Chapter – 7

Matrices and Determinants

Ex 7.1

Question 1.

Construct an $m \times n$ matrix $A = [a_{ij}]$, where a_{ij} is given by

(i)
$$a_{ij} = \frac{(i-2j)^2}{2}$$
 with $m = 2, n = 3$ (ii) $a_{ij} = \frac{|3i-4j|}{4}$ with $m = 3, n = 4$

Solution:

(i)
$$a_{ij} = \frac{(i-2j)^2}{2}$$

Here m = 2, n = 3So we have to construct a matrix of order 2×3

Now A matrix of order 2 × 3 will be of the form A = $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$

Here
$$a_{ij} = \frac{(i-2j)^2}{2}$$

 $\therefore \quad a_{11} = \frac{[1-2(1)]^2}{2} = \frac{(1-2)^2}{2} = \frac{1}{2} = \frac{1}{2}$
 $a_{12} = \frac{[1-2(2)]^2}{2} = \frac{(1-4)^2}{2} = \frac{9}{2}$
 $a_{13} = \frac{[1-2(3)]^2}{2} = \frac{(1-6)^2}{2} = \frac{25}{2}$
 $a_{21} = \frac{[2-2(1)]^2}{2} = \frac{(2-2)^2}{2} = 0$
 $a_{22} = \frac{[2-2(2)]^2}{2} = \frac{(2-4)^2}{2} = \frac{4}{2} = 2$

$$a_{23} = \frac{[2-2(3)]^2}{2} = \frac{(2-6)^2}{2} = \frac{16}{2} = 8$$
$$A = \begin{pmatrix} \frac{1}{2} & \frac{9}{2} & \frac{25}{2} \\ 0 & 2 & 8 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 9 & 25 \\ 0 & 4 & 16 \end{pmatrix}$$

(ii) Here m = 3 and n = 4So we have to construct a matrix order 3×4 The general form of a matrix of order 3×4 will be

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{pmatrix}$$
$$a_{ij} = \frac{|3i - 4j|}{4}$$
$$a_{11} = \frac{|3 - 4|}{4} = \frac{1}{4}$$
$$a_{12} = \frac{|3 - 4(2)|}{4} = \frac{|3 - 8|}{4} = \frac{5}{4}$$
$$a_{13} = \frac{|3 - 4(3)|}{4} = \frac{|3 - 12|}{4} = \frac{9}{4}$$
$$a_{14} = \frac{|3 - 4(4)|}{4} = \frac{|3 - 16|}{4} = \frac{13}{4}$$
$$a_{21} = \frac{|3(2) - 4(1)|}{4} = \frac{|6 - 4|}{4} = \frac{2}{4} = \frac{1}{2}$$
$$a_{22} = \frac{|3(2) - 4(2)|}{4} = \frac{|6 - 8|}{4} = \frac{2}{4} = \frac{1}{2}$$
$$a_{23} = \frac{|3(2) - 4(3)|}{4} = \frac{|6 - 12|}{4} = \frac{6}{4} = \frac{3}{2}$$
$$a_{24} = \frac{|3(2) - 4(4)|}{4} = \frac{|6 - 16|}{4} = \frac{10}{4} = \frac{4}{4}$$

52

Here

.

.'.

$$a_{31} = \frac{|3(3) - 4(1)|}{4} = \frac{|9 - 4|}{4} = \frac{5}{4}$$

$$a_{32} = \frac{|3(3) - 4(2)|}{4} = \frac{|9 - 8|}{4} = \frac{1}{4}$$

$$a_{33} = \frac{|3(3) - 4(3)|}{4} = \frac{|9 - 12|}{4} = \frac{3}{4}$$

$$a_{34} = \frac{|3(3) - 4(4)|}{4} = \frac{|9 - 16|}{4} = \frac{7}{4}$$

$$A = \begin{pmatrix} \frac{1}{4} & \frac{5}{4} & \frac{9}{4} & \frac{13}{4} \\ \frac{1}{2} & \frac{1}{2} & \frac{3}{2} & \frac{5}{2} \\ \frac{5}{4} & \frac{1}{4} & \frac{3}{4} & \frac{7}{4} \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 1 & 5 & 9 & 13 \\ 2 & 2 & 6 & 10 \\ 5 & 1 & 3 & 7 \end{pmatrix}$$

Question 2.

÷. ,

Find the values of p, q, r and s if

1	$p^2 - 1$	0	$-31-a^{3}$	1	1	0	-4
-	7	<i>r</i> +1	9	=	7	$\frac{3}{2}$	9
3	-2	8	s-1		-2	8	-π

Solution:

When two matrices (of the same order) are equal then their corresponding entries are equal.

Here
$$\begin{pmatrix} p^2 - 1 & 0 & -31 - q^3 \\ 7 & r+1 & 9 \\ -2 & 8 & s-1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & -4 \\ 7 & \frac{3}{2} & 9 \\ -2 & 8 & -\pi \end{pmatrix}$$
$$p^2 - 1 = 1 \dots \dots (1)$$
$$-31 - q^3 = -4 \dots (2)$$
$$r + 1 = 3/2 \dots (3)$$
$$s - 1 = -\pi \dots (4)$$
$$(1) \Rightarrow p^2 - 1 \Rightarrow p^2 = 1 + 1 = 2$$
$$p = \pm \sqrt{2}$$

$$(2) \Rightarrow -31 - q^{3} - 4$$

$$31 + q^{3} = 4$$

$$q^{3} = 4 - 31 = -27$$

$$q^{3} = (-3)^{3}$$

$$q = -3$$

$$(3) \Rightarrow r + 1 = 3/2$$

$$r = 32 - 1 = 1/2$$

$$(4) \Rightarrow s - 1 = -\pi$$

$$s = 1 - \pi$$

$$\therefore \text{ The required values are}$$

$$p = \pm \sqrt{2},$$

$$q = 3,$$

$$r = 1/2,$$

$$s = 1 - \pi$$

Question 3.

Determine the value of x + y if
$$\begin{bmatrix} 2x+y & 4x \\ 5x-7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y-13 \\ y & x+6 \end{bmatrix}$$

Solution:

 $\begin{bmatrix} 2x & + & y & 4x \\ 5x & - & 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y & - & 13 \\ y & x & + & 6 \end{bmatrix}$

Equating the corresponding entries 2x + y = 7 (1) 4x = 7y - 13 4x - 7y = -13 (2) 5x - 7 = y 5x - y = 7 (3) 4x = x + 6 4x - x = 6 3x = 6 x = 6/3 = 2 (4) Substituting for x in equation (1) (1) $\Rightarrow 2 \times 2 + y = 7$ y = 7 - 4 = 3 The required values are x = 2 and y = 3x + y = 2 + 3 = 5x + y = 5

Question 4.

Determine the matrices A and B if they satisfy

$$2A-B+\begin{bmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{bmatrix}=0 \text{ and } A-2B=\begin{bmatrix} 3 & 2 & 8 \\ -2 & 1 & -7 \end{bmatrix}$$

Solution:

$$2A - B + \begin{pmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \qquad 2A - B = -\begin{pmatrix} 6 & -6 & 0 \\ -4 & 2 & 1 \end{pmatrix} = \begin{pmatrix} -6 & 6 & 0 \\ 4 & -2 & -1 \end{pmatrix}$$
(1)

$$(3 - 2 - 8)$$

$$A - 2B = \begin{pmatrix} 3 & 2 & 8 \\ -2 & 1 & -7 \end{pmatrix}$$
 (2)

Solving (1) and (2)

(1)
$$\Rightarrow$$
 $2A - B = \begin{pmatrix} -6 & 6 & 0 \\ 4 & -2 & -1 \end{pmatrix}$ (1)

$$(2) \times 2 \Rightarrow \qquad 2A - 4B = 2\begin{pmatrix} 3 & 2 & 8 \\ -2 & 1 & -7 \end{pmatrix} = \begin{pmatrix} 6 & 4 & 16 \\ -4 & 2 & -14 \end{pmatrix}$$
(3)

(1)-(3)
$$\Rightarrow \qquad 3B = \begin{pmatrix} -6 & 6 & 0 \\ 4 & -2 & -1 \end{pmatrix} - \begin{pmatrix} 6 & 4 & 16 \\ -4 & 2 & -14 \end{pmatrix}$$

(i.e.)
$$3B = \begin{pmatrix} -6 & 6 & 0 \\ 4 & -2 & -1 \end{pmatrix} + \begin{pmatrix} -6 & -4 & -16 \\ 4 & -2 & 14 \end{pmatrix}$$
$$3B = \begin{pmatrix} -12 & 2 & -16 \\ 8 & -4 & 13 \end{pmatrix}$$
$$B = \frac{1}{3} \begin{pmatrix} -12 & 2 & -16 \\ 8 & -4 & 13 \end{pmatrix}$$

Substituting B value in (2) we get

$$A - 2\left(\frac{1}{3}\right) \begin{pmatrix} -12 & 2 & -16\\ 8 & -4 & 13 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 8\\ -2 & 1 & -7 \end{pmatrix}$$

$$A = \begin{pmatrix} 3 & 2 & 8 \\ -2 & 1 & -7 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} -12 & 2 & -16 \\ 8 & -4 & 13 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 2 & 8 \\ -2 & 1 & -7 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -24 & 4 & -32 \\ 16 & -8 & 26 \end{pmatrix}$$
$$= \frac{1}{3} \times 3 \begin{pmatrix} 3 & 2 & 8 \\ -2 & 1 & -7 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -24 & 4 & -32 \\ 16 & -8 & 26 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} 9 & 6 & 24 \\ -6 & 3 & -21 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} -24 & 4 & -32 \\ 16 & -8 & 26 \end{pmatrix}$$
$$= \frac{1}{3} \begin{pmatrix} -15 & 10 & -8 \\ 10 & -5 & 5 \end{pmatrix}$$

Question 5. If $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, then compute A^4

Solution:

•,

$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

$$A^{2} = A \times A = \begin{pmatrix} \overrightarrow{1 & a} \\ 0 & 1 \end{pmatrix} \downarrow \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & a+a \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix}$$
Now
$$A^{4} = A^{2} \times A^{2} = \begin{pmatrix} \overrightarrow{1 & 2a} \\ 0 & 1 \end{pmatrix} \downarrow \begin{pmatrix} 1 & 2a \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 4a \\ 0 & 1 \end{pmatrix}$$

$$A^{4} = \begin{pmatrix} 1 & 4a \\ 0 & 1 \end{pmatrix}$$

Question 6.

Consider the matrix $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

(i) Show that $A_{\alpha}A_{\beta} = A_{\alpha + \beta}$.

(ii) Find all possible real values of satisfying the condition $A_{\alpha} + A^{T}_{\alpha} = 1$.

Solution:

$$A_{\alpha} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

$$A_{\beta} = \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$

$$A_{\alpha+\beta} = \begin{pmatrix} \cos (\alpha + \beta) & -\sin (\alpha + \beta) \\ \sin (\alpha + \beta) & \cos (\alpha + \beta) \end{pmatrix}$$

$$(i) \text{ To Prove:} \qquad A_{\alpha} \cdot A_{\beta} = A_{\alpha+\beta}$$

$$LHS = A_{\alpha} \cdot A_{\beta} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix}$$

$$= \begin{pmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -\cos \alpha \sin \beta - \sin \alpha \cos \beta \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \end{pmatrix}$$

$$= \begin{pmatrix} \cos (\alpha + \beta) & \sin (\alpha + \beta) \\ \sin (\alpha + \beta) & \cos (\alpha + \beta) \end{pmatrix} = A_{\alpha+\beta} = RHS$$

$$(ii) A_{\alpha} + A_{\alpha}^{T} = I$$

$$\Rightarrow \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} + \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} = I$$

$$\begin{pmatrix} 2\cos \alpha & 0 \\ 0 & 2\cos \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\Rightarrow \qquad 2\cos \alpha = 1$$

$$\Rightarrow \qquad \cos \alpha = \frac{1}{2} \Rightarrow \alpha = \frac{\pi}{3}$$

General solution is $\alpha = 2n\pi + \pi/3$, $n \in Z$

Question 7.

If A =
$$\begin{bmatrix} 4 & 2 \\ -1 & x \end{bmatrix}$$
 such that (A – 2I) (A – 3I) = 0, find the value of x.

Solution:

 $\mathbf{A} = \begin{pmatrix} 4 & 2 \\ -1 & x \end{pmatrix}$ Given $\mathbf{A} - 2\mathbf{I} = \begin{pmatrix} 4 & 2 \\ -1 & x \end{pmatrix} - 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$... $= \begin{pmatrix} 4 & 2 \\ -1 & x \end{pmatrix} + \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ -1 & x - 2 \end{pmatrix}$ $A - 3I = \begin{pmatrix} 4 & 2 \\ -1 & x \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & 2 \\ -1 & x \end{pmatrix} + \begin{pmatrix} -3 & 0 \\ 0 & -3 \end{pmatrix}$ $= \begin{pmatrix} 1 & 2 \\ -1 & x-3 \end{pmatrix}$

Given

$$(A - 2I) (A - 3I) = 0$$

$$\Rightarrow \qquad \begin{pmatrix} 2 & 2 \\ -1 & x-2 \end{pmatrix} \downarrow \begin{pmatrix} 1 & 2 \\ -1 & x-3 \end{pmatrix} = 0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\Rightarrow \qquad \begin{pmatrix} 0 & 4+2(x-3) \\ -1-(x-2) & -2+(x-2)(x-3) \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\Rightarrow \qquad -1-x+2 = 0 (i.e.) - x + 1 = 0$$
$$\Rightarrow \qquad -x = -1$$
$$\Rightarrow \qquad x = 1$$

Question 8.

If A =
$$\begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{a} & \mathbf{b} & -\mathbf{1} \end{bmatrix}$$
, show that A² is a unit matrix.

Solution:

Given
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix}$$

Now
$$A^{2} = A \times A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix} \downarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1 \end{pmatrix}$$
$$= \begin{bmatrix} 1+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+1+0 & 0+0+0 \\ 0+0+0 & 0+1+0 & 0+0+0 \\ a+0-a & 0+b-b & 0+0+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Question 9.
If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
 and $A^3 - 6A^2 + 7A + KI = 0$, find the value of k.

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
$$A^{2} = A \times A = \begin{pmatrix} \overrightarrow{1 \ 0 \ 2} \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} \downarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix}$$
$$A^{3} = A^{2} \times A = \begin{pmatrix} \overrightarrow{5 \ 0 \ 8} \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} \downarrow \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix}$$

$$\begin{aligned} \text{Given} \qquad A^3 - 6A^2 + 7A + kI &= 0 \\ \Rightarrow \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} - 6 \begin{pmatrix} 5 & 0 & 8 \\ 2 & 4 & 5 \\ 8 & 0 & 13 \end{pmatrix} + 7 \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix} + k \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \Rightarrow \begin{pmatrix} 21 & 0 & 34 \\ 12 & 8 & 23 \\ 34 & 0 & 55 \end{pmatrix} + \begin{pmatrix} -30 & 0 & -48 \\ -12 & -24 & -30 \\ -48 & 0 & -78 \end{pmatrix} + \begin{pmatrix} 7 & 0 & 14 \\ 0 & 14 & 7 \\ 14 & 0 & 21 \end{pmatrix} + \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & k \end{pmatrix} \\ \Rightarrow \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} + \begin{pmatrix} k & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & k \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \Rightarrow \begin{pmatrix} k - 2 & 0 & 0 \\ 0 & k - 2 & 0 \\ 0 & 0 & k - 2 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \Rightarrow k - 2 = 0 \Rightarrow k = 2 \end{aligned}$$

Question 10.

Give your own examples of matrices satisfying the following conditions in each case:

(i) A and B such that $AB \neq BA$.

(ii) A and B such that AB = 0 = BA, $A \neq 0$ and $B \neq 0$.

(iii) A and B such that AB = 0 and $BA \neq 0$.

(i) Let
$$A = \begin{pmatrix} 2 & -1 \\ 3 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 4 \\ 2 & 5 \end{pmatrix}$$
$$Now AB = \begin{pmatrix} \overrightarrow{2} & -1 \\ 3 & 0 \end{pmatrix} \downarrow \begin{pmatrix} 1 & 4 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 0 & 3 \\ 3 & 12 \end{pmatrix}$$

Question 11.

Show that
$$f(x) f(y) = f(x + y)$$
, where $f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Solution:

Given
$$f(x) = \begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix}$$

So,
$$f(y) = \begin{bmatrix} \cos y & -\sin y & 0\\ \sin y & \cos y & 0\\ 0 & 0 & 1 \end{bmatrix}$$

and
$$f(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y) & 0\\ \sin (x+y) & \cos (x+y) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

To Prove:
$$f(x) f(y) = f(x+y)$$

LHS
$$f(x) . f(y) = \begin{pmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{pmatrix} \downarrow \begin{pmatrix} \cos y & -\sin y & 0\\ \sin y & \cos y & 0\\ 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{bmatrix} \cos x \cos y - \sin x \sin y & -\cos x \sin y - \sin x \cos y & 0\\ \sin x \cos y + \cos x \sin y & -\sin x \sin y + \cos x \cos y & 0\\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \cos(x+y) & -\sin(x+y) & 0\\ \sin(x+y) & \cos(x+y) & 0\\ 0 & 0 & 1 \end{bmatrix} = f(x+y) = \text{RHS}$$

Question 12.

If A is a square matrix such that $A^2 = A$, find the value of $7A - (I + A)^3$.

Solution:

Given A is a square matrix such that $A^2 = A$. $(I + A)^3 = (I + A) (I + A) (I + A)$ $= (I \cdot I + I \cdot A + A \cdot I + A \cdot A) (I + A)$ $= (I + A + A + A^2) (I + A)$ = (I + 2A + A) (I + A)[Given $A^2 = A$] = (I + 3A) (I + A) $= I \cdot I + I \cdot A + 3A \cdot I + 3A \cdot A$

= I + A + 3A + 3A²
= I + 4A + 3A
[Given A² = A]
(I + A)³ = I + 7A

$$\therefore$$
 7A - (I + A)² = 7A - (I + 7A)
= 7A - I - 7A
7A - (I + A)² = - I

Question 13.

Verify the property A (B + C) = AB + AC, when the matrices A, B, and C are given by

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & -3 \\ 1 & 4 & 5 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 3 & 1 \\ -1 & 0 \\ 4 & 2 \end{bmatrix}, \ \text{and} \ \mathbf{C} = \begin{bmatrix} 4 & 7 \\ 2 & 1 \\ 1 & -1 \end{bmatrix}$$

Given
$$A = \begin{pmatrix} 2 & 0 & -3 \\ 1 & 4 & 5 \end{pmatrix}; B = \begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 4 & 2 \end{pmatrix}$$

and $C = \begin{pmatrix} 4 & 7 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}$
Now $B + C = \begin{pmatrix} 3 & 1 \\ -1 & 0 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} 4 & -1 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 7 & 8 \\ 1 & 1 \\ 5 & 1 \end{pmatrix}$
 $LHS = A (B + C) = \begin{pmatrix} \overline{2 & 0 & -3} \\ 1 & 4 & 5 \end{pmatrix} \downarrow \begin{pmatrix} 7 & 8 \\ 1 & 1 \\ 5 & 1 \end{pmatrix}$

$$= \begin{pmatrix} 14+0-15 & 16+0-3\\ 7+4+25 & 8+4+5 \end{pmatrix} = \begin{pmatrix} -1 & 13\\ 36 & 17 \end{pmatrix}$$
(1)

$$AB = \begin{pmatrix} \overrightarrow{2 & 0 & -3}\\ 1 & 4 & 5 \end{pmatrix} \downarrow \begin{pmatrix} 3 & 1\\ -1 & 0\\ 4 & 2 \end{pmatrix} = \begin{pmatrix} -6 & -4\\ 19 & 11 \end{pmatrix}$$

$$AC = \begin{pmatrix} \overrightarrow{2 & 0 & -3}\\ 1 & 4 & 5 \end{pmatrix} \downarrow \begin{pmatrix} 4 & 7\\ 2 & 1\\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 5 & 17\\ 17 & 6 \end{pmatrix}$$

$$RHS = AB + AC = \begin{pmatrix} -6 & -4\\ 19 & 11 \end{pmatrix} + \begin{pmatrix} 5 & 17\\ 17 & 6 \end{pmatrix} = \begin{pmatrix} -1 & 13\\ 36 & 17 \end{pmatrix}$$
(2)

$$(1) = (2) \Rightarrow A(B + C) = AB + AC$$

Question 14.

Find the matrix A which satisfies the matrix

$$A\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}.$$

relation

Solution:

Let B =
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
 and C = $\begin{pmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{pmatrix}$

Here B is of order 2 \times 3 and C is of order 2 \times 3 Given AB = C

 \Rightarrow A should be a matrix of order 2 × 2

$$\begin{pmatrix} \ddots & (2 \times \cancel{2}) \\ & (\cancel{2} \times 3) & \Rightarrow 2 \times 3 \end{pmatrix}$$

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

Now
$$\binom{a}{c} \binom{b}{d} \binom{1}{4} \binom{2}{5} \binom{3}{6} = \binom{-7}{2} \binom{-8}{4} \binom{-9}{2}$$

 $\Rightarrow \binom{a+4b}{c+4d} \binom{2a+5b}{2a+5d} \binom{3a+6b}{3c+6d} = \binom{-7}{2} \binom{-8}{4} \binom{-9}{2}$
Equating the corresponding elements
 $a+4b=-7$ (1) $c+4d=2$ (4)
 $2a+5b=-8$ (2) and $2c+5d=4$ (5)
 $3a+6b=-9$ (3) $3c+6d=6$ (6)
Solving (1) and (3) $(1) \Rightarrow a+4b=-7$ (4) $\Rightarrow c+4d=2$
(3) $\div 3 \Rightarrow a+2b=-3$ (6) $\div 3 \Rightarrow c+2d=2$ (6)
(1) $-(3) \Rightarrow 2b=-4 \Rightarrow b=-2$
Substituting $b=-2$ in (1)
 $a-8=-7$
 $a=-7+8=1$
 $\therefore A = \binom{1}{2} \binom{1}{2}$

Question 15.

If
$$A^{T} = \begin{bmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 & 1 \\ 7 & 5 & -2 \end{bmatrix}$, verify the following
(i) $(A + B)^{T} = A^{T} + B^{T} = B^{T} + A^{T}$
(ii) $(A - B)^{T} = A^{T} - B^{T}$
(iii) $(B^{T})^{T} = B$.

Solution:

Given
$$A^{T} = \begin{pmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} \Rightarrow A = \begin{pmatrix} 4 & -1 & 2 \\ 5 & 0 & 3 \end{pmatrix}$$

 $B = \begin{pmatrix} 2 & -1 & 1 \\ 7 & 5 & -2 \end{pmatrix} \Rightarrow B^{T} = \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & -2 \end{pmatrix}$

To verify $(A + B)^T = A^T + B^T = B^T + A^T$ (*i*) $A + B = \begin{pmatrix} 4 & -1 & 2 \\ 5 & 0 & 3 \end{pmatrix} + \begin{pmatrix} 2 & -1 & 1 \\ 7 & 5 & -2 \end{pmatrix}$ $= \begin{pmatrix} 6 & -2 & 3 \\ 12 & 5 & 1 \end{pmatrix}$ $\therefore (\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \begin{pmatrix} 6 & 12 \\ -2 & 5 \\ 3 & 1 \end{pmatrix}$ (1) $A^{T} = \begin{pmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} \text{ and } B^{T} = \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & -2 \end{pmatrix}$ $\therefore A^{\mathrm{T}} + B^{\mathrm{T}} = \begin{pmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 6 & 12 \\ -2 & 5 \\ 2 & 1 \end{pmatrix}$ (2)Also $B^{T} + A^{T} = \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & -2 \end{pmatrix} + \begin{pmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 6 & 12 \\ -2 & 5 \\ 3 & 1 \end{pmatrix}$ (3) Here (1) = (2) = (3) \Rightarrow (A + B)^T = A^T + B^T = B^T + A^T $(\mathbf{A} - \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} - \mathbf{B}^{\mathrm{T}}$ (ii) To verify $A-B = \begin{pmatrix} 4 & -1 & 2 \\ 5 & 0 & 3 \end{pmatrix} - \begin{pmatrix} 2 & -1 & 1 \\ 7 & 5 & -2 \end{pmatrix}$ $= \begin{pmatrix} 4 & -1 & 2 \\ 5 & 0 & 3 \end{pmatrix} + \begin{pmatrix} -2 & 1 & -1 \\ -7 & -5 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 1 \\ -2 & -5 & 5 \end{pmatrix}$ $(A-B)^{T} = \begin{pmatrix} 2 & -2 \\ 0 & -5 \\ 1 & 5 \end{pmatrix}$... (1)Also $A^{T} = \begin{pmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 2 \end{pmatrix}$ and $B^{T} = \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & 2 \end{pmatrix}$

$$A^{\mathrm{T}} - B^{\mathrm{T}} = \begin{pmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} - \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} 4 & 5 \\ -1 & 0 \\ 2 & 3 \end{pmatrix} + \begin{pmatrix} -2 & -7 \\ 1 & -5 \\ -1 & 2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & -2 \\ 0 & -5 \\ 1 & 5 \end{pmatrix}$$
(2)

Here (1) = (2) \Rightarrow (A - B)^T = A^T - B^T

(iii) To verify

•,

4.

Here

$$(\mathbf{B}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{B}$$

$$\mathbf{B} = \begin{pmatrix} 2 & -1 & 1 \\ 7 & 5 & -2 \end{pmatrix}$$

$$(1)$$

$$\therefore \quad \mathbf{B}^{\mathrm{T}} = \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & -2 \end{pmatrix} \text{ and } (\mathbf{B}^{\mathrm{T}})^{\mathrm{T}} = \left\{ \begin{pmatrix} 2 & 7 \\ -1 & 5 \\ 1 & -2 \end{pmatrix} \right\}^{\mathrm{T}}$$

$$= \begin{pmatrix} 2 & -1 & 1 \\ 7 & 5 & -2 \end{pmatrix}$$

$$(2)$$

$$(1) = (2) \Rightarrow (B^{T})^{T} = B$$

Question 16.

If A is a 3×4 matrix and B is a matrix such that both ATB and BAT are defined, what is the order of the matrix B?

Solution:

Given Order of $A = 3 \times 4$ \therefore Order of $A^T = 4 \times 3$ Given that A^TB is defined.

∴ Number of columns of A^T = Number of rows of B
 Number of rows of B = 3
 Also given BA^T is defined.
 ∴ Number of columns of B = Number of rows of A^T

Number of columns of B = 4 \therefore Order of $B = 3 \times 4$

Question 17.

Express the following matrices is the sum of a symmetric matrix and a skew-symmetric matrix:

(i)
$$\begin{bmatrix} 4 & -2 \\ 3 & -5 \end{bmatrix}$$
 and (ii) $\begin{bmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{bmatrix}$

(i) Let
$$A = \begin{pmatrix} 4 & -2 \\ 3 & -5 \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} 4 & 3 \\ -2 & -5 \end{pmatrix}$$

Let $P = \frac{1}{2}(A + A^{T}) = \frac{1}{2} \left[\begin{pmatrix} 4 & -2 \\ 3 & -5 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ -2 & -5 \end{pmatrix} \right] = \frac{1}{2} \begin{pmatrix} 8 & 1 \\ 1 & -10 \end{pmatrix}$
Now $P^{T} = \frac{1}{2} \begin{pmatrix} 8 & 1 \\ 1 & -10 \end{pmatrix} = P \Rightarrow P$ is a symmetric matrix
Let $Q = \frac{1}{2}(A - A^{T}) = \frac{1}{2} \left[\begin{pmatrix} 4 & -2 \\ 3 & -5 \end{pmatrix} - \begin{pmatrix} 4 & 3 \\ -2 & -5 \end{pmatrix} \right] = \frac{1}{2} \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix}$
Here $Q^{T} = \begin{pmatrix} 0 & 5 \\ -5 & 0 \end{pmatrix} = -Q \Rightarrow Q$ is a skew symmetric matrix
 $A = P + Q = \frac{1}{2} \left[\begin{pmatrix} 8 & 1 \\ 1 & -10 \end{pmatrix} + \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix} \right]$
(ii) Let $A = \begin{pmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{pmatrix}$
Let $P = \frac{1}{2}(A + A^{T}) = \frac{1}{2} \left\{ \begin{pmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{pmatrix} + \begin{pmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{pmatrix} \right\} = \frac{1}{2} \begin{pmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{pmatrix}$
Now $P^{T} = \begin{pmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{pmatrix} = P \Rightarrow P$ is a symmetric matrix.
Let $Q = \frac{1}{2}(A - A^{T}) = \frac{1}{2} \left\{ \begin{pmatrix} 3 & 3 & -1 \\ -2 & -2 & 1 \\ -4 & -5 & 2 \end{pmatrix} - \begin{pmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{pmatrix} \right\}$

$$= \frac{1}{2} \begin{bmatrix} 0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0 \end{bmatrix}$$

Now $Q^{T} = \frac{1}{2} \begin{pmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{pmatrix} = -Q \Rightarrow Q \text{ is a skew symmetric matrics}$
 $A = P + Q = \frac{1}{2} \left\{ \begin{pmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{pmatrix} + \begin{pmatrix} 0 & 5 & 3 \\ -5 & 0 & 6 \\ -3 & -6 & 0 \end{pmatrix} \right\}$

Question 18.

Find the matrix A such that
$$\begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A^{T} = \begin{bmatrix} -1 & -8 & -10 \\ 1 & 2 & -5 \\ 9 & 22 & 15 \end{bmatrix}$$

Solution:

Let
$$\mathbf{B} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix}$$
 and $\mathbf{C} = \begin{pmatrix} -1 & -8 & -10 \\ 1 & 2 & -5 \\ 9 & 22 & 15 \end{pmatrix}$

B is of order 3×2 and C is of order 3×3

So

$$(2 \times 3) \Rightarrow (3 \times 3)$$

 $\left\{\begin{array}{c} Now (3 \times 2) \\ \times \\ (2 \times 3) \Rightarrow (3 \times 3) \end{array}\right\}$

 A^{T} should be of order 2 × 3 \Rightarrow

A should be of order 3×2 \Rightarrow

Let
$$A = \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$$
 so $A^{T} = \begin{pmatrix} a & c & c \\ b & d & f \end{pmatrix}$

Here $BA^{T} = C$ $\Rightarrow \quad \overrightarrow{\begin{pmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{pmatrix}} \downarrow \begin{pmatrix} a & c & e \\ b & d & f \end{pmatrix} = \begin{pmatrix} -1 & -8 & -10 \\ 1 & 2 & -5 \\ 9 & 22 & 15 \end{pmatrix}$ $\Rightarrow \quad \begin{pmatrix} 2a - b & 2c - d & 2e - f \\ a & c & e \\ -3a + 4b & -3c + 4d & -3e + 4f \end{pmatrix} = \begin{pmatrix} -1 & -8 & -10 \\ 1 & 2 & -5 \\ 9 & 22 & 15 \end{pmatrix}$

equating the corresponding elements we get

$$2a - b = -1$$

$$a = 1$$

$$\Rightarrow 2 - b = -1$$

$$-b = -3$$

$$b = 3$$

$$2c - d = -8$$

$$c = 2$$

$$\Rightarrow 4 - d = -8$$

$$-d = -8 - 4 = -12$$

$$a = 12$$

$$a = -5$$

$$\Rightarrow -10 - f = -10$$

$$-f = -10 + 10 = 0$$

$$\Rightarrow d = 12$$

$$\Rightarrow f = 0$$

Question 19.

$$\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{bmatrix}$$

If A = _______ is a matrix such that AA^T = 9I, find the values of x and y.

Solution:

$$Given A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{pmatrix}$$

$$AA^{T} = \begin{pmatrix} \overline{1 & 2 & 2} \\ 2 & 1 & -2 \\ x & 2 & y \end{pmatrix} \downarrow \begin{pmatrix} 1 & 2 & x \\ 2 & 1 & 2 \\ 2 & -2 & y \end{pmatrix}$$

$$= \begin{pmatrix} 9 & 0 & x + 4 + 2y \\ 0 & 9 & 2x + 2 - 2y \\ x + 4 + 2y & 2x + 2 - 2y & x^{2} + 4 + y^{2} \end{pmatrix}$$

$$= 9I(given)$$

$$\Rightarrow \begin{pmatrix} 9 & 0 & x + 4 + 2y \\ 0 & 9 & 2x + 2 - 2y & x^{2} + 4 + y^{2} \end{pmatrix}$$

$$= 9I(given)$$

$$\Rightarrow \begin{pmatrix} 9 & 0 & x + 4 + 2y \\ 0 & 9 & 2x + 2 - 2y & x^{2} + 4 + y^{2} \end{pmatrix} = 9 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}$$

$$\Rightarrow x + 4 + 2y = 0 \qquad (1) \qquad \text{Substituting } x = -2 \text{ in } (1)$$
and $2x + 2 - 2y = 0 \qquad (2) \qquad -2 + 2y = -4$

$$(1) \Rightarrow x + 2y = -4 \qquad 2y = -4 + 2 = -2$$

$$(1) + (2) \Rightarrow 3x = -6 \qquad x = -2; y = -1$$

Question 20.

(i) For what value of x, the matrix $A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & x^3 \\ 2 & -3 & 0 \end{bmatrix}$ is skew-symmetric. (ii) If $\begin{bmatrix} 0 & p & 3 \\ 2 & q^2 & -1 \\ r & 1 & 0 \end{bmatrix}$ is skew-symmetric, find the values of p, q and r.

(*i*)
$$A = \begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & x^3 \\ 2 & -3 & 0 \end{pmatrix}$$

Given A is skew symmetric

$$\Rightarrow \qquad A^{T} = -A$$

$$\Rightarrow \qquad \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -3 \\ -2 & x^{3} & 0 \end{pmatrix} = -A = -\begin{pmatrix} 0 & 1 & -2 \\ -1 & 0 & x^{3} \\ 2 & -3 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -x^{3} \\ -2 & 3 & 0 \end{pmatrix}$$

$$\Rightarrow \qquad -x^{3} = -3 \Rightarrow x^{3} = 3 \Rightarrow x = 3^{1/3}$$
(ii) Let
$$A = \begin{pmatrix} 0 & p & 3 \\ 2 & q^{2} & -1 \\ r & 1 & 0 \end{pmatrix}$$

Given A is a skew symmetric matrix

$$\Rightarrow \qquad A^{T} = -A$$

$$\Rightarrow \qquad \begin{pmatrix} 0 & 2 & r \\ p & q^{2} & 1 \\ 3 & -1 & 0 \end{pmatrix} = -\begin{pmatrix} 0 & p & 3 \\ 2 & q^{2} & -1 \\ r & 1 & 0 \end{pmatrix}$$

$$\Rightarrow \qquad \begin{pmatrix} 0 & 2 & r \\ p & q^{2} & 1 \\ 3 & -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -p & -3 \\ -2 & -q^{2} & 1 \\ -r & -1 & 0 \end{pmatrix}$$

$$\Rightarrow \qquad -p = 2 \\ p = -2 \\ p = -2 \\ q^{2} = 0 \\ q = 0$$

$$\therefore \qquad p = -2; q = 0; r = -3$$

Question 21.

Construct the matrix $A = [a_{ij}]_{3\times 3}$, where $a_{ij} = i$ - j. State whether A is symmetric or skew- symmetric.

Solution:

Given A is a matrix of order 3×3

$$\therefore A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

We are given $a_{ij} = i - j$
$$a_{11} = 1 - 1 = 0 \qquad a_{21} = 2 - 1 = 1 \\ a_{12} = 1 - 2 = -1 \qquad a_{22} = 2 - 2 = 0 \\ a_{13} = 1 - 3 = -2 \qquad a_{23} = 2 - 3 = -1 \qquad a_{33} = 3 - 3 = 0$$

$$\therefore A = \begin{pmatrix} 0 & -1 & -2 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix} \text{ and } A^{T} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & -1 & 0 \end{pmatrix}$$

Here $A^T = -A$ $\Rightarrow A$ is skew-symmetric

Question 22.

Let A and B be two symmetric matrices. Prove that AB = BA if and only if AB is a symmetric matrix.

Solution:

Let A and B be two symmetric matrices $\Rightarrow A^{T} = A$ and $B^{T} = B$ (1) Given that AB = BA (2) To prove AB is symmetric:

Now $(AB)^T = B^TA^T = BA$ (from(1)) But $(AB)^T = AB$ by(2) $\Rightarrow AB$ is symmetric.

Conversely, let AB be a symmetric matrix. $\Rightarrow (AB)^{T} = AB$ i.e. $B^{T}A^{T} = AB$ i.e. BA = AB (from (1)) $\Rightarrow AB$ is symmetric

Question 23.

If A and B are symmetric matrices of the same order, prove that (i) AB + BA is a symmetric matrix. (li) AB – BA is a skew-symmetric matrix.

Solution:

Given A and B are symmetric matrices of the same order. $\therefore A^{T} = A$, $B^{T} = B$ (i) AB + BA is a symmetric matrix $(AB + BA)^{T} = (AB)^{T} + (BA)^{T}$ $= B^{T}A^{T} + A^{T}B^{T}$ = BA + AB = AB + BA $\therefore AB + BA$ is a symmetric matrix.

(ii) AB - BA is a skew – symmetric matrix $(AB - BA)^{T} = (AB)^{T} (BA)^{T}$ $= B^{T}A^{T} - A^{T}B^{T}$ = BA - AB $(AB - BA)^{T} = - (AB - BA)$ $\therefore AB - BA$ is a skew symmetric matrix.

Question 24.

A shopkeeper in a Nuts and Spices shop makes gift packs of cashew nuts, raisins, and almonds.

The pack-I contains 100 gm of cashew nuts, 100 gm of raisins, and 50 gm of almonds. Pack-II contains 200 gm of cashew nuts, 100 gm of raisins, and 100 gm of almonds. Pack-III contains 250 gm of cashew nuts, 250 gm of raisins, and 150 gm of almonds. The cost of 50 gm of cashew nuts is ₹ 50, 50 gm of raisins is ₹ 10, and 50 gm of almonds is ₹ 60. What is the cost of each gift pack?

	Cashew nuts	Raisins	Almonds
Pack I	100 gm	100 gm	50 gm
Pack II	200 gm	100 gm	100 gm
Pack III	250 gm	250 gm	150 gm

Cashew	50 gm	Rs. 50
Raisins	50 gm	Rs. 10
Almonds	50 gm	Rs. 60
∴ Cost per gram.		
Cashew	1 gm	Rs. 1
Raisins	1 gm	Rs. $\frac{1}{5}$
Almonds	1 gm	Rs. $\frac{6}{5}$

Cost of each pack:

...

$$\begin{pmatrix} 100 & 100 & 50 \\ 200 & 100 & 100 \\ 250 & 250 & 150 \end{pmatrix} \begin{pmatrix} 1 \\ \frac{1}{5} \\ \frac{6}{5} \end{pmatrix}$$

$$= \begin{pmatrix} 100+20+60\\ 200+20+120\\ 250+50+180 \end{pmatrix} = \begin{pmatrix} 180\\ 340\\ 480 \end{pmatrix}$$

Cost of pack I = ₹ 180 Cost of pack II = ₹ 340 Cost of pack III = ₹ 480

Ex 7.2

Question 1.

$$\begin{vmatrix} s & a^2 & b^2 + c^2 \\ s & b^2 & c^2 + a^2 \\ s & c^2 & a^2 + b^2 \end{vmatrix} = 0 .$$

Without expanding the determinant, prove that *science*

Solution:

$$\begin{vmatrix} s & a^2 & b^2 + c^2 \\ s & b^2 & c^2 + a^2 \\ s & c^2 & a^2 + b^2 \end{vmatrix} = \begin{vmatrix} s & a^2 & a^2 + b^2 + c^2 \\ s & b^2 & a^2 + b^2 + c^2 \\ s & c^2 & a^2 + b^2 + c^2 \end{vmatrix} (C_3 \longrightarrow C_3 + C_2)$$

Taking s from C₁ and $a^2 + b^2 + c^2$ from C₃ as common factors are get

$$(s) (a^{2} + b^{2} + c^{2}) \begin{vmatrix} 1 & a^{2} & 1 \\ 1 & b^{2} & 1 \\ 1 & c^{2} & 1 \end{vmatrix} = 0 \qquad (\because C_{1} = C_{3})$$

Question 2.

Show that
$$\begin{vmatrix} b+c & bc & b^2c^2 \\ c+a & ca & c^2a^2 \\ a+b & ab & a^2b^2 \end{vmatrix} = 0.$$

Solution:

 $\begin{vmatrix} b+c & bc & b^2c^2 \\ c+a & ca & c^2a^2 \\ a+b & ab & a^2b^2 \end{vmatrix}$

Multiplying R_1 by a, R_2 by b, R_3 by c and dividing by abc we get

$$\frac{1}{abc} \begin{vmatrix} a(b+c) & abc & ab^2c^2 \\ b(c+a) & abc & a^2bc^2 \\ c(a+b) & abc & a^2b^2c \end{vmatrix}$$

$$= \frac{(abc)^2}{abc} \begin{vmatrix} ab + ac & 1 & bc \\ bc + ab & 1 & ca \\ ac + bc & 1 & ab \end{vmatrix} = (abc) \begin{vmatrix} ab + bc + ca & 1 & bc \\ ab + bc + ca & 1 & ca \\ ab + bc + ca & 1 & ab \end{vmatrix} (C_1 \to C_1 + C_3)$$
$$= (ab + bc + ca)(abc) \begin{vmatrix} 1 & 1 & bc \\ 1 & 1 & ca \\ 1 & 1 & ab \end{vmatrix} = 0 \qquad (\because C_1 = C_2)$$

Question 3.

$$\begin{vmatrix} a^2 & bc & ac+c^2 \\ a^2+ab & b^2 & ac \\ ab & b^2+bc & c^2 \end{vmatrix} = 4a^2b^2c^2.$$

Prove that

Solution:

LHS

Taking a from C_1 , b from C_2 and c from C_3 we get

Taking 2c as a common factor from R_1 we get

$$= (abc)(2c) \begin{vmatrix} 0 & 1 & 1 \\ a & -c & a-c \\ b & b+c & c \end{vmatrix}$$
$$= (2c)(abc) \begin{vmatrix} 0 & 0 & 1 \\ a & -a & a-c \\ b & b & c \end{vmatrix} (C_2 \rightarrow C_2 - C_3)$$

Expanding along R_1 we get (2c) (abc) (1) [ab + ab] = abc (2c) (2ab) 1 = (abc) (4abc) = $4a^2b^2c^2$ = RHS

Question 4.

Prove that
$$\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right).$$

Solution:

LHS =
$$\begin{vmatrix} 1+a & 1 & 1\\ 1 & 1+b & 1\\ 1 & 1 & 1+c \end{vmatrix} = \begin{vmatrix} a & -b & 0\\ 0 & b & -c\\ 1 & 1 & 1+c \end{vmatrix} \begin{pmatrix} R_1 \to R_1 - R_2\\ R_2 \to R_2 - R_3 \end{pmatrix}$$

Expanding along R₁

$$a\begin{vmatrix} b & -c \\ 1 & 1+c \end{vmatrix} + b\begin{vmatrix} 0 & -c \\ 1 & 1+c \end{vmatrix} + 0$$

= $a [b (1+c)+c] + b [0+c]$
= $a (b+bc+c) + bc = ab + abc + ac + bc$
= $abc + ab + bc + ac = abc \left(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$
= RHS

Question 5.

Prove that
$$\begin{vmatrix} \sec^2 \theta & \tan^2 \theta & 1 \\ \tan^2 \theta & \sec^2 \theta & -1 \\ 38 & 36 & 2 \end{vmatrix} = 0$$

Solution:

$$LHS = \begin{vmatrix} \sec^2 \theta & \tan^2 \theta & 1 \\ \tan^2 \theta & \sec^2 \theta & -1 \\ 38 & 36 & 2 \end{vmatrix}$$
$$= \begin{vmatrix} \sec^2 \theta - \tan^2 \theta & \tan^2 \theta & 1 \\ \tan^2 \theta - \sec^2 \theta & \sec^2 \theta & -1 \\ 38 - 36 & 36 & 2 \end{vmatrix} C_1 \rightarrow C_1 - C_2 = \begin{vmatrix} 1 & \tan^2 \theta & 1 \\ -1 & \sec^2 \theta & -1 \\ 2 & 36 & 2 \end{vmatrix}$$
$$= 0 \ (\because C_1 = C_3)$$
$$= RHS$$

Question 6.

Show that $\begin{vmatrix} x+2a & y+2b & z+2c \\ x & y & z \\ a & b & c \end{vmatrix} = 0.$

Solution:

LHS =
$$\begin{vmatrix} x + 2a & y + 2b & 2 + 2c \\ x & y & z \\ a & b & c \end{vmatrix}$$
$$= \begin{vmatrix} x & y & z \\ x & y & z \\ a & b & c \end{vmatrix} + \begin{vmatrix} 2a & 2b & 2c \\ x & y & z \\ a & b & c \end{vmatrix}$$
$$= \begin{vmatrix} 0 \\ (\because R_1 = R_2) + 2 \end{vmatrix} + \begin{vmatrix} a & b & c \\ x & y & z \\ a & b & c \end{vmatrix}$$
$$= 0 + 2 (0) (\because R_1 = R_3)$$
$$= 0 = RHS$$

Question 7.

Write the general form of a 3×3 skew-symmetric matrix and prove that its determinant is 0.

Solution:

.

Let
$$A = \begin{pmatrix} 0 & a & b \\ -a & 0 & -c \\ -b & c & 0 \end{pmatrix}$$

Here $A^{T} = \begin{pmatrix} 0 & -a & -b \\ a & 0 & c \\ b & -c & 0 \end{pmatrix} = -A$

 \Rightarrow A is a skew symmetric matrix

Now
$$|\mathbf{A}| = \begin{vmatrix} 0 & a & b \\ -a & 0 & -c \\ -b & c & 0 \end{vmatrix} = 0 (0 + c^2) - a [0 - bc] + b [-ac + 0] = abc - abc = 0$$

Question 8.

$$\left| \begin{array}{ccc} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{array} \right| = 0,$$

Solution:

Let
$$\Delta = \begin{vmatrix} a & b & a\alpha + b \\ b & c & b\alpha + c \\ a\alpha + b & b\alpha + c & 0 \end{vmatrix} = \begin{vmatrix} a & b & a\alpha \\ b & c & b\alpha \\ a\alpha + b & b\alpha + c & -(b\alpha + c) \end{vmatrix} (C_3 \rightarrow C_3 - C_2)$$

í.

$$= \begin{vmatrix} a & b & 0 \\ b & c & 0 \\ a\alpha + b & b\alpha + c & -(b\alpha + c) \\ & -(a\alpha^2 + b\alpha) \end{vmatrix} (C_3 \rightarrow C_3 - \alpha C_1)$$
$$= \begin{vmatrix} a & b & 0 \\ b & c & 0 \\ a\alpha + b & b\alpha + c & -(a\alpha^2 + 2b\alpha + c) \end{vmatrix}$$

expanding along C₃

we get $-(a\alpha^2 + 2b\alpha + c) [ac - b^2]$ So $\Delta = 0 \Rightarrow (a\alpha^2 + 2b\alpha + c) (ac - b^2) = -0 = 0$ $\Rightarrow a\alpha^2 + 2b\alpha + c = 0$ or $ac - b^2 = 0$ (i.e.) a is a root of $ax^2 + 2bx + c = 0$ or $ac = b^2$ $\Rightarrow a, b, c$ are in G.P.

Question 9.

Prove that
$$\begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ca \\ 1 & c & c^2 - ab \end{vmatrix} = 0$$

$$LHS = \begin{vmatrix} 1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab \end{vmatrix}$$
$$= \begin{vmatrix} 0 & a - b & a^2 - bc - b^2 + ac \\ 0 & b - c & b^2 - ac - c^2 + ab \\ 1 & c & c^2 - ab \end{vmatrix} \begin{vmatrix} R_1 \to R_1 - R_2 \\ R_2 \to R_2 - R_3 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & a - b & (a^2 - b^2) + (ac - bc) \\ 0 & b - c & (b^2 - c^2) + (ab - ac) \\ 1 & c & c^2 - ab \end{vmatrix}$$
$$= \begin{vmatrix} 0 & a - b & (a + b)(a - b) + c(a - b) \\ 0 & b - c & (b + c)(b - c) + a(b - c) \\ 1 & c & c^2 - ab \end{vmatrix}$$
$$= \begin{vmatrix} 0 & a - b & (a - b)(a + b + c) \\ 0 & b - c & (b - c)(a + b + c) \\ 1 & c & c^2 - ab \end{vmatrix}$$

Taking (a - b) and (b - c) from R₁ and R₂ respectively

we get
$$(a-b)(b-c)$$
 $\begin{vmatrix} 0 & 1 & a+b+c \\ 0 & 1 & a+b+c \\ 1 & c & c^2-ab \end{vmatrix}$

expanding along C1

$$(a-b)(b-c) \{0-0+1 [(a+b+c)-(a+b+c]]\} = 0 = RHS$$

Question 10.

 $\begin{vmatrix} a & b & c \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$

If a, b, c are pth, qth and rth terms of an A.P., find the value of

Solution:

We are given $a = t_p, b = t_q$ and $c = t_r$ Let a be the first term and d be the common difference So $t_p = a + (p-1) d = a$ $t_q = a + (q-1) d = b$ and $t_r = a + (r-1) d = c$ To find the value of $\begin{vmatrix} a & b & c \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$: $\begin{vmatrix} a & b & c \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} t_p & t_q & t_r \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} t_p - t_q & t_q - t_r & t_r \\ p - q & q - r & r \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} c_1 \rightarrow c_1 - c_1 \\ c_2 \rightarrow c_2 - c_3 \end{vmatrix}$ expanding along R₃ $1\{(t_p - t_q) (q - r) - (p - q)(t_q - t_r)\}$

$$= qt_p - rt_p - qt_q + rt_q - pt_q + pt_r - qt_q - qt_r$$

So $t_p = a + (p-1) d = a$ $t_q = a + (q-1) d = b$ and $t_r = a + (r-1) d = c$

To find the value of $\begin{vmatrix} a & b & c \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$: $\begin{vmatrix} a & b & c \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} t_p & t_q & t_r \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} t_p - t_q & t_q - t_r & t_r \\ p - q & q - r & r \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} C_1 \rightarrow C_1 - C_1 \\ C_2 \rightarrow C_2 - C_3 \end{vmatrix}$

expanding along R_3

$$\begin{split} &1\{(t_p - t_q) \ (q - r) - (p - q)(t_q - t_r) \ \} \\ &= qt_p - rt_p - qt_q + rt_q - pt_q + pt_r - qt_q - qt_r \\ &= (p - q)tr + (q - r) \ tp + (r - p) \ tq \\ & \cdot \\ &= (p - q) \ [a + (r - 1)d + (q - r) \ [a + (p - 1)d] + (r - p) \ [(a + (q - 1)d]] \\ &= a[p - q + q - r + r - p] + d \ [(r - 1) \ (p - q) + (p - 1) \ (q - r) + (q - 1) \ (r - p)] \\ &= a(0) + d(0) = 0 \end{split}$$

Question 11.

$$\begin{vmatrix} a^{2} + x^{2} & ab & ac \\ ab & b^{2} + x^{2} & bc \\ ac & bc & c^{2} + x^{2} \end{vmatrix}$$

Show that is divisible by x⁴

Solution:

LHS =
$$\begin{vmatrix} a^2 + x^2 & ab & ac \\ ab & b^2 + x^2 & bc \\ ac & bc & c^2 + x^2 \end{vmatrix}$$

Multiplying R_1 by a, R_2 by b and R_3 by c and taking out a from C_1 b from C_2 and c from C_3 we get

$$\begin{aligned} \frac{abc}{abc} \begin{vmatrix} a^2 + x^2 & a^2 & a^2 \\ b^2 & b^2 + x^2 & b^2 \\ c^2 & c^2 & c^2 + x^2 \end{vmatrix} \\ = \begin{vmatrix} a^2 + b^2 + c^2 + x^2 & a^2 + b^2 + c^2 + x^2 \\ b^2 & b^2 + x^2 & b^2 \\ c^2 & c^2 & c^2 + x^2 \end{vmatrix} \\ = (a^2 + b^2 + c^2 + x^2) \begin{vmatrix} 1 & 1 & 1 \\ b^2 & b^2 + x^2 & b^2 \\ c^2 & c^2 & c^2 + x^2 \end{vmatrix} \\ = (a^2 + b^2 + c^2 + x^2) \begin{vmatrix} 0 & 0 & 1 \\ b^2 & b^2 + x^2 & b^2 \\ c^2 & c^2 & c^2 + x^2 \end{vmatrix} \\ = (a^2 + b^2 + c^2 + x^2) \begin{vmatrix} 0 & 0 & 1 \\ -x^2 & x^2 & b^2 \\ 0 & -x^2 & c^2 + x^2 \end{vmatrix} \begin{vmatrix} C_1 \to C_1 - C_2 \\ C_2 \to C_2 - C_3 \end{aligned}$$

expanding along R₁ we get

$$= (a^{2} + b^{2} + c^{2} + x^{2}) [1(-x^{2}) (-x^{2}) - 0]$$

= $x^{4} (a^{2} + b^{2} + c^{2} + x^{2})$
 \Rightarrow The given determinent is divisible by x^{4}

 \Rightarrow The given determinant is divisible by x^4 .

Question 12.

=

If a, b, c are all positive, and are pth, qth and rth terms of a G.P., show that

 $\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix} = 0.$

Let the G.P. be k, kx, kx^2 ,

$$a = t_{p} = k x^{p-1}$$

$$b = t_{q} = k x^{q-1}$$
and $c = t_{r} = k x^{r-1}$
Now L.H.S. = $\begin{vmatrix} \log a & p & 1 \\ \log b & q & 1 \\ \log c & r & 1 \end{vmatrix}$
 $\begin{vmatrix} \log a - \log b & p - q & 0 \\ \log b - \log c & q - r & 0 \\ \log c & r & 1 \end{vmatrix}$
 $R_{1} \rightarrow R_{2} - R_{3}$

expanding along C₃

$$[(\log a - \log b) (q - r) - (\log b - \log c) (p - q)]$$
$$= \left(\log \frac{a}{b}\right)(q - r) - \left(\log \frac{b}{c}\right)(p - q)$$

$$\begin{cases} \text{Here } \frac{a}{b} = \frac{kx^{p-1}}{kx^{q-1}} = x^{p-1-q+1} = x^{p-q} \\ \text{and } \frac{b}{c} = \frac{kx^{q-1}}{kx^{r-1}} = x^{q-1-r+1} = x^{q-r} \end{cases} \\ = (q-r) \left[\log x^{p-q} \right] - (p-q) \left[\log x^{q-r} \right] \\ = (q-r)(p-q) \log x - (p-q) (q-r) \log x \\ = 0 = \text{RHS} \end{cases}$$

Question 13.

Find the value of
$$\begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \\ & \text{if } x, y, z \neq 1. \end{vmatrix}$$

Solution:

Expanding the determinant along R_1

$$\begin{vmatrix} 1 & \log_{x} y & \log_{x} z \\ \log_{y} x & 1 & \log_{y} z \\ \log_{z} x & \log_{z} y & 1 \end{vmatrix}$$

= 1[1 - log_z y log_y z] - log_x y[log_y x - log_z x log_y z] + log_x z
= 1[1 - 1] - log_x y [log_y x - log_y x] + log_x z [log_z x - log_z x] = 0

Question 14.

If
$$A = \begin{bmatrix} \frac{1}{2} & \alpha \\ 0 & \frac{1}{2} \end{bmatrix}$$
, prove that $\sum_{k=1}^{n} \det(A^k) = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$.

$$A = \begin{bmatrix} \frac{1}{2} & \alpha \\ 0 & \frac{1}{2} \end{bmatrix} |A| = \begin{vmatrix} \frac{1}{2} & \alpha \\ 0 & \frac{1}{2} \end{vmatrix} = \frac{1}{4} - 0 = \frac{1}{4}$$
$$A^{2} = A \times A = \begin{pmatrix} \frac{1}{2} & \alpha \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \alpha \\ 0 & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \alpha \\ 0 & \frac{1}{4} \end{pmatrix}$$
$$|A^{2}| = \begin{vmatrix} \frac{1}{4} & \alpha \\ 0 & \frac{1}{4} \end{vmatrix} = \frac{1}{4} \times \frac{1}{4} - 0 = \left(\frac{1}{4}\right)^{2} = \frac{1}{4^{2}}$$
$$|A^{k}| = \frac{1}{4^{k}}$$
So, $\sum_{k=1}^{n} \det(A^{k}) = \frac{1}{4} + \frac{1}{4^{2}} + \frac{1}{4^{3}} + \dots + \frac{1}{4^{n}}$

Which is a G.P with $a = \frac{1}{4}$ and $r = \frac{1}{4}$ $\therefore S_n = \frac{a(1-r^n)}{1-r} = \frac{\frac{1}{4}\left[1-\left(\frac{1}{4}\right)^n\right]}{1-\frac{1}{4}}$ $= \frac{\frac{1}{4}\left[1-\frac{1}{4^n}\right]}{\frac{3}{4}} = \frac{1}{4} \times \frac{4}{3}\left[1-\frac{1}{4^n}\right]$ $= \frac{1}{3}\left[1-\frac{1}{4^n}\right].$

Question 15. Without expanding, evaluate the following determinants:

	2	3	4	x+y	y + z	z + x	
(i)	5	6	8	<i>(ii)</i>	z	x	y
	6 <i>x</i>	9x	12x		1	1	1

Solution:

(i)
$$\begin{vmatrix} 2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x \end{vmatrix} = x \begin{vmatrix} 2 & 3 & 4 \\ 5 & 6 & 8 \\ 6 & 9 & 12 \end{vmatrix}$$

$$= (x)(3) \begin{vmatrix} 2 & 3 & 4 \\ 5 & 6 & 8 \\ 2 & 3 & 4 \end{vmatrix} = 3x(0) = 0 \qquad (\therefore R_1 = R_3)$$

(ii)
$$\begin{vmatrix} x+y & y+z & z+x \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} x+y+z & x+y+z & x+y+z \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} R_1 = R_1 + R_2$$

$$= (x+y+z) \begin{vmatrix} 1 & 1 & 1 \\ z & x & y \\ 1 & 1 & 1 \end{vmatrix} = 0 \qquad (\because R_1 = R_3)$$

Question 16.

If A is a square matrix and |A| = 2, find the value of $|AA^T|$.

Solution:

Given |A| = 2[Property 1: The determinant of a matrix remains unaltered if its rows are changed into columns and columns. That is, $|A| = |A^T|$] $|A^T| = |A| = 2$ $\therefore |A A^T| = |A| |A^T|$ $= 2 \times 2 = 4$

Question 17.

If A and B are square matrices of order 3 such that |A| = -1 and |B| = 3, find the value of |3AB|.

Solution:

Given A and B are square matrices of order 3 such that |A| = -1 and |B| = 3[It A is a square matrix of order n then det (kA) = $|kA| = k^n |A|$.] A and B are square matrices of order 3. Therefore, AB is also a square matrix of order 3. $|3 AB| = 3^3 |AB|$ = 27 |A| |B| = 27 × -1 × 3 |3 AB| = -81

Question 18.

If
$$\lambda = -2$$
, determine the value of $\begin{vmatrix} 0 & 2\lambda & 1 \\ \lambda^2 & 0 & 3\lambda^2 + 1 \\ -1 & 6\lambda - 1 & 0 \end{vmatrix}$.

Solution:

Given $\lambda = -2$ $\therefore 2\lambda = -4; \lambda^2 = (-2)^2; 3\lambda^2 + 1 = 3 (4) + 1 = 13$ $6\lambda - 1 = 6(-2) - 1 = -13$ So $\begin{vmatrix} 0 & 2\lambda & 1 \\ \lambda^2 & 0 & 3\lambda^2 + 1 \\ -1 & 6\lambda - 1 & 0 \end{vmatrix} = \begin{vmatrix} 0 & -4 & 1 \\ 4 & 0 & 13 \\ -1 & -13 & 0 \end{vmatrix}$

expanding along R1

0(0) + 4(0 + 13) + 1(-52 + 0) = 52 - 52 = 0Aliter: The determinant value of a skew-symmetric matrix is zero

Question 19.

Determine the roots of the equation $\begin{vmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix} = 0$

Solution:

Now
$$\begin{vmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix} = (5) \begin{vmatrix} 1 & 4 & 4 \\ 1 & -2 & 1 \\ 1 & 2x & x^2 \end{vmatrix}$$

(Taking 5 as a common factor from C_3)

$$= (5)(2)\begin{vmatrix} 1 & 2 & 4 \\ 1 & -1 & 1 \\ 1 & x & x^2 \end{vmatrix}$$

(Taking 2 as a common factor from C₂)
$$= 10\begin{vmatrix} 1 & 2 & 4 \\ 1 & -1 & 1 \\ 1 & x & x^2 \end{vmatrix}$$

$$= 10\begin{vmatrix} 0 & 3 & 3 \\ 0 & -1-x & 1-x^2 \\ 1 & x & x^2 \end{vmatrix} R_1 \rightarrow R_1 - R_2$$

expanding along C₁
10 {1[3(1-x^2) - (-1-x)(3)]}
$$= 10[3(1-x^2) + 3(1+x)]$$

$$= 10[3(1-x^{2}) + 3(1+x)]$$

= 10[3(1+x)(1-x) + 3(1+x)]
= 10[3(1+x)(1-x+1)]
= 30(1+x)(2-x)

Given the determinant value is $0 \Rightarrow 30(1 + x) (2 - x) = 0$ $\Rightarrow 1 + x = 0 \text{ or } 2 - x = 0$ \Rightarrow x = -1 or x = 2 So, x = -1 or 2.

Question 20. Verify that det (AB) = (det A) (det B) $A = \begin{bmatrix} 4 & 3 & -2 \\ 1 & 0 & 7 \\ 2 & 3 & -5 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 3 & 3 \\ -2 & 4 & 0 \\ 9 & 7 & 5 \end{bmatrix}.$ for

Solution:

$$A = \begin{pmatrix} 4 & 3 & -2 \\ 1 & 0 & 7 \\ 2 & 3 & -5 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 4 & 0 \\ 9 & 7 & 5 \end{pmatrix}$$

$$Now \quad AB = \left(\overrightarrow{\begin{array}{ccc} 4 & 3 & -2 \\ 1 & 0 & 7 \\ 2 & 3 & -5 \end{array} \right) \left| \left(\begin{array}{ccc} 1 & 3 & 3 \\ -2 & 4 & 0 \\ 9 & 7 & 5 \end{array} \right) \right|$$

$$= \begin{bmatrix} -20 & 10 & 2 \\ 64 & 52 & 38 \\ -49 & -17 & -19 \end{bmatrix}$$

$$Now \qquad |A| = \begin{vmatrix} 4 & 3 & -2 \\ 1 & 0 & 7 \\ 2 & 3 & -5 \end{vmatrix}$$

$$= (-1) [-15 + 6] - 7[12 - 6]$$

$$= (-1) (-9) - 7 (6)$$

$$= 9 - 42 = -33 = \boxed{|A| = -33} \qquad \dots (i)$$

$$|B| = \begin{vmatrix} 1 & 3 & 3 \\ -2 & 4 & 0 \\ 9 & 7 & 5 \end{vmatrix}$$

Now

(expanding along C₃)

$$= 3(-14 - 36) - 0(-14 - 36) + 5(4 + 6)$$

$$= 3(-50) + 5(10) = -150 + 50 = -100$$

$$\boxed{|B| = -100}$$
 ...(*ii*)

$$|AB| = \begin{vmatrix} -20 & 10 & 2 \\ 64 & 52 & 38 \\ -49 & -17 & -19 \end{vmatrix}$$

{(-20)(52)(-19) + (10)(38)(-49) + (2)(64)(-17)} - {(-49)(52)(2) + (-17)(38)(-20) + (-19)(64)(10)} = (19760 - 18620 - 2176) - (-5096 + 12920 - 12160)

$$=(19760 + 5096 + 12160) - (18620 + 2176 + 12920)$$

 $= 37016 - 33716 = 3300 \dots (3)$

Now $(1) \times (2) = (3)$

(i.e.,) (-33) (-100) = 3300

$$\Rightarrow$$
 det (AB) = (det A), (det B)

Question 21.

Using cofactors of elements of the second row, evaluate |A|,

$$\mathbf{A} = \begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}.$$

where

$$A = \begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$
$$|A| = \begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

expanding along R₂

Cofactor of
$$2 = -\begin{bmatrix} 3 & 8 \\ 2 & 3 \end{bmatrix} = (-9+16) = 7$$

Cofactor of $0 = +\begin{bmatrix} 5 & 8 \\ 1 & 3 \end{bmatrix} = 15 - 8 = 7$
Cofactor of $1 = -\begin{bmatrix} 5 & 3 \\ 1 & 2 \end{bmatrix} = -(10 - 3) = -7$
 $|A| = 2(7) + 0(7) + (1)(-7)$
 $= 14 - 7 = 7$

Ex 7.3

...

Solve the following problems by using factor theorem

Question 1.

Show that $< \begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix} = (x - a)^2 (x + 2a)$

Solution:

$$\Delta = \begin{vmatrix} x & a & a \\ a & x & a \\ a & a & x \end{vmatrix}$$
put $x = a$ we get
$$\begin{vmatrix} a & a & a \\ a & a & a \\ a & a & a \end{vmatrix} = 0$$

Since all the three rows are identical we get $(x - a)^2$ as a factor Now, put x = -2a.

We get

$$\Delta = \begin{vmatrix} -2a & a & a \\ a & -2a & a \\ a & a & -2a \end{vmatrix}$$

$$= \begin{vmatrix} 0 & a & a \\ 0 & -2a & a \\ 0 & a & -2a \end{vmatrix} C_1 = C_1 + C_2 + C_3 = 0$$

 \Rightarrow (x + 2d) is a factor of A.

Now degree of Δ is 3 (x × x × x = x³) and we have 3 factors for A \therefore There can be a constant as a factor for A. (i.e.,) $\Delta = k(x - a)^2 (x + 2d)$ equating coefficient of x³ on either sides we get k = 1 $\therefore \Delta = (x - a)^2 (x + 2a)$

Question 2.

$$\begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix} = 8 \ abc$$

Show that |c-b| c-a

Solution:

Let
$$\Delta = \begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix}$$

Put $a = 0$ in Δ
then $\Delta = \begin{vmatrix} b+c & -c & -b \\ b-c & c & b \\ c-b & c & b \end{vmatrix} = 0$ (:: C₂ and C₃ are proportional)

 $\therefore a - 0$ (i.e.,) a is a factor.

Similarly b and c are factors of Δ .

The product of the leading diagonal elements is (b + c) (c + a) (a + b)The degree is 3. And we got 3 factors for $\Delta \therefore m = 3 - 3 = 0$ \therefore there can be a constant k as a factor for Δ .

(*i.e.*)
$$\Delta = \begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix} = k \ abc$$

To find k:

put a = 1, b = 1, c = 1

$$\therefore \quad \Delta = \begin{vmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix} = k(1)(1)(1)$$

$$\Rightarrow 2 (4-0) 0 - 0 = k$$

8 = k
So, $\Delta = 8 \ abc (i.e.,) \begin{vmatrix} b+c & a-c & a-b \\ b-c & c+a & b-a \\ c-b & c-a & a+b \end{vmatrix} = 8 \ abc$

Questi	on 3.			
	x+a	b	С	
Solve	a	x+b	С	= 0.
	a	b	x+c	1.1

Put
$$x = -(a + b + c)$$

Then $\Delta = \begin{vmatrix} -(a + b + c) + a & b & c \\ a & -(a + b + c) + b & c \\ a & b & -(a + b + c) + c \end{vmatrix}$
 $= \begin{vmatrix} -b - c & b & c \\ a & -a - c & c \\ a & b & -a - b \end{vmatrix} C_1 \rightarrow C_1 + C_2 + C_3$

 $= \begin{vmatrix} 0 & b & c \\ 0 & -a-c & c \\ 0 & b & -a-b \end{vmatrix} = 0 \text{ (expanding along C_1)}$

$$\Rightarrow x = -(a+b+c)$$
 is a root.

Put x = 0, then

$$\Delta = \begin{vmatrix} a & b & c \\ a & b & c \\ a & b & c \end{vmatrix} = 0 \quad (\because \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{R}_3)$$

 \Rightarrow x = 0, 0 are roots.

Now the degree of the leading diagonal elements is 3. \therefore the equation is of degree 3, so the roots are 0, 0, – (a + b + c)

Question 4.

Show that
$$\begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = (a+b+c) (a-b) (b-c) (c-a)$$

Solution:

Let
$$\Delta = \begin{vmatrix} b + c & a & a^2 \\ c + a & b & b^2 \\ a + b & c & c^2 \end{vmatrix}$$

Put $a = b$, then $\Delta = \begin{vmatrix} b + c & b & b^2 \\ b + c & b & b^2 \\ b + c & b & b^2 \\ 2b & c & c^2 \end{vmatrix} = 0$ (\because R₁ = R₂)

⇒ (a - b) is a factor of Δ . Similarly, (b - c) and (c - a) are factors of Δ .

The degree of the product of elements along the leading diagonal is 1 + 1 + 2 = 4 and we got 3 factors for Δ . m = 4 - 3 = 1

: There can be one more factor symmetric with a, b, c which is of the form k (a

+ b + c).
Now
$$\Delta = \begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = k (a+b+c) (a-b) (b-c) (c-a)$$

To find k: Put $a = 0, b = 1, c = 2$
We get $\Delta = \begin{vmatrix} 3 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 2 & 4 \end{vmatrix} = k (0+1+2) (0-1) (1-2) (2-0)$
(i.e.,) $3 (4-2) = k (3) (-1) (-1) (2) (i.e.,) 6 = 6k \Rightarrow k = 1$
 $\therefore \Delta = \begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = (a+b+c) (a-b) (b-c) (c-a)$

Question 5.

Solve $\begin{vmatrix} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} = 0.$

Let
$$\Delta = \begin{vmatrix} 4-x & 4+x & 4+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} = \begin{vmatrix} 12+x & 12+x & 12+x \\ 4+x & 4-x & 4+x \\ 4+x & 4+x & 4-x \end{vmatrix} (R_1 \to R_1 + R_2 + R_3)$$

Put
$$x = -12$$
. We get

$$\Delta = \begin{vmatrix} 0 & 0 & 0 \\ -8 & 16 & -8 \\ -8 & -8 & 16 \end{vmatrix} = 0$$

$$\Rightarrow x = -12 \text{ is a root.}$$

Put
$$x = 0$$
 we get $\Delta = \begin{vmatrix} 4 & 4 & 4 \\ 4 & 4 & 4 \\ 4 & 4 & 4 \end{vmatrix} = 0$

all the 3 rows are identical

So,

$$\begin{array}{rcl} \Rightarrow & (x-0)^2 = x^2 \text{ is a factor} \\ \Delta &= & 0 \Rightarrow x^2 (x+12) = 0 \\ \Rightarrow & x = & 0, 0, -12. \end{array}$$

Question 6.

Show that
$$\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x - y) (y - z) (z - x)$$

Solution:

Let
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$

Put $x = y$
We get
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ y & y & z \\ y^2 & y^2 & z^2 \end{vmatrix} = 0 (\because C_1 = C_2)$$

 $\Rightarrow (x - y)$ is a factor of Δ .

Similarly (y - z) and (z - x) are factors of Δ . Now degree of $\Delta = 0 + 1 + 2 = 3$ and we have 3 factors of Δ . and so there can be a constant k as a factor of Δ .

So,
$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = k(x-y)(y-z)(z-x)$$

put x = 0, y = 1 and z = 2 we get

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 4 \end{vmatrix} = k(0-1)(1-2)(2-0)$$

 $\Rightarrow 2k = 2 \Rightarrow k = 1$

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix} = (x - y) (y - z) (z - x)$$

Ex 7.4

..

Question 1.

Find the area of the triangle whose vertices are (0, 0), (1, 2) and (4, 3)

1

Solution:

Area of triangle with vertices

$$0(x_1, y_1), (x_2, y_2) \text{ and } (x_3, y_3) \text{ is } \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$\therefore \text{ Area of A with vertices } (0, 0), (1, 2) \text{ and } (4, 3) \text{ is}$$

$$\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 2 & 1 \\ 4 & 3 & 1 \end{vmatrix} = \frac{1}{2} \{1 (3 - 8)\}$$

$$= \frac{1}{2} (-5) = 5/2 \text{ sq. unit} = 2.5 \text{ sq. unit}$$

(as the area cannot be negative).

Question 2.

If (k, 2), (2, 4) and (3, 2) are vertices of the triangle of area 4 square units then

determine the value of k.

Solution:

Area of
$$\Delta$$
 with vertices $(k, 2)$ $(2, 4)$ and $(3, 2) = \frac{1}{2} \begin{vmatrix} k & 2 & 1 \\ 2 & 4 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 4$ (given)

$$\Rightarrow \qquad \begin{vmatrix} k & 2 & 1 \\ 2 & 4 & 1 \\ 3 & 2 & 1 \end{vmatrix} = 2(4) = 8$$
(*i.e.*,) $k (4-2) - 2(2-3) + 1 (4-12) = \pm 8$
(*i.e.*,) $2k - 2(-1) + 1(-8) = \pm 8$
(*i.e.*,) $2k - 2(-1) + 1(-8) = \pm 8$
(*i.e.*,) $2k + 2 - 8 = 8$
(*i.e.*,) $2k + 2 - 8 = 8$
(*i.e.*,) $2k = 8 + 8 - 2 = 14$
 $k = 14/2 = 7$
 $\therefore k = 7$.
 $k = 7$.
 $k = 7$.
 $k = -1$
So $k = 7$ (or) $k = -1$

Question 3.

Identify the singular and non-singular matrices:

(i)	1	2	3		2	-3	5		0	a-b	k
	4	5	6	<i>(ii)</i>	6	0	4	(<i>iii</i>)	b – a	0	5
	7	8	9		1	5	-7		-k	-5	0

Solution:

(i) For a given square matrix A, 1. If |A| = 0 then it is a singular matrix.

2. If $|A| \neq 0$ then it is a non singular matrix.

(*i*)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

$$|\mathbf{A}| = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1(45 - 48) - 2(36 - 42) + 3(32 - 35)$$
$$= 1 (-3) - 2 (-6) + 3(-3)$$
$$= -3 + 12 - 9 = 0$$

 \Rightarrow A is a singular matrix.

(*ii*) Let
$$A = \begin{pmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{pmatrix}$$
$$|A| = \begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix} \text{ (expanding along R_2)}$$
$$= -6(21 - 25) - 4 (10 + 3)$$
$$= -6(-4) - 4 (13)$$
$$= 24 - 52 = -28 \neq 0 \quad \therefore \text{ A is a non singular matrix}$$
(*iii*) Let A
$$\begin{bmatrix} 0 & a - b & k \\ b - a & 0 & 5 \\ -k & -5 & 0 \end{bmatrix}$$

Which is a skew symmetric matrix $\therefore |A| = 0 \Rightarrow A$ is a singular matrix.

Question 4.

Determine the value of a and b so that the following matrices are singular:

(i)
$$A = \begin{bmatrix} 7 & 3 \\ -2 & a \end{bmatrix}$$
 (ii) $B = \begin{bmatrix} b-1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & -2 & 4 \end{bmatrix}$

(i)
$$A = \begin{pmatrix} 7 & 3 \\ -2 & a \end{pmatrix}$$

Given A is a singular matrix

Given A is a singular matrix

$$\Rightarrow |A| = 0 \Rightarrow \begin{vmatrix} 7 & 3 \\ -2 & a \end{vmatrix} = 0$$
(*i.e.*) $7a + 6 = 0$
 $7a = -6 \Rightarrow a = -6/7$.
 $B = \begin{pmatrix} b-1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & -2 & 4 \end{pmatrix}$
Given B is a singular matrix $\Rightarrow |B| = 0$
Now $|B| = \begin{bmatrix} b-1 & 2 & 3 \\ 3 & 1 & 2 \\ 1 & -2 & 4 \end{bmatrix}$
 $\Rightarrow \begin{vmatrix} b & 0 & 7 \\ 3 & 1 & 2 \\ 1 & -2 & 4 \end{vmatrix}$
(R₁ \Rightarrow R₁ + R₃)

expanding along R_1 b(4 + 4) + 7(-6 - 1) = 0 (given) 8b + 7(-7) = 0(i.e.,) $8b - 49 = 0 \Rightarrow 8b = 49 \Rightarrow b = 49/8$

Question 5.

If
$$\cos 2\theta = 0$$
, determine $\begin{bmatrix} \theta & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}^2$

Given
$$\cos 2\theta = 0$$

$$\Rightarrow \qquad 2\theta = \pi/2 \Rightarrow \theta = \pi/4$$

$$\therefore \quad \cos \theta = \cos \pi/4 = \frac{1}{\sqrt{2}}$$
and
$$\sin \theta = \sin \pi/4 = \frac{1}{\sqrt{2}}$$

$$Let \Delta = \begin{vmatrix} 0 & \cos \theta & \sin \theta \\ \cos \theta & \sin \theta & 0 \\ \sin \theta & 0 & \cos \theta \end{vmatrix} = \begin{vmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{vmatrix}$$

$$\Rightarrow \qquad 0 \quad 0 - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}} - 0 \right) + \frac{1}{\sqrt{2}} \left(0 - \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \right)$$

$$= -\frac{1}{\sqrt{2}} \times \frac{1}{2} - \frac{1}{\sqrt{2}} \frac{1}{2} = \frac{-1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} = \frac{-2}{2\sqrt{2}}$$

$$= -\frac{1}{\sqrt{2}}$$

$$\therefore \quad \Delta^2 = \left(-\frac{1}{\sqrt{2}} \right)^2 = \frac{1}{2}$$

Question 6.

Find the value of the product; $\begin{bmatrix} \log_3 64 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{bmatrix} \times \begin{bmatrix} \log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4 \end{bmatrix}$

$$\begin{vmatrix} \log_3 64 & \log_4 3 \\ \log_3 8 & \log_4 9 \end{vmatrix} \begin{vmatrix} \log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4 \end{vmatrix}$$

=
$$\begin{vmatrix} \log_3 64 \times \log_2 3 + \log_4 3 \times \log_3 4 & \log_3 64 \times \log_8 3 + \log_3 64 + \log_3 4 \\ \log_3 8 \times \log_2 3 + \log_4 9 \times \log_3 4 & \log_3 8 \times \log_8 3 + \log_4 9 \times \log_3 4 \end{vmatrix}$$

$$= \begin{vmatrix} \log_2 64 + 1 & \log_8 64 + 1 \\ \log_2 8 + \log_3 9 & 1 + \log_3 9 \end{vmatrix} \begin{bmatrix} \log_2 64 = \log_2 2^6 = 6 \log_2 2 = 6 \\ \log_8 64 = \log_8 8^2 = 2 \log_8 8 = 2 \\ \log_2 8 & = \log_2 2^3 = 3 \log_2 2 = 3 \\ \log_3 9 & = \log_3 3^2 = 2 \log_3 3 = 2 \end{vmatrix}$$

$$= \begin{vmatrix} 6+1 & 2+1 \\ 3+2 & 1+2 \end{vmatrix} = \begin{vmatrix} 7 & 3 \\ 5 & 3 \end{vmatrix} = 21 - 15 = 6.$$

Ex 7.5

Question 1.

If $a_{ij} = \frac{1}{2}$ (3i – 2j) and A = $[a_{ij}]_{2\times 2}$ is

Solution:

(b)
Hint:
$$a_{ij} = \frac{1}{2}(3i-2j)$$

Asis a matrix of order 2×2 : $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$
 $a_{11} = \frac{1}{2}(3-2) = \frac{1}{2}; a_{12} = \frac{1}{2}(3-4) = -\frac{1}{2};$
 $a_{21} = \frac{1}{2}(6-2) = \frac{4}{2} = 2: a_{22} = \frac{1}{2}(6-4) = \frac{2}{2} = 1$
 $\therefore A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ 2 & 1 \end{pmatrix}$

Question 2.

What must be the matrix X, if 2X +
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$$
?

$$(a)\begin{bmatrix}1&3\\2&-1\end{bmatrix} \qquad (b)\begin{bmatrix}1&-3\\2&-1\end{bmatrix} \qquad (c)\begin{bmatrix}2&6\\4&-2\end{bmatrix} \qquad (d)\begin{bmatrix}2&-6\\4&-2\end{bmatrix}$$

Solution:

(a) Hint:
$$2X + \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 8 \\ 7 & 2 \end{pmatrix}$$

$$\Rightarrow \qquad 2X = \begin{pmatrix} 3 & 8 \\ 7 & 2 \end{pmatrix} - \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3-1 & 8-2 \\ 7-3 & 2-4 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 4 & -2 \end{pmatrix}$$

$$\therefore X = \frac{1}{2} \begin{pmatrix} 2 & 6 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$$

Question 3.

- Which one of the following is not true about the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$?
- (a) a scalar matrix
- (b) a diagonal matrix
- (c) an upper triangular matrix
- (d) A lower triangular matrix

Solution:

(b) a diagonal matrix

Question 4.

If A and B are two matrices such that A + B and AB are both defined, then

.....

(a) A and B are two matrices not necessarily of same order.

(b) A and B are square matrices of same order.

(c) Number of columns of a is equal to the number of rows of B.

(d) A = B.

Solution:

(b) A and B are square matrices of same order.

Question 5. If $A = \begin{bmatrix} \lambda & 1 \\ -1 & -\lambda \end{bmatrix}$, then for what value of λ , $A^2 = 0$? (a) 0 (b) ± 1 (c) -1 (d) 1

Solution:

$$(b) \qquad \text{Hint: } A^2 = A \times A = \begin{pmatrix} \lambda & 1 \\ -1 & -\lambda \end{pmatrix} \begin{pmatrix} \lambda & 1 \\ -1 & -\lambda \end{pmatrix}$$
$$= \begin{pmatrix} \lambda^2 - 1 & 0 \\ 0 & \lambda^2 - 1 \end{pmatrix} = 0 \text{ given}$$
$$\Rightarrow \qquad \lambda^2 - 1 = 0 \Rightarrow \lambda^2 = 1; \ \lambda = \pm 1$$

Question 6. $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix} B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, then the values of a and b are (a) a = 4, b = 1(b) a = 1, b = 4(c) a = 0, b = 4(d) a = 2, b = 4

(b)
Hint:
$$A = \begin{pmatrix} 1 & -1 \\ 2 & -1 \end{pmatrix}; B = \begin{pmatrix} a & 1 \\ b & -1 \end{pmatrix}$$

 $A + B = \begin{pmatrix} 1+a & 0 \\ 2+b & -2 \end{pmatrix}$
 $(A + B)^2 = \begin{pmatrix} 1+a & 0 \\ 2+b & -2 \end{pmatrix} \begin{pmatrix} 1+a & 0 \\ 2+b & -2 \end{pmatrix}$

$$= \begin{pmatrix} (1+a)^2 & 0\\ (1+a)(2+b) & 4\\ -2(2+b) \end{pmatrix} \qquad \dots (1) .$$

$$A^2 = A \times A = \begin{pmatrix} 1 & -1\\ 2 & -1 \end{pmatrix} \begin{pmatrix} 1 & -1\\ 2 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}$$

$$B^2 = B \times B = \begin{pmatrix} a & 1\\ b & -1 \end{pmatrix} \begin{pmatrix} a & 1\\ b & -1 \end{pmatrix} = \begin{pmatrix} a^2+b & a-1\\ ab-b & b+1 \end{pmatrix}$$

$$Now \ A^2 + B^2 = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} + \begin{pmatrix} a^2+b & a-1\\ ab-b & b+1 \end{pmatrix}$$

$$= \begin{pmatrix} a^2+b-1 & a-1\\ ab-b & b \end{pmatrix} \qquad \dots (2)$$

$$Given \qquad (A+B)^2 = A^2 + B^2$$

$$\Rightarrow \qquad (1) = (2)$$

$$\Rightarrow \qquad (1) = (2)$$

$$\begin{pmatrix} (1+a)^2 & 0\\ (1+a)(2+b)\\ -2(2+b) \end{pmatrix} = \begin{pmatrix} a^2+b-1 & a-1\\ ab-b & b \end{pmatrix}$$

$$\Rightarrow \qquad a-1 = 0$$

$$\Rightarrow a = 1$$

$$\therefore a = 1, b = 4$$

Question 7.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$$

If ______ is a matrix satisfying the equation $AA^{T} = 9I$, where I is 3×3 identity matrix, then the ordered pair (a, b) is equal to

(a) (2, -1) (b) (-2, 1) (c) (2, 1) (d) (-2, -1)

(d) Hint:
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix}$$

So, $A^{T} = \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{pmatrix}$
Given $AA^{T} = 9I$
 $= 9 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}$
 $\Rightarrow \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{pmatrix} \begin{pmatrix} 1 & 2 & a \\ 2 & 1 & 2 \\ 2 & -2 & b \end{pmatrix} = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}$
 $\Rightarrow \begin{pmatrix} 9 & 0 & a + 4 + 2b \\ 0 & 9 & 2a + 2 - 2b \\ a + 4 + 2b & 2a + 2 - 2b & a^{2} + 4 + b^{2} \end{pmatrix} = \begin{pmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{pmatrix}$
 $\Rightarrow a + 2b = -4 \qquad ...(1)$
and $2a - 2b = -2 \qquad ...(2)$
(1) + (2) $\Rightarrow 3a = -6 \Rightarrow a = -6/3 = -2$
Substituting $a = -2 \text{ in (1) we get}$
 $-2 + 2b = -4$
 $2b = -4 + 2 = -2$
 $b = -2/2 = -1$
 $\therefore a = 2, 1 \qquad b = -1$

Question 8.

If A is a square matrix, then which of the following is not symmetric? (a) A + A^T (b) AA^T (c) A^TA (d) A - A^T

Solution:

(b) AA^T

Question 9.

If A and B are symmetric matrices of order n, where $(A \neq B)$, then

- (a) A + B is skew-symmetric
- (b) A + B is symmetric
- (c) A + B is a diagonal matrix
- (d) A + B is a zero matrix

Solution:

(b) A + B is symmetric

Question 10.

$$A = \begin{bmatrix} a & x \\ y & a \end{bmatrix}$$

and if xy = 1, then det (AA^T) is equal to
(a) (a - 1)²
(b) (a² + 1)²
(c) a² - 1
(d) (a² - 1)²

Solution:

(d) Hint:

$$A = \begin{pmatrix} a & x \\ y & a \end{pmatrix} \therefore A^{T} = \begin{pmatrix} a & y \\ x & a \end{pmatrix}$$

$$|A| = \begin{vmatrix} a & x \\ y & a \end{vmatrix} = a^{2} - xy = a^{2} - 1$$

$$|A^{T}| = \begin{vmatrix} a & y \\ x & a \end{vmatrix} = a^{2} - xy = a^{2} - 1$$

$$\therefore \qquad |AA^{T}| = |A||A^{T}| = (a^{2} - 1)(a^{2} - 1) = (a^{2} - 1)^{2}$$
Outside 11

Question 11.

$$\mathbf{A} = \begin{bmatrix} e^{x-2} & e^{7+x} \\ e^{2+x} & e^{2x+3} \end{bmatrix}$$
 is singular is

The value of x, for which the matrix

- (a) 9
- (b) 8
- (c) 7
- (d) 6

Solution:

(b) Hint: Given A is a singular matrix $\Rightarrow |A| = 0$

(i.e.)
$$\begin{vmatrix} e^{x-2} & e^{7+x} \\ e^{2+x} & e^{2x+3} \end{vmatrix} = 0$$

 $\Rightarrow e^{x-2} \cdot e^{2x+3} - e^{2+x} \cdot e^{7+x} = 0$
 $\Rightarrow e^{3x+1} - e^{9+2x} = 0$
 $\Rightarrow e^{3x+1} = e^{9+2x}$
 $\Rightarrow 3x + 1 = 9 + 2x$
 $\Rightarrow 3x - 2x = 9 - 1$
 $\Rightarrow x = 8$

Question 12.

If the points (x, -2), (5, 2), (8, 8) are collinear, then x is equal to (a) -3 (b) 1/3 (c) 1 (d) 3

Solution:

(d) Hint: Given that the points are collinear So, area of the triangle formed by the points = 0

$$\Rightarrow \frac{1}{2} \begin{vmatrix} x & -2 & 1 \\ 5 & 2 & 1 \\ 5 & 2 & 1 \\ 8 & 8 & 1 \end{vmatrix} = 0 \Rightarrow \begin{vmatrix} x & -2 & 1 \\ 5 & 2 & 1 \\ 5 & 2 & 1 \\ 8 & 8 & 1 \end{vmatrix} = 0 \Rightarrow x (2-8) + 2 (5-8) + 1 (40 - 16) = 0 -6x - 6 + 24 = 0 -6x = -18 \Rightarrow x = 3$$

Question 13.

Solution:

Solution:
(c) Hint: Given
$$\begin{vmatrix} 2a & x_1 & y_1 \\ 2b & x_2 & y_2 \\ 2c & x_3 & y_3 \end{vmatrix} = \frac{abc}{2}$$

 $\Rightarrow \qquad 2\begin{vmatrix} a & x_1 & y_1 \\ b & x_2 & y_2 \\ c & x_3 & y_3 \end{vmatrix} = \frac{abc}{2} \Rightarrow \begin{vmatrix} a & x_1 & y_1 \\ b & x_2 & y_2 \\ c & x_3 & y_3 \end{vmatrix} = \frac{abc}{2}$

Now the area of the triangle with vertices $\left(\frac{x_1}{a}, \frac{y_1}{a}\right), \left(\frac{x_2}{b}, \frac{y_2}{b}\right)$ and $\left(\frac{x_3}{c}, \frac{y_3}{c}\right)$ $\frac{1}{2} \begin{vmatrix} \frac{x_1}{a} & \frac{y_1}{a} & 1 \\ \frac{x_2}{b} & \frac{y_2}{b} & 1 \\ \frac{x_3}{c} & \frac{y_3}{c} & 1 \end{vmatrix}$

multiplying R_1 by a, R_2 by b and R_3 by c and dividing by abc we get

$$\frac{1}{2abc} \begin{vmatrix} x_1 & y_1 & a \\ x_2 & y_2 & b \\ x_3 & y_3 & c \end{vmatrix}$$

Interchanging C_1 and C_3 , then C_2 and C_3

we get

$$\frac{1}{2abc}(-)(-)\begin{vmatrix} a & x_1 & y_1 \\ b & x_2 & y_2 \\ c & x_3 & y_3 \end{vmatrix}$$

$$= \frac{1}{2abc} \times \frac{abc}{4} = \frac{1}{8}$$

Question 14.

If the square of the matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the unit matrix of order 2, then α , β and γ should satisfy the relation.

(a) $1 + \alpha^2 + \beta \gamma = 0$ (b) $1 - \alpha^2 - \beta \gamma = 0$ (c) $1 - \alpha^2 + \beta \gamma = 0$ (d) $1 + \alpha^2 - \beta \gamma = 0$

Solution:

(b) Hint: Let $A = \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix}$ Given A^2 is a unit matrix $\Rightarrow \qquad \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & -\alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\Rightarrow \qquad \begin{pmatrix} \alpha^2 + \beta\gamma & \alpha\beta - \alpha\beta \\ \alpha\gamma - \alpha\gamma & \beta\gamma + \alpha^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\Rightarrow \qquad \alpha^2 + \beta\gamma = 1 \Rightarrow 1 - \alpha^2 - \beta\gamma = 0$ Question 15. If $\Delta = \begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix}$, then $\begin{vmatrix} ka & kb & kc \\ kx & ky & kz \\ kp & kq & kr \end{vmatrix}$ is (a) Δ (b) $k\Delta$ (c) $3k\Delta$ (d) $k^{3}\Delta$ Solution:

(d) Hint: Given
$$\Delta = \begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix}$$

$$\therefore \qquad \begin{vmatrix} ka & kb & kc \\ kx & ky & kz \\ kp & kq & kr \end{vmatrix} = (k)(k)(k) \begin{vmatrix} a & b & c \\ x & y & z \\ p & q & r \end{vmatrix}$$
$$= k^{3}\Delta$$

Question 16.

Question 16.

$$\begin{vmatrix} 3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix} = 0$$

is
(a) 6
(b) 3
(c) 0

(d) -6

Solution:

(c) Hint
.
Let
$$\Delta = \begin{vmatrix} 3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix}$$

 $= \begin{vmatrix} -x & -x & -x \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix} R_1 \rightarrow R_1 + R_2 + R_3$
Put $x = 0$ we get $\Delta = 0$

Put
$$x = 0$$
 we get $\Delta = 0$
 $\therefore x = 0$ is a root

Question 17.

$$\mathbf{A} = \begin{vmatrix} \mathbf{0} & \mathbf{a} & -\mathbf{b} \\ -\mathbf{a} & \mathbf{0} & \mathbf{c} \\ \mathbf{b} & -\mathbf{c} & \mathbf{0} \end{vmatrix}$$

in ant of is

The value of the determine (a) -2abc

(b) abc (c) 0 (d) $a^2 + b^2 + c^2$

Solution:

(c) Hint:
$$|\mathbf{A}| = \begin{vmatrix} 0 & a & -b \\ -a & 0 & c \\ b & -c & 0 \end{vmatrix} = 0$$

(:: the determinant of a skew symmetric matrix is 0)

Question 18.

If x_1 , x_2 , x_3 as well as y_1 , y_2 , y_3 are in geometric progression with the same common ratio, then the points (x_1, y_1) , (x_2, y_2) , (x_3, y_3) are

(a) vertices of an equilateral triangle

(b) vertices of a right-angled triangle

(c) vertices of a right-angled isosceles triangle

(d) collinear

Solution: (d) collinear

Question 19.

If [.] denotes the greatest integer less than or equal to the real number under consideration and $-1 \le x < 0$, $0 \le y < 1$, $1 \le z \le 2$, then the value of the

 $\begin{vmatrix} x \rfloor + 1 & \lfloor y \rfloor & \lfloor z \rfloor \\ \lfloor x \rfloor & \lfloor y \rfloor + 1 & \lfloor z \rfloor \\ \lfloor x \rfloor & \lfloor y \rfloor & \lfloor z \rfloor + 1 \end{vmatrix}$ $(a) \lfloor z \rfloor$ $(b) \lfloor y \rfloor$ $(c) \lfloor x \rfloor$ $(d) \lfloor x \rfloor + 1$

(a) Hint: From the given values

 $\lfloor x \rfloor = -1$; $\lfloor v \rfloor = 0$ and $\lfloor z \rfloor = 1$ $\therefore \text{ The given determinant is } \begin{vmatrix} 0 & 0 & 1 \\ -1 & 1 & 1 \\ -1 & 0 & 2 \end{vmatrix} = 1(0+1) = 1 = \lfloor z \rfloor$ 0 0 1

Question 20.

 $\begin{vmatrix} a & 2b & 2c \\ 3 & b & c \end{vmatrix} = 0,$ If $a \neq b$, b, c satisfy $\begin{vmatrix} 4 & a & b \end{vmatrix}$ then $abc = \dots$ (a) a + b + c(b) 0 (c) b³ (d) ab + bc

Solution:

(c) Hint: Expanding along R₁, $a(b^2 - ac) - 2b(3b - 4c) + 2c(3a - 4b) = 0$ $(b^2 - ac)(a - b) = 0$ $b^2 = ac$ (or) a = b \Rightarrow abc = b(b²) = b³

Question 21.

 $A = \begin{vmatrix} -1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2 \end{vmatrix} \text{ and } B = \begin{vmatrix} -2 & 4 & 2 \\ 6 & 2 & 0 \\ -2 & 4 & 8 \end{vmatrix},$ then B is given by If (a) B = 4A(b) B = -4A(c) B = -A(d) B = 6A

(b) Hint : A =
$$\begin{vmatrix} -1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2 \end{vmatrix}$$

Now B = $\begin{vmatrix} -2 & 4 & 2 \\ 6 & 2 & 0 \\ -2 & 4 & 8 \end{vmatrix} = (2)(2) \begin{vmatrix} -2 & 4 & 2 \\ 3 & 1 & 0 \\ -1 & 2 & 4 \end{vmatrix}$
= $4 \begin{vmatrix} -2 & 4 & 2 \\ 3 & 1 & 0 \\ -1 & 2 & 4 \end{vmatrix}$
R₁ \leftrightarrow R₃
= $(-4) \begin{vmatrix} -1 & 2 & 4 \\ 3 & 1 & 0 \\ -2 & 4 & 2 \end{vmatrix}$ = $-4A \Rightarrow B = -4A$

Question 22.

If A is skew-symmetric of order n and C is a column matrix of order n \times 1, then CT AC is

- (a) an identity matrix of order n
- (b) an identity matrix of order 1
- (e) a zero matrix of order I
- (d) an Identity matrix of order 2

Solution:

(c) a zero matrix of order I Hint: Given A is of order $n \times n$ C is of order $n \times 1$ so, CT is of order $1 \times n$ Now C^TAC is of order $\binom{1 \times n}{n \times n} = 1 \times 1$ Let it be equal to (x) say Taking transpose on either side (C^T, AC)^T (x)^T. (i.e.) C^T(A^T)(C) = x C^T(-A)(C) = x $\Rightarrow C^{T}AC = -x$ $\Rightarrow x = -x$ $\Rightarrow 2x = 0$ $\Rightarrow x = 0$

Question 23.

The matrix A satisfying the equation
$$\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1 & -4 \\ 1 & 0 \end{bmatrix}$$
 (c)
$$\begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$$
 (d)
$$\begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix}$$

Solution:

(c)
Hint: Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Given $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$
 \Rightarrow
 $\begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$
 \Rightarrow
 $\begin{pmatrix} a+3c & b+3d \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$
 \Rightarrow
 $c = 0 \text{ and } d = -1$
 $a+3c = 1, \quad b+3d = 1$
 $a + 0 = 1, \quad b+3(-1) = 1$
 $a = 1, \quad b-3 = 1, b = 4$
 \therefore
 $A = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix}$

Question 24.

If A + I =
$$\begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$$
, then (A + I) (A - I) is equal to

$$(a) \begin{bmatrix} -5 & -4 \\ 8 & -9 \end{bmatrix} \qquad (b) \begin{bmatrix} -5 & 4 \\ -8 & 9 \end{bmatrix} \qquad (c) \begin{bmatrix} 5 & 4 \\ 8 & 9 \end{bmatrix} \qquad (d) \begin{bmatrix} -5 & -4 \\ -8 & -9 \end{bmatrix}$$

Solution:
$$(a) \qquad \text{Hint: } A + I = \begin{pmatrix} 3 & -2 \\ 4 & 1 \end{pmatrix} \\ \Rightarrow \quad A + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 \\ 4 & 1 \end{pmatrix} \\ \therefore \quad A = \begin{pmatrix} 3 & -2 \\ 4 & 1 \end{pmatrix} \\ \therefore \quad A = \begin{pmatrix} 3 & -2 \\ 4 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ 4 & 0 \end{pmatrix} \\ \therefore \quad A = \begin{pmatrix} -4 & -4 \\ 8 & -8 \end{pmatrix} \\ \therefore \quad (A + I) (A - I) = A^2 - I^2 = A^2 - I \\ = \begin{pmatrix} -4 & -4 \\ 8 & -8 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -5 & -4 \\ 8 & -9 \end{pmatrix}$$

Question 25.

Let A and B be two symmetric matrices of the same order. Then which one of the following statements is not true? (a) A + B is a symmetric matrix

- (b) AB is a symmetric matrix
- (c) $AB = (BA)^T$
- (d) $A^{T}B = AB^{T}$

Solution:

(b) AB is a symmetric matrix