2. Differentiation

e Suppose fis a real function and c is a point in its domain. Then, the derivative of f at ¢ is defined by,
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e Derivative of a function f (x), denoted by dx (f (x)) of £1(x) , 1s defined by 4

Example:
Find derivative of sin 2x.

Solution:
Let f(x) = sin 2x
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e For two functions f'and g, the rules of algebra of derivatives are as follows:
o (ftg) =f"+g
o [f-8) =/ —g
o (fg)=rg [Leibnitz or product rule]
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e Every differentiable function is continuous, but the converse is not true.
Example:
JF{x) = Ixlis continuous at all points on real line, but it is not differentiable at
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Therefore, f'(x) does not exist at x = 0; 1.e., f'1s not differentiable at x = 0.
The derivatives of some useful functions are as follows:
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e Chain rule: This rule is used to find the derivative of a composite function. Let /= v o u. Suppose ¢ = u
dt dv. af —dv  adt
(x); and if both dx and 4r exist, then dx  df dx
af _ dlwo)  dr _dw  ds df
Similarly, if f=(wou) o v, and if £ =v (x), s = u (¢), then dx dt dx ds df dx
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Example: Find the derivative of sin"(leg x + cos™x),

Solution:
?’i[sin2 (1 og ¥+ .:.;3.52_1-) ] = Zsin (1 og ¥+ COSEI)K%[HH (1 og ¥+ coszj.') ]

=Zsin (log x+ coszr) ' cos(l og x + cosEJ;)Hd% (log x+ coszr)

= sin E(Ic:lg x+ coszr) . [IT +2cos J‘x;T(cos J.'j]
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=s1in (lcug x° +2cos J.)X(l—_ — Jsin xcos .'l.)

= (IT —sin 23.')si11 (lc:-g ¥+ 20 052.1.')

e Derivative of a function ./ (¥) = [u(x) ]P{I)can be calculated by taking logarithm on both the sides, i.e.
log f(x) =v(x)log [4(x)] and then differentiating both sides with respect to x.

]
¢

X

1 . d_y
Example: By=a" Jhudy

Solution:

Letlty=+" =3
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o Ifthe variables x and y are expressed in the form of x = £ () and y = g (), then they are said to be in
dy _dy dt _ g0
parametric form. In this case,dx  df @ T o , provided.f " (£) #0

& Fiix) an-::lﬁ orf''(x) = i(‘i_.}’)
o Ify=f(x), then & = dx2 : dx | dx
2
d’y
Here, f"(x)or dx? is called the second order derivative of y with respect to x.




