## **ELECTRONIC DEVICES TEST 3**

## Number of Questions: 25

*Directions for questions 1 to 25:* Select the correct alternative from the given choices.

- 1. The equation which relates diffusion constant with mobility is
  - (A) Poisson's equation (B) Continuity equation
  - (C) Einstein's equation (D) Current equation
- 2. The collector cut off current  $I_{CBO}$  reduces considerably by doping the
  - (A) emitter with low level of impurity
  - (B) base with high level of impurity
  - (C) collector with high level of impurity
  - (D) emitter with high level of impurity
- **3.** Frequently used applications of a PIN diode is
  - (A) fast switching diode(B) harmonic generator(C) voltage regulator(D) peak clipper
- 4. Circuit symbol of schottky barrier diode is \_\_\_\_\_.

- 5. Zener breakdown occurs for \_\_\_\_\_. (A)  $V_z > 6V$  (B)  $V_z < 6V$ (C)  $V_z = 6$  volts (D) Independent of  $V_z$
- **6.** Match list I with list II

| List I (Diode) |                |           |             | List II Application           |  |  |  |
|----------------|----------------|-----------|-------------|-------------------------------|--|--|--|
| Р.             | zener          | diode     | 1.          | Tuning circuits               |  |  |  |
| Q.             | Schottky diode |           | 2.          | Current controlled attenuator |  |  |  |
| R.             | PIN di         | ode       | 3.          | Voltage reference             |  |  |  |
| S.             | Varact         | tor diode | 4.          | High frequency switch         |  |  |  |
| (A)            | <i>P</i> −2,   | Q-3,      | <i>R</i> –1 | , <i>S</i> –4                 |  |  |  |
| (B)            | <i>P</i> –4,   | Q–2,      | R-3         | s, <i>S</i> -1                |  |  |  |
| (C)            | ₽−3,           | Q-1,      | R-4         | , <i>S</i> –2                 |  |  |  |

- (D) P-3, Q-4, R-2, S-1
- 7. In silicon at  $T = 300^{\circ}K$ , the thermal equilibrium concentration of holes are  $4.5 \times 10^{15}$  cm<sup>-3</sup>. The electron concentration is

| (A) | $0.3 	imes 10^{-6} 	ext{ cm}^{-3}$ | (B) | $5 \times 10^{4} \text{ cm}^{-3}$   |
|-----|------------------------------------|-----|-------------------------------------|
| (C) | $5 \times 10^4 \text{ m}^{-3}$     | (D) | $0.3 \times 10^{-6} \text{ m}^{-3}$ |

- 8. A sample of silicon at  $T = 300^{\circ}$ K is doped with arsenic at a concentration of  $2.5 \times 10^{13}$  cm<sup>-3</sup> and with boron of  $1 \times 10^{13}$  cm<sup>-3</sup>. The material is
  - (A) *n* type with  $n_o = 1.5 \times 10^{13} \text{ cm}^{-3}$
  - (B) *n* type with  $n_o = 1.5 \times 10^7 \text{ cm}^{-3}$
  - (C) p type with  $p_0 = 1.5 \times 10^{13} \text{ cm}^{-3}$
  - (D) p type with  $p_0 = 1.5 \times 10^7 \text{ cm}^{-3}$

- **9.** 8 volt is applied across a 2 cm long semiconductor bar. The average drift velocity is  $10^5$  cm/s. The electron mobility is
  - (A)  $3 \times 10^4$  cm<sup>2</sup>/V-s (B) 4396 cm<sup>2</sup>/V-s
  - (C)  $2500 \text{ cm}^2/\text{V}-\text{s}$  (D)  $18000 \text{ cm}^2/\text{V}-\text{s}$
- **10.** In the following circuit the transistor is in \_\_\_\_\_ mode.



- (A) saturation(B) reverse active(C) cut off(D) forward active
- 11. A silicon diode has reverse saturation current of 2.6  $\mu$ A at 300°K. Find forward voltage for a forward current of 12 mA.
  - (A) 0.42 V
    (B) 0.43 V
    (C) 0.49 V
    (D) 0.51 V
- 12. A pn junction has built in potential of 0.8 V. The depletion layer width at a reverse bias of 1.2 V is 4 μm. For a reverse bias of 8.2V. the depletion layer width will be
  (A) 8.48 μm
  (B) 6.48μm
  - (C)  $0.48 \,\mu\text{m}$  (D)  $4 \,\mu\text{m}$
- **13.** If the base width of a BJT is increased by a factor of 4, then what is the collector current change
  - (A) collector current is independent of base width
  - (B) increased by a factor of 4
  - (C) neither increased nor decreased
  - (D) decreased by a factor of 4
- 14. In a bipolar junction transistor, the base current  $I_B = 100 \ \mu\text{A}$  and the collector current is  $I_c = 4.6 \ \text{mA}$ . The  $\alpha$  is
  - (A) 0.862
    (B) 0.978
    (C) 0.962
    (D) 0.876
- **15.** A BJT has  $I_B = 20\mu$ A,  $\beta = 99$  and  $I_{co} = 2\mu$ A what is the collector current  $I_c$ .
  - (A) 2.8 mA (B) .28 mA
  - (C) 2.9 mA (D) 0.29 mA
- 16. Photons of energy  $1.6 \times 10^{-18}J$  are incident on photo diode which has a responsivity of 0.6 A/W. If the optical power level is 10  $\mu$ W. The photo current generated is
  - (A) 6μA
     (B) 7μA
     (C) 5 μA
     (D) 8 μA
- 17. In a *CB* configuration, current gain factor is 0.8, if the emitter current is 1.6 mA, the value of  $I_p$  is
  - (A) 0.32 mA (B) 3.2 mA
  - (C) 0.41 mA (D) 4.1 mA



## 3.132 | Electronic Devices Test 3

18. A silicon pn junction diode under reverse bias has depletion region of width 12 µm. The relative permitivity of silicon  $\varepsilon_r = 11.7$  and the permitivity of free space is  $\varepsilon_0 = 8.85 \times 10^{-12}$  F/m.

The depletion capacitance of the diode per square meter is

| (A) | 8.6 μF | (B) | 7.6 μF |
|-----|--------|-----|--------|
| (C) | 6.8 μF | (D) | 8.3 µF |

- 19. A BJT has a base current of 250  $\mu$ A and emitter current of 25 mA. Determine collector current.
  - (A) 19.8 mA (B) 24.75 mA
  - (C) 22.8 mA (D) 26.2 mA
- **20.** If for a Si npn transistor the  $V_{BE} = 0.8V$  and  $V_{CB} = 0.3$  V, then the transistor is operating in the
  - (A) Inverse active mode (B) cut off region
  - (C) Active region (D) Saturation region
- **21.** In a Si sample the electron concentration drops linearly from  $10^{20}$  cm<sup>-3</sup> to  $10^{18}$  cm<sup>-3</sup> over a length of 3  $\mu$ m. The current density due to electron diffusion current is  $(D_n = 36 \text{ cm}^2/s)$ 
  - (A)  $2.8 \times 10^4 \text{ A/cm}^2$  (B)  $1.9 \times 10^6 \text{ A/cm}^2$
  - (C)  $2.8 \times 10^{6} \text{ A/cm}^{2}$  (D)  $1.9 \times 10^{4} \text{ A/cm}^{2}$
- 22. A *n* type silicon sample contains a donor concentration of  $N_D = 10^{18}$  cm<sup>-3</sup>. The minority carrier hole lifetime is  $\tau_{po} = 12 \mu s$ .

The thermal equilibrium generation rate for electron is (A)  $1.67 \times 10^7 \text{ cm}^{-3} s^{-1}$  (B)  $1.67 \times 10^9 \text{ cm}^{-3} s^{-1}$ (C)  $2.3 \times 10^{-9} \text{ cm}^{3} s^{-1}$  (D)  $2.3 \times 10^7 \text{ cm}^{3} s^{-1}$ 

23. Silicon is doped with boron to a concentration of  $6 \times 10^{17}$  atoms/cm<sup>3</sup>. Assume the intrinsic carrier concentration of silicon to be  $1.5 \times 10^{10}$ /cm<sup>3</sup> and the value of  $V_T$  to be 25mV at 300°K.

Compared to the undopped silicon, the fermi level of doped silicon is \_\_\_\_\_.

- (A) 0.427eV(B) 0.326 eV(C) 0.356 eV(D) 0.457 eV
- **24.** A *Si* sample *P* is doped with  $10^{16}$  atoms/cm<sup>3</sup> of boron. Another sample *Q* of identical dimension is doped with  $10^{16}$  atoms/cm<sup>3</sup> phosphorous. The ratio of electron to hole mobility is 4. The ratio of conductivity of sample *P* to *Q* is \_\_\_\_\_.

| (A) | $\frac{1}{2}$ | (B) | $\frac{1}{3}$ |
|-----|---------------|-----|---------------|
| (C) | $\frac{1}{4}$ | (D) | $\frac{2}{3}$ |

**25.** A silicon PN junction at  $T = 300^{\circ}$ K has  $N_D = 10^{12}$  cm<sup>-3</sup> and  $N_A = 10^{15}$  cm<sup>-3</sup>. The built in voltage is

| A          |     |        |
|------------|-----|--------|
| (A) .297 V | (B) | .368 V |
| (C) .397 V | (D) | .289 V |

| Answer Keys  |              |             |              |              |             |             |             |              |              |
|--------------|--------------|-------------|--------------|--------------|-------------|-------------|-------------|--------------|--------------|
| 1. C         | <b>2.</b> D  | <b>3.</b> A | <b>4.</b> D  | <b>5.</b> B  | <b>6.</b> D | <b>7.</b> B | <b>8.</b> A | <b>9.</b> C  | <b>10.</b> C |
| 11. C        | 12. A        | 13. D       | 14. B        | 15. D        | 16. A       | 17. A       | 18. A       | <b>19.</b> B | <b>20.</b> C |
| <b>21.</b> B | <b>22.</b> A | 23. D       | <b>24.</b> C | <b>25.</b> C |             |             |             |              |              |

## HINTS AND EXPLANATIONS

Choice (C)

1. Einstein's relation  $\frac{D}{\mu} = V_T$ 

2. 
$$I_C = \mu I_E + I_{CBO}$$
  
$$\mu = \frac{I_C - I_{CBO}}{I_E}$$

 $\mu$  increases,  $I_{CBO}$  decreases  $\mu$  increases means emitter doping is high Choice (D)

- 3. Choice (A)
- 4. Choice (D)
- 5. Choice (B)
- 6. Choice (D)

7. 
$$n_0 = \frac{n_i^2}{p_0} (n_i^2 = n_0 P_0)$$
  
for si,  $n_i = 1.5 \times 10^{10}$   
 $n_0 = \frac{(1.5 \times 10^{10})^2}{4.5 \times 10^{15}} = 5 \times 10^4 \text{ cm}^{-3}$  Choice (B)

8. Since 
$$N_d > N_a$$
, material is n type  $n_0 = N_D - N_A$   
 $= 2.5 \times 10^{13} - 1 \times 10^{13}$   
 $= 1.5 \times 10^{13} \text{ cm}^3$  Choice (A)  
9.  $E = \frac{V}{L} = \frac{8}{2} = 4 \text{V/cm}$   
 $V_d = \mu E \,\mu = \frac{V_d}{E}$   
 $= \frac{10^5}{4} = 2500 \text{ cm}^2/\text{V-s}$  Choice (C)  
10. Emitter base– junction is in reverse bias condition  
Collector base junction is also in reverse bias condition.

 $\therefore$  Both are in RB. So it is in cut off mode

I = 
$$I_0 e^{(V/nV_T - 1)}$$
  
.012 = 2.6 × 10<sup>-6</sup>  $e^{\left(\frac{V}{2 \times .026^{-1}}\right)}$   
V = 0.49 Volts Choice (C)

rate for minority and majority carrier

goes down by 0.457 eV as silicon is

Choice (B)

Choice (C)

Choice (B)

12. 
$$W \approx \sqrt{V_{i}}$$
  
 $V_{i} = V_{0} + V_{x}$   
 $\frac{W_{i}}{W_{z}} = \sqrt{\frac{V_{x} + V_{xx}}{V_{w}^{1} + V_{xx}}}}$   
 $\frac{W_{i}}{W_{z}} = \sqrt{\frac{V_{x} + V_{xx}}{V_{w}^{1} + V_{xx}}}}$   
 $\frac{W_{i}}{W_{z}} = \sqrt{\frac{V_{x} + V_{xx}}{V_{w}^{1} + V_{xx}}}}$   
 $\frac{4\mu m}{W_{z}} = \sqrt{\frac{V_{z}}{2}}$   
 $\frac{4\mu m}{W_{z}} = \frac{1}{2}$   
 $\frac{1}{2}$   
 $\frac{4\mu m}{W_{z}} = \frac{1}{2}$   
 $\frac{1}{2}$   
 $\frac$ 

 $18. \ C = \frac{\varepsilon_0 \varepsilon_r A}{d}$ 

 $\frac{C}{A} = \frac{\varepsilon_0 \varepsilon_x}{d} = \frac{8.85 \times 10^{-12} \times 11.7}{12 \times 10^{-6}} = 8.6 \,\mu\text{F}.$  Choice (A)

Choice (D)

Choice (A)

25. 
$$V_{bi} = V_T \ell n \left( \frac{N_A N_D}{n_i^2} \right)$$
  
 $V_T = 26 \text{ mV}$   
 $V_{bi} = .026 \ell n \frac{10^{15} \times 10^{12}}{(1.5 \times 10^{10})^2} = .397 \text{V.}$  Choice (C)