Chapter - 9

CO-ORDINATION COMPOUNDS

QUESTIONS

VSA QUESTIONS (1 - MARK QUESTIONS)

- 1. Define the term coordination compound?
- 2. Write the names of counter ions in
 - (i) Hg [Co (SCN)₄] and (ii) [Pt(NH₃)₄] Cl₂.
- 3. Write the oxidation state of nickel in $[Ni(CO)_{4}]$
- *4. What is the coordination number of central atom in $[Co(C_2O_4)_3]^{3-}$?

[**Ans.** : 6]

- 5. What is the coordination number of iron in [Fe (EDTA)]⁻ ? [Ans.: 6]
- 6. Write the name of a complex compound used in chemotherapy.

[Ans.: Cis-Platin. [Pt(NH₃)₂ Cl₂]

- 7. Name the compound used to estimate the hardness of water volumetrically.
- 8. Give the IUPAC name of [Pt Cl_2 (NH₂CH₃) (NH₃)₂] Cl.
- *9. How many geometrical isomers are possible for the tetrahedral complex $[Ni(CO)_{a}]$.

[Ans.: No isomer, as the relative positions of the unidentate ligands attached to the central metal atom are same with respect to each other].

10. Arrange the following in the increasing order of conductivity in solution.

 $[Ni(NH_3)_6]Cl_2$; $[Co(NH_3)_6]Cl_3$ and $[CoCl_2(en)_2]$ Cl_3

11. Arrange the following ligands in increasing order of Δ_o (Crystal field splitting energy) for octahedral complexes with a particular metal ion.

 $\mathrm{C}l^{-}$, $\mathrm{NH_{3}}$, I^{-} , CO , en.

- 12. Write I.U.P.A.C. name of Tollens' reagent.
- 13. Which is more stable? $K_3[Fe(CN)_6]$ or $K_4[Fe(CN)_6]$
- 14. Calculate the overall dissociation equilibrium constant for the $[Cu(NH_3)_4]^{2+}$ ion. Given that overall stability constant (β_4) for this complex is 2.1 × 10¹³. [Ans.: 4.7 × 10⁻¹⁴]
- *15. What is a chelate ligand? Give one example.
- 16. Write the I.U.P.A.C. name of Li[AlH₄].
- 17. Name one homogeneous catalyst used in hydrogenation of alkenes.
- *18. Name the types of isomerism shown by coordination entity : [CrCl₂(Ox)₂]³⁻
- *19. $[Ti(H_2O)_6]Cl_3$ is coloured but on heating becomes colourless. Why?
- *20. Write the IUPAC name of ionization isomer of [Co(NH₃)₅(SO₄)] Br
- *21. Write the formula and the name of the coordinate isomer of $[Co(en)_3]$ $[Cr(CN)_6]$.

[Ans.: $[Cr(en)_3]$ $[Co(CN)_6]$ Tris- (ethane -1, 2, diammine) chromium (III) hexacyanocobaltate (III)]

SA(I) TYPE QUESTIONS (2-MARK QUESTIONS)

- *22. Write two differences between a double salt and a coordination compound with the help of an example of each.
- 23. Mention the main postulates of Werner's Theory.
- 24. Define (a) Homoleptic and (b) Heteroleptic complexes with the help of one example of each.
- 25. In the following coordination entity: [Cu(en)₂]²⁺
 - (a) Identify the ligand involved and
 - (b) Oxidation state of copper metal.
- 27. Calculate the magnetic moments of the following complexes:
 - (i) $[Fe(CN)_6]^{4-}$ (ii) $[CoF_6]^{3-}$
- 28. Explain the following:
 - (a) $[Fe(CN)_6]^{3-}$ is an inner orbital complex whereas $[FeF_6]^{3-}$ is an outer orbital complex.
 - (b) NH₃ acts as complexing agent but NH₄⁺ does not.

- 29. What type of structural isomerism is represented by the following complexes:
 - (a) $[Mn(CO)_5(SCN)]$ and $[Mn(CO)_5(NCS)]$
 - (b) $[Co(NH_3)_5(NO_3)] SO_4$
- 30. How are complex compounds applicable in (a) electroplating of silver, gold or other noble metals (b) in photography.
- 31. Explain on the basis of Valance Bond Theory that diamagnetic $[Ni(CN)_4]^{2-}$ has square planar structure and paramagnetic $[NiCl_4]^{2-}$ ion has tetrahedal geometry.
- 23. Explain as to how the two complexes of nickel $[Ni(CN)_4]^{2-}$ and $Ni(CO)_4$ have different structures but do not differ in their magnetic behaviours. (At. no. of Ni = 28).
- 34. Draw the structures of geometrical isomers of the coordination complexes— $[Co(NH_3)_3Cl_3]$ and $[CoCl_2(en)_2]^+$
- 35. Write the IUPAC name of the complexes:
 - (a) $[NiCl_2 (PPh_3)_2]$ (b) $[Co(NH_3)_4 Cl(NO_2)]$ Cl
 - (c) $K[Cr(H_2O)_2 (C_2O_4)_2]$

[Hint.: (a) Dichloridobis(triphenylphosphine)nickel (II);

- 36. Using IUPAC norms write the formulae for the following:
 - (a) Terabromidocuprate (II)
 - (b) Pentaamminenitrito-O- Cobalt (III)
- *37. How does EDTA help as a cure for lead poisoning?

[Ans.: Calcium in Ca-EDTA complex is replaced by lead in the body. The more soluble complex lead-EDTA is eliminated in urine].

37. A complex is prepared by mixing CoCl₃ and NH₃ in the molar ratio of 1:4. 0.1 m solution of this complex was found to freeze at -0.372°C. What is the formula of the complex?

 K_f of water = 1.86°C/m

[Hint:
$$\Delta T_f = i K_f \times m = i \times 1.86 \times 0.1$$

 $\Delta T_f(obs) = 0.373$ °C

This means each molecule of complex dissociates into two ions. Hence the formula is i = 2

*38. The [Mn(H₂O)₆]²⁺ ion contains five unpaired electrons while [Mn(CN)₆]⁴⁻ ion contains only one unpaired electron. Explain using Crystal Field Theory:

SA (II) TYPE QUESTIONS (3 - MARK QUESTIONS)

- 39. Account for the following -
 - (i) [NiCl₄]²⁻ is paramagnetic while [Ni(CO)₄] is diamagnetic though both are tetrahedral.
 - (ii) $[Fe(H_2O)_6]^{3+}$ is strongly paramagnetic whereas $[Ni(NH_3)_6]^{2+}$ weakly paramagnetic.
 - (iii) $[Co(NH_3)_6]^{3+}$ is an inner orbital complex whereas $[Ni(MH_3)_6]^{2+}$ is in outer orbital complex.
- 40. Compare the following complexes with respect to their shape, magnetic behaviours and the hybrid orbitals involved.
 - (a) $[CoF_6]^{3-}$
 - (b) $[Cr(NH_3)_6]^{3+}$
 - (c) $[Fe(CN)_{e}]^{4-}$

[Atomic Number : Co = 27, Cr = 24, Fe = 26]

- 41. Draw the structure of
 - (a) cis-dichloridotetracyanochromate (II) ion
 - (b) mer-triamminetrichloridocobalt (III)
 - (c) fac-triaquatrinitrito-N-cobalt (III)
- 42. Name the central metal atom/ion present in (a) Chlorophyll (b) Haemoglobin (c) Vitamin B-12. [Ans.: (a) Mg (b) Fe; (c) Co.]
- 43. A metal complex having composition $Cr(NH_3)_4$ Cl_2Br has been isolated in two forms 'A' and 'B'. The form 'A' reacts with $AgNO_3$ solution to give white precipitate which is readily soluble in dilute aqueous ammonia, whereas 'B' gives a pale yellow precipitate which is soluble in concentrated ammonia solution. Write the formula of 'A' and 'B'. Also mention the isomerism which arises among 'A' and 'B'.

[Hint : A = [Cr(NH₃)₄ BrCl] Cl; B = [Cr(NH₃)₄Cl₂] Br are ionisation isomers].

- 44. Write the limitations of Valence Bond Theory.
- 45. Draw a sketch to show the splitting of d-orbitals in an octahedral crystal field state for a d⁴ ion. How the actual electronic configuration of the split

d-orbitals in an octahedral crystal field is decided by the relative values of Δ_0 and pairing energy (P)?

- *46. For the complex [Fe(en)2Cl2]Cl identify
 - (a) the oxidation number of iron.
 - (b) the hybrid orbitals and the shape of the complex.
 - (c) the magnetic behaviour of the complex.
 - (d) the number of geometrical isomers.
 - (e) whether there is an optical isomer also?
 - (f) name of the complex. [At. no. of Fe = 26]
- 48. A chloride of fourth group cation in qualitative analysis gives a green coloured complex [A] in aqueous solution which when treated with ethane -1, 2-diamine (en) gives pale yellow solution [B] which on subsequent addition of ethane -1, 2-diamine turns to blue/purple [C] and finally to violet [D]. Identify [A], [B], [C] and [D] complexes,

$$\begin{aligned} & [\textbf{Hint.} : \text{Nickel}, \ [A] = [\text{Ni}(\text{H}_2\text{O})_6]^{2+} \ ; & [B] = [\text{Ni}(\text{H}_2\text{O})_4 \ (\text{en})]^{2+} \ ; \\ & [C] = [\text{Ni}(\text{H}_2\text{O})_2 \ (\text{en})_2]^{2+} \ ; & [D] = [\text{Ni}(\text{en})_3]^{2+}. \end{aligned}$$