x	
3x + 5y - 2x = 2x - 2x	Subtract $2x$ from each side
x + 5y = 0	Simplify

From the equation (2)

x + 3y = y	
x + 3y - y = y - y	Subtract y from each side
x + 2y = 0	Simplify

Eliminate x

x + 5y = 0 x + 2y = 03y = 0 Subtract the equations

 $\frac{3y}{3} = \frac{0}{3}$ Divide each side with 3 y = 0 Simplify

Now substitute 0 for y in either equation to find the value of x

x + 3y = y	Second Equation
x+3(0)=(0)	Substitue 0 for y
x + 0 = 0	Simplify
x = 0	Simplify

The solution is (0,0)

Answer 26E.

Consider the equations,

$$2x + y = 3x - 15 \dots (1)$$

$$x + y = 4y + 2x \dots (2)$$

From the equation (1)

$$2x + y = 3x - 15$$

$$2x + y - 3x = 3x - 15 - 3x$$

Subtract $-3x$ from each side
 $-x + y = -15$
 $\dots (3)$

From the equation (2)

x+5=4y+2x x+5-x=4y+2x-x Subtract x from each side 5=x+4y(4) Now solve the system of equations (3) and (4) by using elimination method:

Eliminate x

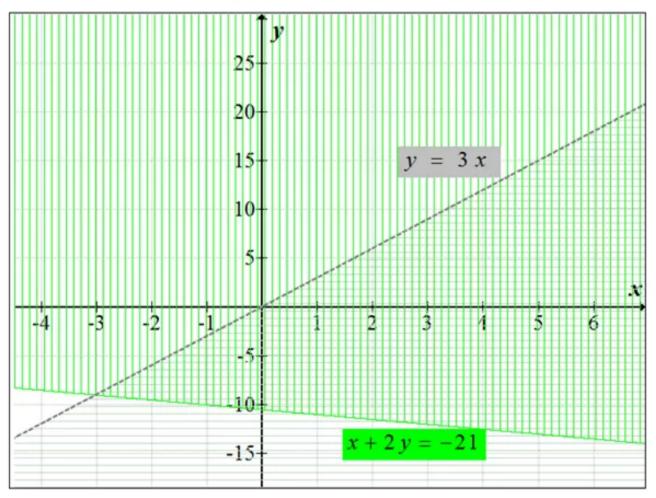
-x + y = -15 Multiply by 2 x + 4y = 55y = -10 Add the equations

 $\frac{5y}{5} = \frac{-10}{5}$ Divide each side with 5 y = -2 Simplify

Now substitute -2 for y in either equation to find the value of x

-x + y = -15	Second Equation
-x - 2 = -15	Substitue -2 for y
-x = -13	Simplify
x = 13	Simplify

The solution is (13, -2)


Answer 27E.

Consider the inequalities,

y < 3x (1)

 $x + 2y \ge -21$ (2)

The graph of the inequalities is shown below:

The solution includes the order pairs in the intersection of the graphs of y < 3x and

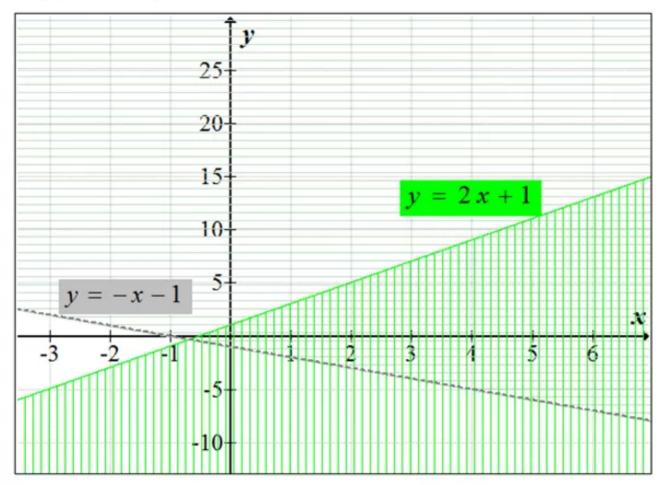
 $x+2y \ge -21$

This solution region is shaded as

The graphs of y = 3x and x + 2y = -21 are boundaries of this region.

The graph of y = 3x is dashed and not included in the graph of y < 3x

The graph of x + 2y = -21 is included in the graph of $x + 2y \ge -21$


Answer 28E.

Consider the inequalities,

 $y > -x - 1 \dots (1)$

 $y \le 2x + 1$ (2)

The graph of the inequalities is shown below:

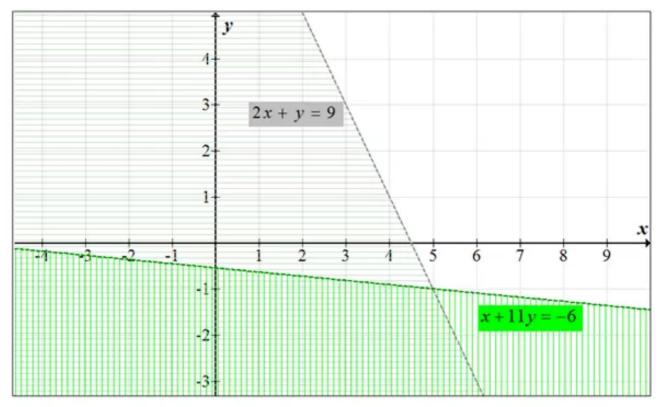
The solution includes the order pairs in the intersection of the graphs of y > -x - 1 and $y \le 2x + 1$

This solution region is shaded as

The graphs of y = -x - 1 and y = 2x + 1 are boundaries of this region.

The graph of y = -x - 1 is dashed and not included in the graph of y > -x - 1

The graph of y = 2x + 1 is included in the graph of $y \le 2x + 1$


Answer 29E.

Consider the inequalities,

 $2x + y < 9 \dots (1)$

x + 11y < -6 (2)

The graph of the inequalities is shown below:

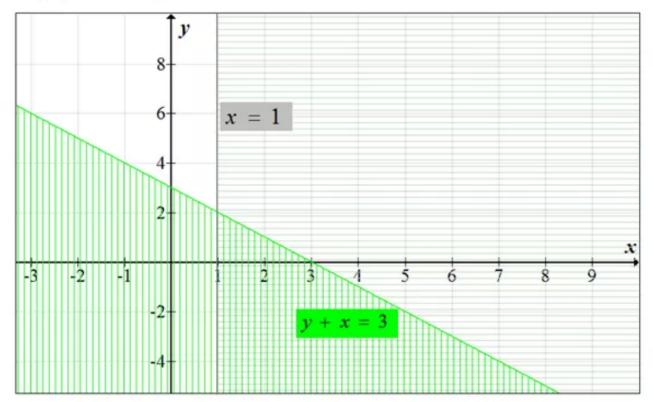
The solution includes the order pairs in the intersection of the graphs of 2x + y < 9 and

x+11y<-6

This solution region is shaded as

The graphs of 2x + y = 9 and x + 11y = -6 are boundaries of this region.

The graph of 2x + y = 9 and x + 11y = -6 is dashed and not included in the graph of 2x + y < 9 and x + 11y < -6


Answer 30E.

Consider the inequalities,

 $x \ge 1$ (1)

 $y + x \le 3$ (2)

The graph of the inequalities is shown below:

The solution includes the order pairs in the intersection of the graphs of $x \ge 1$ and $y + x \le 3$ This solution region is shaded as 4 + 4 + 4 + 4 = 3.

The graphs of x = 1 and y + x = 3 are boundaries of this region.

The graph of x = 1 and y + x = 3 is dashed and not included in the graph of $x \ge 1$ and $y + x \le 3$