Sample Question Paper - 23 Mathematics-Basic (241) Class- X, Session: 2021-22 TERM II

Time Allowed : 2 hours

General Instructions :

- 1. The question paper consists of 14 questions divided into 3 sections A, B, C.
- 2. Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- *3. Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.*
- 4. Section C comprises of 4 questions of 4 marks each. An internal choice has been provided in one question. It contains two case study based questions.

SECTION - A

1. In the given figure, if $\angle BAP = 150^\circ$, then $\angle AOB = k$, then find the value of k.

OR

In the given figure, *RS* is the tangent to the circle at *L* and *MN* is a diameter. If $\angle NML = 30^\circ$, determine $\angle RLM$.

- 2. Find the volume of the greatest sphere that can be cut off from a cylindrical log of wood of base radius 1 cm and height 5 cm.
- 3. (x + 2), x and (x 1) are the frequencies of the numbers 12, 15 and 20 respectively. If the mean of the distribution is 14.5, then find the value of x.

OR

Mode for the following distribution is 17.5 and *x* is less than 6. Find *x*.

Class-interval	0 - 5	5 - 10	10 - 15	15 - 20	20 - 25
Frequency	5	2	3	6	x

4. What is the common difference of an A.P. in which $a_{21} - a_7 = 84$?

Maximum Marks : 40

- 5. Solve: $4x^2 \sqrt{3}x 5 = 0$
- **6.** Find the value of mode, using an empirical relation, when it is given that mean and median are 10.5 and 9.6 respectively.

SECTION - B

- 7. If *p*, *q*, *r* are in A.P., then find the value of $p^3 + r^3 8q^3$ in terms of *pqr*.
- 8. In the given figure, *O* is the centre of a circle, *AB* is a chord and *AT* is the tangent at *A*. If $\angle AOB = 110^\circ$, then find $\angle BAT$.

OR

In the following figure, QS is the diameter and O is the centre of circle. APT is the tangent at P. Find $\angle APQ$.

- **9.** A girl standing on the top of a 7 m high building observes that, the angle of elevation of the top of a tower is 60° and the angle of depression of the foot of the tower is 30°. Find the height of the tower.
- 10. Which term of the A.P. 4, 7, 10, 13,, is 49?

SECTION - C

11. From the following data find the mode and median age of 150 residents of a colony who took part in swachch bharat abhiyan :

Age (in yrs.) more than or equal to	0	10	20	30	40	50
Number of residents	50	46	40	20	10	3

OR

Find the mean and mode of the following frequency distribution :

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Frequency	4	4	7	10	12	8	5

12. Draw a circle of radius 3 cm. From a point *P*, 7 cm away from its centre, draw two tangents to the circle. Measure the length of each tangent.

Case Study - 1

13. Rohini went to a juice stall with her mother. While drinking juice she observed that shopkeeper has three types of glasses of inner diameter 5 cm to serve customers. The glass height is 10 cm and volume of type (A)

glass is 196.43 cm³. $\left(\text{Use } \pi = \frac{22}{7} \right)$

- (i) Find the volume of type (B) glass.
- (ii) Which glass has minimum capacity?

Case Study - 2

14. Two hoardings are put on two poles of equal heights standing on either side of the road. From a point between them on the road the angle of elevation of the top of poles are 60° and 30° respectively. Height of the each pole is 20 m.

Based on the above information, answer the following questions. (Take $\sqrt{3} = 1.73$).

- (i) Find the length of *PO*.
- (ii) Find the width of the road.

Solution

MATHEMATICS BASIC 241

Class 10 - Mathematics

1.	$\angle OAP = 90^{\circ}$ [:: Tangent is perpendicular to
	the radius through the point of contact
•	$/OAB = /BAP - /OAP = 150^{\circ} - 90^{\circ} = 60^{\circ}$

OR

Now, $OA = OB \implies \angle OAB = \angle OBA = 60^{\circ}$

$$\therefore \quad \angle AOB = 180^\circ - 2(60^\circ) = 60^\circ \implies k = 60$$

Join OL.

 $OL \perp RS.$ Also, OL = OM [Radii of the same circle] $\therefore \ \angle OML = \angle OLM$ $\Rightarrow \ \angle OLM = 30^{\circ}$

 $\implies \angle RLM = 90^{\circ} - 30^{\circ} = 60^{\circ}$

2. The radius of the greatest sphere that can be cut off from the cylinder = 1 cm

$$\therefore \quad \text{Volume of the sphere} = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (1)^3 = \frac{4}{3}\pi \text{ cm}^3$$

3. We have, mean = $\frac{\sum f_i x_i}{\sum f_i}$

$$\implies \frac{12(x+2)+15(x)+20(x-1)}{(x+2)+(x)+(x-1)} = 14.5$$

$$\Rightarrow 2(47x+4) = 29(3x+1)$$

$$\Rightarrow 94x + 8 = 87x + 29 \Rightarrow 7x = 21 \Rightarrow x = 3$$

OR

Given, mode = 17.5, which lies in the interval 15-20. \therefore 15-20 is the modal class.

So,
$$l = 15$$
, $f_0 = 3$, $f_1 = 6$, $f_2 = x$ and $h = 5$

$$\therefore \quad \text{Mode} = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$
$$\Rightarrow \quad 17.5 = 15 + \left(\frac{6 - 3}{2 \times 6 - 3 - x}\right) \times 5$$
$$\Rightarrow \quad 2.5 = \left(\frac{3}{9 - x}\right) \times 5$$

 $\Rightarrow 22.5 - 2.5x = 15 \Rightarrow 2.5x = 7.5 \Rightarrow x = 3$ Hence, the required value of *x* is 3.

4. Let *a* be 1st term and *d* be the common difference of the A.P.

According to the question, $a_{21} - a_7 = 84$ $\Rightarrow a + (21 - 1)d - (a + (7 - 1)d) = 84$

- $\Rightarrow a + 20d a 6d = 84 \Rightarrow 14d = 84 \Rightarrow d = 6$
- \therefore Common difference is 6.
- 5. We have, $4x^2 \sqrt{3}x 5 = 0$

By quadratic formula, we have

$$x = \frac{-(-\sqrt{3}) \pm \sqrt{(-\sqrt{3})^2 - 4 \times (-5)(4)}}{2 \times 4} = \frac{\sqrt{3} \pm \sqrt{83}}{8}$$

6. We know that the empirical relationship is
Mode = 3 Median - 2 Mean
= 3(9.6) - 2(10.5) [∵ Median = 9.6 and Mean = 10.5]
= 28.8 - 21.0 = 7.8

7. Since *p*, *q*, *r* are in A.P.

$$\therefore \quad q - p = r - q \implies 2q = p + r \implies p + r - 2q = 0$$

$$\implies p^3 + r^3 + (-2q)^3 = 3 \times p \times r \times (-2q)$$

[:: If $a + b + c = 0$, then $a^3 + b^3 + c^3 = 3abc$]

$$\implies p^3 + r^3 - 8q^3 = -6pqr$$

8. In $\triangle OAB$, $OA = OB$ [Radii of same circle]

$$\therefore \quad \angle OAB = \angle OBA$$
 [:: Angles opposite to equal

$$2OAB = 2OBA \qquad [. Angles opposite to equal sides are equal]$$

In
$$\triangle AOB$$
, $\angle AOB + \angle OAB + \angle OBA = 180^{\circ}$
 $\Rightarrow 110^{\circ} + x + x = 180^{\circ}$ [$\because \angle AOB = 120^{\circ}$ (Given)]
 $\Rightarrow 2x = 180^{\circ} - 110^{\circ} \Rightarrow x = 35^{\circ}$
Now, $\angle OAT = \angle OAB + \angle BAT = 90^{\circ}$
[\because Tangent is perpendicular to radius at point of contact]

 \Rightarrow 35° + $\angle BAT = 90°$ $\Rightarrow \angle BAT = 55°$

OR

Join *OP* Now, *OP* \perp *AT* $\Rightarrow \angle APO = 90^{\circ}$ [:: *APT* is tangent] In $\triangle QOP$ OQ = OP [Radii of same circle] $\therefore \angle OPQ = \angle OQP = 30^{\circ}$ [:: Angles opposite to equal sides of a triangle are equal] $\therefore \angle APQ = \angle APO - \angle OPQ = 90^{\circ} - 30^{\circ} = 60^{\circ}$

9. Let AB = 7 m be the height of building and CD be the height of tower. Now, AB = DE = 7 m Also, BD = AE In $\triangle ABD$,

$$\frac{AB}{BD} = \tan 30^{\circ}$$

$$\Rightarrow \frac{7}{BD} = \frac{1}{\sqrt{3}}$$

$$\Rightarrow BD = 7\sqrt{3} \text{ m} = AE$$

$$\ln \Delta ACE, \frac{CE}{AE} = \tan 60^{\circ}$$

$$\Rightarrow \frac{CE}{7\sqrt{3}} = \sqrt{3} \Rightarrow CE = (\sqrt{3} \times 7\sqrt{3}) \text{ m} = 21 \text{ m}$$

$$\therefore CD = CE + ED = (21 + 7) \text{ m} = 28 \text{ m}$$
Thus, the height of the tower is 28 m.
10. The given A.P. is 4, 7, 10, 13, ...

Here, a = 4, d = 7 - 4 = 3Let the n^{th} term of the A.P. be 49. Then, $a_n = a + (n - 1)d \Rightarrow 49 = 4 + (n - 1)(3)$ $\Rightarrow 45 = 3(n - 1) \Rightarrow n - 1 = 15 \Rightarrow n = 16$ Hence, 16th term of the A.P. is 49.

11. The frequency distribution table for the given data can be drawn as :

Class	Cumulative frequency (<i>c.f.</i>)	Frequency (f _i)	
0-10	50	4	
10-20	46	6	
20-30	40	20	
30-40	20	10	
40-50	10	7	
50-60	3	3	
Total		50	

Here $\frac{N}{2} = \frac{50}{2} = 25$

 \therefore Median class is 20-30.

:. Median =
$$20 + \left(\frac{25 - 20}{20}\right) \times 10 = 20 + 2.5 = 22.5$$

Now, maximum frequency is 20.

: Modal class is 20-30

:. Mode = 20 +
$$\left[\frac{20-6}{2(20)-6-10}\right] \times 10$$

= 20 + $\left[\frac{14}{24}\right] \times 10 = 25.83$
OR

The frequency distribution table for the given data can be drawn as :

Class	(x_i)	(f_i)	$f_i x_i$
0-10	5	4	20
10-20	15	4	60
20-30	25	7	175
30-40	35	10	350
40-50	45	12	540
50-60	55	8	440
60-70	65	5	325
		$\Sigma f_i = 50$	$\Sigma f_i x_i = 1910$

Mean =
$$\frac{\Sigma f_i x_i}{\Sigma f_i} = \frac{1910}{50} = 38.2$$

Mode = $l + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$

The maximum frequency is 12.

 \therefore Modal class is 40-50.

$$\therefore \quad \text{Mode} = 40 + \left[\frac{12 - 10}{2(12) - 10 - 8}\right] \times 10$$
$$= 40 + \left[\frac{2}{24 - 18}\right] \times 10 = 40 + \frac{10}{3} = \frac{130}{3} = 43.3$$

12. Steps of construction :

Step-I: Draw a circle of radius 3 cm, taking *O* as centre and *OC* be its radius.

Step-II : Produce *OC* to *P* such that OP = 7 cm.

Step-III : Draw perpendicular bisector of *OP* that meets *OP* at *Q*.

Step-IV : Taking *Q* as centre and radius *QP* draw a circle which intersect previous circle at points *A* and *B*. **Step-V** : Join *P* to *A* and *P* to *B*.

Thus, *PA* and *PB* are the required tangents.

Now, join OA.

In
$$\triangle AOP$$
, $\angle OAP = 90^{\circ}$ [Angle in semicircle]
 $\therefore AP^2 = OP^2 - OA^2$ [By Pythagoras theorem]
 $= 7^2 - 3^2 = 40$
 $\Rightarrow AP = 6.32 \text{ cm}$

Similarly, BP = 6.32 cm

Thus, length of each tangent = 6.32 cm

- **13.** Diameter of each glass = 5 cm
- \therefore Radius of each glass = 2.5 cm
- Height of each glass = 10 cm
- (i) Volume of type (B) glass

= Volume of type (A) glass – Volume of hemisphere

$$=196.43 - \frac{2}{3}\pi r^{3} = 196.43 - \frac{2}{3} \times \frac{22}{7} \times 2.5 \times 2.5 \times 2.5$$

 $= 196.43 - 32.74 = 163.7 \text{ cm}^3$

(ii) Volume of type (C) glass = Volume of type (A)glass - Volume of cone

$$= 196.43 - \frac{1}{3}\pi r^{2}h = 196.43 - \frac{1}{3} \times \frac{22}{7} \times 2.5 \times 2.5 \times 1.5$$
$$= 196.43 - 9.82 = 186.61 \text{ cm}^{3}$$

Glass (B) has minimum capacity.

14. (i) In $\triangle OPQ$, we have

$$\tan 60^\circ = \frac{PQ}{PO}$$

 $\Rightarrow \sqrt{3} = \frac{20}{PO} \Rightarrow PO = \frac{20}{\sqrt{3}} \text{ m}$

(ii) In $\triangle ORS$, we have

$$\tan 30^\circ = \frac{RS}{OR} \implies \frac{1}{\sqrt{3}} = \frac{20}{OR} \implies OR = 20\sqrt{3} \text{ m}$$

Clearly, width of the road = PR

$$= PO + OR = \left(\frac{20}{\sqrt{3}} + 20\sqrt{3}\right) m$$
$$= 20 \left(\frac{4}{\sqrt{3}}\right) m = \frac{80}{\sqrt{3}} m = 46.24 m$$