Chapter 5. Complex Numbers and Quadratic Equations

Question-1

If $z_1, z_2 \in C$, show that $(z_1 + z_2)^2 = z_1^2 + 2z_1z_2 + z_2^2$

Solution:

Let
$$z_1 = x_1 + iy_1$$

$$z^2 = x_2 + iy_2$$

$$(z_1 + z_2)^2 = _{[(x_1 + iy_1) + (x_2 + iy_2)]^2}$$

$$= [(x_1 + x_2) + i(y_1 + y_2)]^2$$

=
$$(x_1+x_2)^2 + 2i(x_1+x_2)(y_1+y_2) - (y_1+y_2)^2$$

$$= x_1^2 + 2x_1x_2 + x_2^2 + 2ix_1y_1 + 2ix_1y_2 + 2ix_2y_1 + 2ix_2y_2 - y_1^2 - 2y_1y_2 - y_2^2$$

$$= x_1^2 + 2ix_1y_1 - y_1^2 + x_2^2 + 2ix_2y_2 - y_2^2 + 2(x_1+iy_1)(x_2+iy_2)$$

$$= x_1^2 + 2ix_1y_1 + (iy_1)^2 + x_2^2 + 2ix_2y_2 + (iy_2)^2 + 2(x_1 + iy_1)(x_2 + iy_2)$$

=
$$(x_1+iy_1)^2 + (x_2+iy_2)^2 + 2 z_1z_2$$

$$= z_1^2 + 2z_1z_2 + z_2^2$$

Question-2

Write the following as complex numbers

iv
$$\frac{\sqrt{3}}{2} - \frac{\sqrt{-2}}{\sqrt{7}}$$

v.
$$\sqrt{x}$$
, (x>0)

vi. - b +
$$\sqrt{-4ac}$$
, (a, c > 0)

$$i$$
. $\sqrt{-16} = \sqrt{-1 \times 16} = \sqrt{-1} \sqrt{16} = i \sqrt{16}$

ii.
$$1 + \sqrt{1} = 1 + i$$

iii.
$$-1 - \sqrt{-5} = -1 - \sqrt{-1} \sqrt{5} = -1 - i\sqrt{5}$$

$$\dot{J}V.~\frac{\sqrt{3}}{2} - \frac{\sqrt{-2}}{\sqrt{7}} = \frac{\sqrt{3}}{2} - \frac{\sqrt{-1}\sqrt{2}}{\sqrt{7}} = \frac{\sqrt{3}}{2} - \frac{i\sqrt{2}}{\sqrt{7}}$$

$$v. \sqrt{x} = \sqrt{x} + i0$$

$$vi. - b + \sqrt{-4ac} = -b + \sqrt{-1}\sqrt{4ac} = -b + 2i\sqrt{ac}$$

Obtain a quadratic equation whose root are 2 and 3.

Solution:

Let α , β be the roots of the equation.

Sum of the roots $\alpha + \beta = 2+3 = 5$

Product of the roots $\alpha x \beta = 2x3 = 6$

.. The equation is given by

 x^2 - (sum of roots)x + product of roots = 0

 \therefore Equation is $x^2 - 5x + 6 = 0$.

Question-4

Solve the following equation: $25x^2-30x+9=0$.

Solution:

$$25x^2 - 30x + 9 = 0$$

$$D = b^2-4ac = 900 - 4 \times 25 \times 9 = 900 - 900 = 0$$

Hence the two real equal roots of the equation are : $\frac{30}{50}, \frac{30}{50}$ i.e $\frac{3}{5}, \frac{3}{5}$

Write the real and imaginary parts of the following complex numbers below:

$$\dot{I}$$
. $\frac{\sqrt{17}}{2} + \frac{i2}{\sqrt{70}}$

$$ii. -\frac{1}{5} + \frac{i}{5}$$

iv.
$$\sqrt{3} + i \frac{\sqrt{2}}{76}$$

i. Let
$$z = \frac{\sqrt{17}}{2} + \frac{i2}{\sqrt{70}}$$

Re z =
$$\frac{\sqrt{17}}{2}$$
, Im z = $\frac{2}{\sqrt{70}}$

ii. Let
$$z = -\frac{1}{5} + \frac{i}{5}$$

Re z =
$$-\frac{1}{5}$$
, Im z = $\frac{1}{5}$

iii. Let
$$z = \sqrt{37} + \sqrt{-19} = \sqrt{37} + i\sqrt{19}$$

Re z =
$$\sqrt{37}$$
, Im z = $\sqrt{19}$

iV.
$$\sqrt{3} + i \frac{\sqrt{2}}{76}$$

Re z =
$$\sqrt{3}$$
, Im z = $\frac{\sqrt{2}}{76}$

Re
$$z = 7$$
, Im $z = 0$

Re
$$z = 0$$
, Im $z = 3$

Without computing the roots of $3x^2+2x+6=0$, find (i) $\frac{1}{\alpha}+\frac{1}{\beta}$ (ii) $\alpha 2+\beta 2$ (iii) $\alpha^3+\beta^3$

Solution:

If α and β an the root of the equation $3x^2 + 2x + 6 = 0$ Sum of the roots $\alpha + \beta = \frac{-b}{a} = \frac{-2}{3}$ Product of roots $\alpha\beta = \frac{c}{a} = \frac{6}{3} = 2$

(i)
$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-2}{3} \times \frac{1}{2} = \frac{-1}{3}$$

(ii)
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha\beta = \left(\frac{-2}{3}\right)^2 - 2 \times 2 = \frac{4}{9} - 4 = \frac{4 - 36}{9} = -\frac{32}{9}$$

(iii
$$\alpha^{3} + \beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = (\frac{-2}{3})^{3} - 3(2)(\frac{-2}{3}) = \frac{-8}{27} + 4 = 3\frac{19}{27}$$

Question-7

Show that $(1-i)^2 = -2i$.

Solution:

$$(1-i)^2 = 1^2 - 2(i)(1) + (i)^2 = 1-2(-i) + (i)^2 = 1-2i-1 = -2i$$

Question-8

Solve the following equation: $2x^2-2\sqrt{3}x+1=0$.

Solution:

$$2x^2-2\sqrt{3}x+1=0$$

D =
$$b^2$$
-4ac = 12 - 4× 2× 1 = 12 - 8= 4 > 0
 $\sqrt{5}$ = 2

Hence the two real and unequal roots are : $\frac{2\sqrt{3}+2}{4}$, $\frac{2\sqrt{3}-2}{4}$ i.e $\frac{\sqrt{3}+1}{2}$, $\frac{\sqrt{3}-1}{2}$

Solve the equation $\sqrt{x} = (x - 2)$ in C.

Solution:

Squaring both sides

$$(\sqrt{x})^z = (x-2)^2$$

$$x = x^2 - 2(x)(2) + 4$$

$$0 = x^2 - 4x + 4 - x$$

$$= x^2 - 5x + 4$$

$$x^2 - 5x + 4 = 0$$

$$x^2 - 4x - x + 4 = 0$$

$$x(x-4)-(x-4)=0$$

$$x = 4 \text{ or } x = 1$$

x=1 doesn't satisfy the equation

$$x = 4$$
.

Question-10

Find the conjugate of the following complex numbers

- i. Conjugate of 3 + i is 3 i.
- ii. Conjugate of 3 i is 3 + i.
- iii. Conjugate of √5 i√7 is √5 + i√7
- iv. Conjugate of -i√s is i√s.
- v. Conjugate of 4/5 is 4/5.
- vi. Conjugate of 49 i/7 is 49 + i/7.

Solve the following equation: $\sqrt{3\times+1} - \sqrt{x-1} = 2$.

Solution:

$$\sqrt{3\times+1}-\sqrt{\times-1}=2$$

Squaring,

$$(3x+1)+(x-1)-2\sqrt{3x+1}\times\sqrt{x-1}=4$$

$$4x - 2\sqrt{3x + 1} \times \sqrt{x - 1} = 4$$

$$\sqrt{3\times+1}\times\sqrt{\times-1}=2x-2$$

Squaring,

$$3x^2 - 2x - 1 = (2x - 2)^2$$

$$3x^2-2x-1 = 4x^2 - 8x+4$$

$$x^2-6x+5=0$$

$$D = b^2-4ac = 36 - 4 \times 1 \times 5 = 16 > 0$$

Hence the two real and unequal roots are : $\frac{6+4}{2}$, $\frac{6-4}{2}$

i.e 5,1

Question-12

Find the conjugate of $\frac{1-i}{1+i}$.

Solution:

$$\frac{1-i}{1+i} = \frac{(1-i)(1-i)}{(1+i)(1-i)} = \frac{(1-i)^2}{1^2-(i)^2} = \frac{1-2i+i^2}{1+1} = \frac{1-2i-1}{2} = \frac{-2i}{2} = -i.$$

∴Conjugate of
$$\frac{1-i}{1+i} = i$$

Question-13

Show that if a,b,c,d, $\in \mathbb{R}$, $\overline{(a+ib)(c+id)} = (a-ib)(c-id) = (a-ib)$ (c-id).

$$(a+ib) (c+id) = ac + iad + ibc + i^2bd = ac + i(ad+bc) - bd = (ac-bd) + i(ad+bc)$$

From (1) and (2)
$$\overline{(a+ib)(c+id)} = (a-ib)(c-id)$$

Find the value of x and y, if 4x + i(3x - y) = 3 - i6.

Solution:

$$4x + i(3x - y) = 3 - i6$$

Equating the real and imaginary, we have

$$4x = 3$$

$$X = \frac{3}{4}$$

$$3x - y = -6$$

$$3(3/4) - y = -6$$

$$9/4 - y = -6$$

$$-y = -6 - 9/4$$

$$y = 33/4$$

Question-15

Solve the following equation: $2x^2+1=0$.

Solution:

$$2x^2+1 = 0 \Rightarrow x^2 = -1/2$$

Hence the complex roots of the equation are $+i\frac{\sqrt{2}}{2}$, $-i\frac{\sqrt{2}}{2}$.

Question-16

Does the equation $2x^2 - 4x + 3 = 0$ have equal roots? Find the roots.

Solution:

The given equation is $2x^2 - 4x + 3 = 0$.

Comparing with $ax^2 + bx + c = 0$

$$a = 2, b = -4, c = 3$$

$$b^2 - 4ac = (-4)^2 - 4 \times 2 \times 3 = 16 - 24 = -8 < 0$$

The roots are not equal.

Hence the roots of the given equation is $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{-8}}{2 \times 2} = \frac{4 \pm 2\sqrt{2i}}{4} = 1 \pm \frac{1}{\sqrt{2}}i$

Find the value of x and y, if (3y - 2) + i(7 - 2x) = 0.

Solution:

$$(3y - 2) + i(7 - 2x) = 0$$

Equating the real and imaginary, we have

$$3y - 2 = 0$$

$$y = 2/3$$

$$7 - 2x = 0$$

$$2x = 7$$

$$x = 7/2$$

The value of x = 7/2 and y = 2/3.

Question-18

If two complex numbers z_1z_2 are such that $|z_1| = |z_2|$, is it then necessary that $z_1 = z_2$?

Solution:

$$|z_1| = |x_1 + iy| = \sqrt{x_1^2 + y_1^2}$$

$$|z_2| = |x_2 + iy_2| = \sqrt{x_2^2 + y_2^2}$$

$$\therefore |z_1| = |z_2|$$

$$\sqrt{{x_1}^2 + {y_1}^2} \ = \ \sqrt{{x_2}^2 + {y_2}^2}$$

$$x_1^2 + y_1^2 = x_2^2 + y_2^2$$

$$x_1^2 = x_2^2$$
 and $y_1^2 = y_2^2$

$$x_1 = \pm x_2 y_1 = \pm y$$

 $\therefore z_1 \text{ need not be } z_2$

Solve the following equation: $x^2-4x+7=0$.

Solution:

$$x^2-4x+7=0$$

$$D = b^2-4ac = 16 - 4 \times 1 \times 7 = 16 - 28 = -12 < 0$$

Hence the two complex roots are : $\frac{4+2\sqrt{3}}{2}$, $\frac{4-2\sqrt{3}}{2}$

Question-20

For what values of a is one of the roots of the equation $x^2 + (2a + 1)x + a^2 + 2 = 0$ twice the value of the other.

Solution:

Let the roots be α , 2α .

$$\alpha + 2\alpha = \frac{-(2\sigma + 1)}{1}$$

$$\Rightarrow$$
 3 α = -2 α - 1

$$\Rightarrow \alpha = \frac{-2a-1}{3}$$

$$\alpha . 2\alpha = \frac{a^2 + 2}{1}$$

$$2\alpha^2 = \frac{a^2+2}{1}$$

$$2\left(\frac{-(2\alpha+1)}{3}\right)^2 = \alpha^2 + 2$$

$$2(4\alpha^2 + 4\alpha + 1) = 9(\alpha^2 + 2)$$

$$8\alpha^2 + 8\alpha + 2 = 9\alpha^2 + 18$$

$$-\alpha^2 + 8\alpha - 16 = 0$$

$$\alpha^2 - 8\alpha + 16 = 0$$

$$\alpha^2 - 4\alpha - 4\alpha + 16 = 0$$

$$\alpha(\alpha - 4) - 4(\alpha - 4) = 0$$

$$\alpha = 4 \text{ or } \alpha = 4$$

If the difference of the root of $x^2 - bx + c = 0$ is the same as that of the roots of $x^2 - cx + b = 0$ then b+c+4 = 0 unless b - c = 0.

Solution:

Let α,β be the root of the equation x^2 -bx+c = 0; γ , δ and be the roots of the equation x^2 - cx + b = 0.

Then a + b = b, $\alpha\beta$ =c , γ + δ =c and γ δ = b

Given that
$$a - b = g - \delta$$

$$(\alpha - \beta)^2 = (\gamma - \delta)^2$$

$$(\alpha + \beta)^2 - 4\alpha\beta = (\gamma + \delta)^2 - 4\gamma\delta$$

$$b^2 - 4c = c^2 - 4b$$

$$b^2-c^2+4b-4c=0$$

$$(b-c)(b+c)+4(b-c) = 0$$

$$(b-c)(b+c+4) = 0$$

Hence b-c =
$$0$$
 or b+c+4 = 0

(ie)
$$b+c+4 = 0$$
 or $b = c$

Question-22

Find the value of x and y, if $\left(\frac{3}{\sqrt{5}} \times -5\right) + i2\sqrt{5}$ y = $\sqrt{2}$.

Solution:

$$\left(\frac{3}{\sqrt{5}} \times -5\right) + i2\sqrt{5} y = \sqrt{2}$$

Equating the real and imaginary, we have

$$\left(\frac{3}{\sqrt{5}} \times - 5\right) = \sqrt{2}$$

$$\frac{3}{\sqrt{5}}$$
 x = $\sqrt{2}$ + 5

$$x = \sqrt{5} (\sqrt{2} + 5)/3$$

The value of $x = \sqrt{5}(\sqrt{2} + 5)/3$ and y = 0.

If z_1 , z_2 , z_3 are 3 complex numbers such that there exists a z with $|z_1-z|=|z_2-z|=|z_3-z|$ show that z_1 , z_2 , z_3 lie on a circle in the plane diagram.

Solution:

Let z_1 , z_2 , z_3 be x_1 + iy_1 , x_2 + iy_2 and x_3 + iy_3 respectively.

Representing points P, Q, R

Let the z be point O given by x + iy.

$$|z_1 - z| = \sqrt{(x_1 - x)^2 + (y_1 - y)^2} = OP$$

Similarly $|z_2 - z| = 0Q$

and $|z_3 - z| = OR$

$$|z_1 - z| = |z_2 - z| = |z_3 - z|$$

$$OP = OQ = OR = r$$

This means P, Q, R are points on a circle with centre O and radius r.

Or z₁, z₂, z₃ lie on a circle.

Question-24

Solve the following equation: $x^2+x+1=0$.

Solution:

$$x^2+x+1=0$$

$$D = b^2 - 4ac = 1 - 4 = -3 < 0$$

Hence the two complex roots are : $\frac{-1+\sqrt{3}i}{2}$, $\frac{-1-\sqrt{3}i}{2}$

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: 4 - i3.

Solution:

Question-26

A group of students decided to buy a tape-records from 170 to 195 rupee. But at the last moment two student backed out of the decision so that the remaining student had to pay 1 rupee more than they had planned. What was the price of the tape recorder if the student paid equal shares?

Solution:

Let the price of the tape recorder be Rs. x Let no. of student be n.

At the last moment

No. of students = (n-2)

Increased contribution = $\frac{x}{n-2}$ Original contribution = $\frac{x}{n}$

According to the question

$$\frac{x}{n-2} = \frac{x}{n} + 1$$

$$\frac{x}{n-2} = \frac{x+n}{n}$$

$$nx = (n-2)(x+n) = nx + n^2 - 2x - 2n$$

$$n^2 - 2n = 2x$$

 $x = \frac{n^2 - 2n}{2}$, Also 170 < x < 195

$$170 < \frac{n^2 - 2n}{2} < 195$$

$$\Rightarrow$$
340 \leq n² - 2n \leq 390

Either
$$340 \le n^2 - 2n$$

 $n^2 - 2n - 340 \ge 0$

Roots are given by

$$n = \frac{2 \pm \sqrt{4 + 1360}}{2} = \frac{1 \pm \sqrt{341}}{2}$$

$$n = 20 \text{ or } n^2 - 2n - 390 < 0 ---- (1)$$

$$n = \frac{2 \pm \sqrt{1564}}{2} n = \frac{1 \pm \sqrt{391}}{2}$$
$$\therefore 1 - \sqrt{391} \le n < 1 + \sqrt{391}$$

Since n is a natural no. n = 1, 2, 320 --- (2)

From (1) and (2),

$$n = 20$$

Cost of tape - recorder $x = \frac{n^2 - 2n}{2} = \frac{20^2 - 2(20)}{2} = = Rs. 180.$

Question-27

Solve the following equation: $x^2 + 2x + 2 = 0$.

Solution:

$$x^2 + 2x + 2 = 0$$

$$D = b^2-4ac = 4 - 4 \times 2 = -4 < 0$$

Hence the two complex roots are : $\frac{-2+2i}{2}$, $\frac{-2-2i}{2}$

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: -3 + i5

Solution:

Conjugate of -3 + i5 is -3 - i5.

The absolute value of -3 + i5

$$= \sqrt{(-3)^2 + 5^2}$$
$$= \sqrt{9 + 25}$$
$$= \sqrt{34}$$

Question-29

Solve $(x^2-5x+7)^2 - (x-2)(x-3) = 1$.

$$(x^2 - 5x + 7)^2 - (x - 2)(x - 3) = 1$$

$$(x^2 - 5x + 7)^2 - [x^2 - (2 + 3)x + 2 \times 3] = 1$$

$$(x^2-5x+7)^2 - [x^2-5x+6] - 1 = 0$$

Let
$$x^2 - 5x = y$$
 ----(1)

$$(y+7)^2 - (y+6) - 1 = 0$$

$$y^2 + 14y + 49 - y - 6 - 1 = 0$$

$$y^2 + 13y + 42 = 0$$

$$y = \frac{-13 \pm \sqrt{13^2 - 4(1)(42)}}{2 \times 1}$$

$$= \frac{-13 \pm \sqrt{169 - 168}}{2}$$

$$= \frac{-13 \pm \sqrt{1}}{2}$$

$$= \frac{-13 + 1}{2} \text{ or } \frac{-13 - 1}{2}$$

$$= \frac{-12}{2} \text{ or } \frac{-14}{2}$$

$$= -6 \text{ or } -7$$

Substituting y = -6 in (1)

$$x^2 - 5x = -6$$

$$x^2 - 5x + 6 = 0$$

$$x = 3 \text{ or } x = 2$$

Substituting y = -7 in (1)

$$x^2 - 5x = -7$$

$$x^2 - 5x + 7 = 0$$

$$X = \frac{5 \pm \sqrt{3}i}{2} .$$

Question-30

Solve the following equation: $25x^2-30x+11=0$.

Solution:

$$25x^2-30x+11=0$$

 $D=b^2-4ac=900-4\times25\times11=-200<0$
 $\sqrt{5}=10\sqrt{2}i$
Hence the two complex roots are : $\frac{30+10\sqrt{2}i}{50}$, $\frac{30-10\sqrt{2}i}{50}$
i.e $\frac{3+\sqrt{2}i}{5}$, $\frac{3-\sqrt{2}i}{5}$

Question-31

Prove that $x^4+4 = (x+1+i)(x+1-i)(x-1+i)(x-1-i)$.

$$(x+1+i) (x+1-i) (x-1+i) (x-1-i) = [(x+1)^2-i^2] [(x-1)^2-i^2]$$

$$= (x^2+2x+1+1) (x^2-2x+1+1)$$

$$= [(x^2+2)+2x] [(x+2)-2x]$$

$$= (x^2+2)^2-4x^2$$

$$= x^4+4x^2+4-4x^2$$

$$= x^4+4$$

Solve the following equation: $5x^2 - 6x + 2 = 0$.

Solution:

$$5x^2 - 6x + 2 = 0$$

 $D = b^2 - 4ac = 36 - 4 \times 5 \times 2 = -4 < 0$
 $\sqrt{5} = 2i$

Hence the two complex roots are : $\frac{6+2i}{10}$, $\frac{6-2i}{10}$

i.e
$$\frac{3+i}{5}, \frac{3-i}{5}$$

Question-33

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: 5

Solution:

Conjugate of 5 is 5.

The absolute value of $5 = \sqrt{5^2 + 0^2}$

 $= \sqrt{25}$ = 5

Question-34

If $(1+x)^n = p_0 + p_1 x + p_2 x^2 + \dots + p_n x^n$, prove that $p_0 + p_3 + p_6 + \dots = \frac{1}{3}(2^n + 2\cos\frac{n\pi}{3})$.

$$(1+x)^n = p_0+p_1 x + p_2x^2 + \dots p_nx^n \dots (1)$$

Put $x = 1, w, w^2$ in (1) and add

$$[1+w = -w^2 \text{ and } 1+w^2 = -w]$$

$$3(p_0+p_3+p_6...) = 2^n+(-w^2)^n+(-w)^n...$$
 (2)

Now W =
$$\frac{-1+i\sqrt{3}}{2}$$

$$\therefore -W = \frac{1}{2} - i \frac{\sqrt{3}}{2} = \cos \frac{\pi}{3} - i \sin \frac{\pi}{3}, (... r = 1, \theta = \frac{\pi}{3})$$

$$-w^2 = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$$

∴(-w)ⁿ +(-w²)ⁿ = 2cos
$$\frac{n\pi}{3}$$
 (Demoivre's Theorem)

Substituting in (2),3(
$$p_0+p_3+p_6$$
.....) = $2^n + 2\cos \frac{n\pi}{3}$

or
$$p_0+p_3+p_6...$$
 = $\frac{1}{3}(2^n+2\cos\frac{n\pi}{3})$.

From an equation whose roots are the squares of the sum and difference of the roots of

$$2x^2 + 2(m + n)x + m^2 + n^2 = 0.$$

Solution:

Let α , β be the roots of the equation $2x^2+2(m+n)x+m^2+n^2=0$. Then $\alpha+\beta=-2(m+n)/2=-(m+n)$ $\alpha\beta=(m^2+n^2)/2$

The roots of the required equation are $(\alpha + \beta)^2$ and $(\alpha - \beta)^2$ Sum of the roots = $(\alpha + \beta)^2 + (\alpha - \beta)^2 = (\alpha + \beta)^2 + [(\alpha + \beta)^2 - 4\alpha\beta]$ = $(m + n)^2 + [(m + n)^2 - \frac{4(m^2 + n^2)}{2}]$

Product of the roots =
$$(\alpha + \beta)^2 (\alpha - \beta)^2 = (\alpha + \beta)^2 [(\alpha + \beta)^2 - 4\alpha\beta]$$

= $(m + n)^2 [(m + n)^2 - \frac{4(m^2 + n^2)}{2}]$
= $(m + n)^2 [2mn - m^2 - n^2]$
The required equation is $x^2 - 4mnx + (m + n)^2 [2mn - m^2 - n^2] = 0$
or $x^2 - 4mnx + (m + n)^2 [-(m - n)^2] = 0$

Question-36

Find the values of the root $\sqrt{1-i}$.

or x^2 - 4mnx - $(m^2 - n^2)^2 = 0$

$$\begin{split} 1 - i &= \sqrt{2}(\cos\frac{\pi}{4} - i\sin\frac{\pi}{4}) \\ &= \sqrt{2}\left[\cos(2n\pi + \frac{\pi}{4})\right] - i\sin(2n\pi + \frac{\pi}{4}) \\ &= \sqrt{2}\left(\cos(8n+1)\frac{\pi}{4} - \sin(8n+1)\frac{\pi}{4}\right) \\ \sqrt{1 - i} &= 2^{1/4}[\cos(8n+1)\frac{\pi}{8} - i\sin(8n+1)\frac{\pi}{8}] \\ &= 2^{1/4}\left(\cos\frac{\pi}{8} - i\sin\frac{\pi}{8}\right) \text{ for } n = 0 \\ &= 2^{1/4}(\cos(\pi + \frac{\pi}{8}) - i\sin(\pi + \frac{\pi}{8}) \text{ for } n = 1 \\ &= -2^{1/4}(\cos\frac{\pi}{8} - i\sin\frac{\pi}{8}) \text{ where} \\ \cos\frac{\pi}{8} &= \sqrt{\frac{\sqrt{2} + 1}{2\sqrt{2}}}, \sin\frac{\pi}{8} &= \sqrt{\frac{\sqrt{2} - 1}{2\sqrt{2}}} \end{split}$$

Solve the following equation: $3x^2 - 7x + 5 = 0$.

Solution:

$$3x^2 - 7x + 5 = 0$$

$$D = b^2 - 4ac = 49 - 4 \times 3 \times 5 = -11 < 0$$

Hence the two complex roots are : $\frac{7 + \sqrt{11}}{6}, \frac{7 - \sqrt{11}}{6}$

Question-38

Solve the equation $25x^2 - 30x + 9 = 0$.

Solution:

$$X = \frac{+30 \pm \sqrt{30^2 - 4(25)(9)}}{2 \times 25} = \frac{30 \pm \sqrt{900 - 900}}{50} = \frac{30}{50}$$

$$x = \frac{3}{5}, \frac{3}{5}$$

Question-39

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: 2i

Solution:

Conjugate of 2i is -2i.

The absolute value of $2i = \sqrt{0^2 + 2^2}$ = $\sqrt{4}$

$$=\sqrt{4}$$

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: -1/2 - 3i

Solution:

Conjugate of - 1/2 - 13 is - 1/2 + 13

The absolute value of $-\frac{1}{2}$ + i3

Question-41

If the roots of $x^2 - lx + m = 0$ differ by 1, then prove that $l^2 = 4m + 1$.

Solution:

Let a, b be the roots of the equation $x^2 - Ix + m = 0$.

$$\alpha + \beta = 1$$

$$\alpha\beta = m$$

$$\alpha - \beta = 1$$

$$(\alpha + \beta)^2 = (\alpha - \beta)^2 + 4\alpha\beta$$

 $I^2 = 1 + 4m$

Question-42

Solve the following equation: $13 x^2 - 7x + 1 = 0$.

Solution:

$$13 x^2 - 7x + 1 = 0$$

$$D = b^2 - 4ac = 49 - 4 \times 13 \times 1 = -3 < 0$$

Hence the two complex roots are : $\frac{7+\sqrt{3}}{26}$, $\frac{7-\sqrt{3}}{26}$

If z = x+iy and $z^{1/3}$ = a-ib then show that $\frac{x}{a} - \frac{y}{b} - 4(a^2 - b^2)$.

Solution:

z = x+iy and
$$2^{1/3}$$
 = a-ib
(x+iy)^{1/3} = a-ib
Cubing both sides,
x+iy = (a-ib)³
= a³+b³i-3abi(a-ib)
= a³+b³i-3a²bi-3ab²
Equating the real and imaginary,
x = a³-3ab²
y = b³-3a²b
 $\frac{y}{y} - \frac{y}{b} - a^2 - 3b^2 - b^2 + 3a^2$
= 4(a²-b²)

Question-44

 $(1-w+w^2)(1-w^2+w^4)(1-w^4+w^8)$ to 2n factors = 2^{2n} .

Solution:

Question-45

Plot the following number and their complex conjugates on a complex number plane and find their absolute values: $\sqrt{(-3)}$

Solution:

$$\sqrt{-3} = 3i$$

Conjugate of 3i is $-3i$.

The absolute value of $3i = \sqrt{3^2} = \sqrt{9} = 3$

Solve the following equation: $9x^2+10x+3=0$.

Solution:

$$9x^2+10x+3=0$$

$$D = b^2-4ac = 100-4 \times 9 \times 3 = -8 < 0$$

Hence the two complex roots are : $\frac{-10+2\sqrt{2}i}{18},\frac{-10-2\sqrt{2}i}{18}$

i.e
$$\frac{-5+\sqrt{2}i}{9}$$
, $\frac{-5-\sqrt{2}i}{9}$