The Acid-Base Chemistry

खालील प्रश्नांची एका वाक्यात उत्तरे लिहा.

दर्शक म्हणजे काय?

उत्तर: संयुगांचे आम्लधर्म अथवा आम्लारिधर्म गुणधर्म ओळखण्यासाठी ज्या नैसर्गिक किंवा रासायनिक पदार्थांचा उपयोग होतो, त्यांना दर्शक असे म्हणतात.

3.3 आम्ल व आम्लारीची संहती

#2. पदार्थाची OH संहती वाढविल्यास कशात वाढ होईल व काय कमी होईल?

उत्तर: पदार्थाची OH संहती वाढिवल्यास त्याचे आम्लारिधर्मी गुणधर्म व pH मूल्य वाढेल.

#3. आम्लाची तीव्रता केव्हा वाढते?

उत्तरः जेव्हा आम्लाचे जलीय द्रावण जास्त H⁺ आयन देते, तेव्हा आम्लाची तीव्रता वाढते.

#4. दातांची झीज रोखणाऱ्या दूथपेस्टमध्ये विशेष काय असते?

उत्तर: दूथपेस्टमधील कॅल्शिअम फ्लोराइड व इतर आम्लारियुक्त पदार्थ या घटकांमुळे दातांची झीज रोखली जाते.

लाल मुंगीने दंश केल्यास काय होते?

उत्तरः लाल मुंगीने दंश केल्यास त्वचेवर फॉर्मिक आम्ल पडल्यामुळे तेथे खाज येते व आग होते.

3.4 आम्ल, आम्लारी व त्यांची क्रियाशीलता

आम्लारीचे सर्वसाधारण गुणधर्म कोणते?

उत्तर: आम्लारी हे स्पर्श केल्यास बुळबुळीत असून चवीला तुरट व चरचरणारे असतात.

7. कॅटायन म्हणजे काय?

उत्तर: धनभारित आयनांना कॅटायन म्हणतात.

अॅनायन म्हणजे काय?

उत्तर: ऋणभारित आयनांना ॲनायन म्हणतात.

3.6 क्षारांसंबंधी अधिक काही

एखाद्या क्षाराचे तीव्र आम्ल आणि विरल आम्लारी यांचे pH मृल्य काय असते?

उत्तर: एखाद्या क्षाराचे तीव्र आम्ल आणि विरल आम्लारी यांचे pH मूल्य 7 पेक्षा कमी असते.

एखाद्या क्षाराचे विरल आम्ल आणि तीव्र आम्लारी यांचे pH मूल्य काय असते?

उत्तर: एखाद्या क्षाराचे विरल आम्ल आणि तीव्र आम्लारी यांचे pH मूल्य 7 पेक्षा अधिक असते.

11. उदासीन क्षार म्हणजे काय?

उत्तर: ज्या क्षारांचे pH मूल्य 7 असते अशा क्षारांना उदासीन क्षार म्हणतात.

12. केक स्पंजसारखा सच्छिद्र होण्यासाठी कोणता पदार्थ मिसळतात?

उत्तर: केक स्पंजसारखा सिच्छिद्र होण्यासाठी त्यामध्ये बेकिंग सोडा मिसळतात.

13. बेकिंग सोड्याचे रासायनिक नाव काय?

उत्तरः बेकिंग सोड्याचे रासायनिक नाव सोडिअम हायड्रोजन कार्बोनेट किंवा सोडिअम बायकार्बोनेट (NaHCO₃) आहे.

#14. कोणत्या घटकांपासून बेकिंग पावडर बनते?

उत्तरः बेकिंग पावडर हे स्टार्च, सोडिअम हायड्रोजन कार्बोनेट आणि पोटॅशिअम हायड्रोजन टाटरिट (टार्टीरिक आम्लाचे क्षार) यांचे मिश्रण आहे.

 विरंजक चूर्णाचे (ब्लीचिंग पावडर) रासायनिक रेणुसूत्र लिहा. |मार्च 15|

उत्तर: विरंजक चूर्णाचे रासायनिक रेणुसूत्र CaOCl2 आहे.

16. बाजारात उपलब्ध असलेल्या ब्लीचिंग पावडरच्या प्रकाराचे वर्गीकरण कसे होते?

उत्तर: बाजारात उपलब्ध असलेल्या ब्लीचिंग पावडरचे विविध प्रकार हे त्यामध्ये उपलब्ध क्लोरीनच्या शेकडा प्रमाणानुसार वर्गीकृत केले जातात.

17. कार्बनडायऑक्साइडची ब्लीचिंग पावडरवर काय अभिक्रिया होते?

उत्तरः ब्लीचिंग पावडर व कार्बनडायऑक्साइड यांची अभिक्रिया होऊन कॅल्शिअम कार्बोनेट आणि क्लोरीन वायू तयार होतात.

> $CaOCl_{2(s)}$ + $CO_{2(g)} \rightarrow CaCO_{3(s)}$ + $Cl_{2(g)} \uparrow$ ब्लीचिंग कार्बन कॅल्शिअम क्लोरीन पावडर डायऑक्साइड कार्बोनेट

18. सोडिअम किंवा पोटॅशिअम हायड्रॉक्साइडच्या जलीय द्रावणाबरोबर तेल किंवा चरबी उकळविल्यास काय होते?

उत्तरः सोडिअम किंवा पोटॅशिअम हायड्रॉक्साइडच्या द्रावणाबरोबर तेल किंवा चरबी उकळविल्यास कार्बोक्सिलिक आम्लाचे सोडिअम किंवा पोटॅशिअम क्षार तयार होतात. या क्षारांनाच साबण म्हणतात.

आम्ल ही संज्ञा स्पष्ट करा. 1.

लॅटिन भाषेत ॲसिडस म्हणजे आंबट. उत्तरः i.

निसर्गातील काही पदार्थांना आंबट चव असते.

उदा. कैरी, चिंच, आवळा इ.

- iii. या पदार्थांना असलेली आंबट चव ही त्यांतील आम्लधर्मी घटकांमुळे येते.
- या पदार्थांची द्रावणे आम्लघर्मी असतात.
- विविध प्रकारचे दर्शक सांगा. 2.

उत्तरः विविध प्रकारचे दर्शक पुढीलप्रमाणे आहेतः

- नैसर्गिक दर्शक i.
- संश्लिष्ट दर्शक ii.
- वैश्विक दर्शक iv. गंध दर्शक.
- नैसर्गिक आणि संश्लिष्ट दर्शक कोणते आहेत?
- नैसर्गिक दर्शक : निसर्गातील जे पदार्थ संयुग उत्तरः i. आम्लघर्मी, की आम्लारिधर्मी आहे हे ओळखण्यासाठी वापरले जातात, त्यांना नैसर्गिक दर्शक म्हणतात.

उदा. हळद, बीट इ.

संश्लिष्ट दर्शक: संयुग आम्लधर्मी, की ii. आम्लारिधर्मी हे ओळखण्यासाठी ज्या कृत्रिम पदार्थांचा वापर केला जातो, त्यांना संश्लिष्ट दर्शक म्हणतात.

उदा. फिनॉल्फर्येलिन, मिथिल ऑरेंज इ.

तीव्र आणि सौम्य आम्ले म्हणजे काय?

उत्तर: तीव्र आम्ले : जेव्हा आम्ले त्यांच्या जलीय द्रावणात जास्त H⁺ आयन देतात, तेव्हा त्या आम्लांस तीव्र आम्ल म्हणतात. उदा. हायड्रोक्लोरिक आम्ल (HCI) सौम्य आम्ले: जेव्हा आम्ले त्यांच्या जलीय द्रावणात कमी

सौम्य आम्ले: जेव्हा आम्ले त्यांच्या जलीय द्रावणात कमी H^+ आयन देतात, तेव्हा त्या आम्लांस सौम्य आम्ल म्हणतात.

उदा. फॉर्मिक आम्ल (HCOOH)

#5. तीव्र आणि सौम्य आम्लारी म्हणजे काय?

उत्तरः तीव्र आम्लारीः जेव्हा आम्लारी त्यांच्या जलीय द्रावणात जास्त OH आयन देतात, तेव्हा त्या आम्लारींस तीव्र आम्लारी म्हणतात.

उदा. सोडिअम हायड्रॉक्साइड (NaOH)

सौम्य आम्लारी : जेव्हा आम्लारी त्यांच्या जलीय द्रावणात कमी OH आयन देतात, तेव्हा त्या आम्लारींस सौम्य आम्लारी म्हणतात.

उदा. अमोनिअम हायड्रॉक्साइड (NH4OH)

pOH म्हणजे काय?

- उत्तर: i. आम्लारीची संहती pOH ने दर्शवितात.
 - द्रावणातील हायड्रॉक्सिल (OH⁻) आयनांची संहती pOH च्या साहाय्याने मोजता येते.

pH 7 पेक्षा कमी असल्यास पडणाऱ्या पावसाच्या पाण्यामुळे कोणते घोके संभवतात?

- उत्तर: i. pH 7 पेक्षा कमी असल्यास असे पाणी आम्लधर्मी असते.
 - असे आम्लधर्मी पावसाचे पाणी नदीतील पाण्यात मिसळल्यास नदीच्या पाण्याचेही pH मूल्य 7 पेक्षा कमी होते.
 - iii. यामुळे जलचर प्राणी आणि वनस्पतींच्या जीवितास मोठा धोका उद्भवतो.
 - iv. अशा आम्लधर्मी पाण्याचे वनस्पतींनी शोषण केल्यास त्यांच्या वाढीवर व त्यांना येणाऱ्या फळाफुलांवर परिणाम होतो.

#8. दंशकेश असणारी एखादी वनस्पती आहे का? त्याचे नाव सांगा.

उत्तर: हो. नेटल (खाजखुजली) या वनस्पतीच्या पानांवर आणि खोडावर दंशकेश असतात. हे दंशकेश सुईसारखे काम करतात आणि स्पर्श झाल्यास मिथॅनोइक आम्ल त्या जागेवर सोडतात, त्यामुळे खाज येते व आग होते.

- 9. विरल H_2SO_4 ची मॅग्नेशिअमवर काय अभिक्रिया होईल?
- उत्तरः विरल H_2SO_4 आणि मॅग्नेशिअमची अभिक्रिया झाल्यास मॅग्नेशिअम सल्फेट तयार होईल व हायड्रोजन वायू मुक्त होईल.

 $Mg_{(s)} + H_2SO_{4(aq)} \longrightarrow MgSO_{4(aq)} + H_{2(g)} \uparrow$ मॅग्नेशिअम सल्फ्ट्र हायड्रोजन

- *10. धातूंच्या कार्बोनेटची आम्लाबरोबर काय अभिक्रिया होते?
- उत्तरः धातूंच्या कार्बोनेटची आम्लाबरोबर अभिक्रिया झाल्यास त्या धातूचे क्षार, कार्बनडायऑक्साइड आणि पाणी तयार होते.

उदा.

 $Na_{2}CO_{3(s)}+2HCl_{(aq)}\longrightarrow 2NaCl_{(aq)}+H_{2}O_{(l)}+CO_{2(g)}$ \uparrow सोडिअम पाणी कार्बन कार्बोनेट आम्ल क्लोराइड डायऑक्साइड $CaCO_{3(s)}+2HCl_{(aq)}\longrightarrow CaCl_{2(aq)}+H_{2}O_{(l)}+CO_{2(g)}$ \uparrow कॅल्शिअम हायड्रोक्लोरिक कॅल्शिअम पाणी कार्बन कार्बोनेट आम्ल क्लोराइड डायऑक्साइड

- #11. विरल HCI बरोबर बेकिंग सोड्याची अभिक्रिया झाल्यास काय घडेल? या अभिक्रियेचे संतुलित समीकरण लिहिता येईल का?
- उत्तरः विरल HCI बरोबर बेकिंग सोड्याची अभिक्रिया झाल्यास सोडिअम क्लोराइड आणि पाणी तयार होईल व कार्बनडायऑक्साइड वायू मुक्त होईल. या अभिक्रियेचे संतुलित समीकरण पुढीलप्रमाणे:

 $NaHCO_{3(s)} + HCl_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(I)} + CO_{2(g)}$ र सोडिअम पाणी कार्बन बायकार्बोनेट आम्ल क्लोराइड डायऑक्साइड

- 12. ॲिसटिक ॲिसड आणि सोडिअम धातूची अभिक्रिया काय होईल?
- उत्तर: ॲसिटिक ॲसिड आणि सोडिअम धातूची अभिक्रिया झाल्यास सोडिअम ॲसिटेट तयार होते व हायड्रोजन वायू मुक्त होतो.

 $2Na + 2CH_3COOH \longrightarrow 2CH_3COONa + H_2 \uparrow$ सोडिअम ॲसिटिक ॲसिड सोडिअम ॲसिटेट हायड्रोजन

13. धातूंच्या ऑक्साइडवर आम्लांचा काय परिणाम होतो?

उत्तरः धातूंच्या ऑक्साइडची आम्लाशी अभिक्रिया झाल्यास त्या धातूचे क्षार व पाणी तयार होते.

उदा.

 $CuO_{(s)} + 2HCl_{(aq)} \longrightarrow CuCl_{2(aq)} + H_2O_{(I)}$ कॉपर हायड्रोक्लोरिक कॉपर पाणी ऑक्साइड आम्ल क्लोराइड

- #14. धातूंच्या ऑक्साइडची आम्लारीबरोबर कोणती अभिक्रिया होईल? त्यांची आम्लारीबरोबर अभिक्रिया होते का? नसेल तर का?
- उत्तर: नाही, धातूंच्या ऑक्साइडची आम्लारीबरोबर अभिक्रिया होत नाही, कारण धातूंची ऑक्साइड ही आम्लारिधर्मी असतात.
- 15. अधातूंच्या ऑक्साइडवर आम्लारीची काय अभिक्रिया होते?

उत्तर: आम्लारी आणि अधातूंचे ऑक्साइड यांची अभिक्रिया होऊन त्यांचे क्षार व पाणी तयार होतात.

> उदा. कॅल्शिअम हायड्रॉक्साइडची कार्बनडायऑक्साइडशी अभिक्रिया होऊन कॅल्शिअम कार्बोनेटचा अवक्षेप आणि पाणी तयार होते.

 $Ca(OH)_{2(aq)} + CO_{2(g)} \longrightarrow CaCO_{3(s)} \downarrow + H_2O_{(l)}$ कॅल्शिअम कार्बन कॅल्शिअम पाणी हायड्रॉक्साइड डायऑक्साइड कार्बेनेट

- #16. जर एका चंचुपात्रात कॅल्शिअम हायड्रॉक्साइड किंवा सोडिअम हायड्रॉक्साइड घेऊन त्यात दोन कार्बन इलेक्ट्रोड बुडवले.
 एक बल्ब व कळ यांद्वारे हे इलेक्ट्रोड 6V बॅटरीला जोडले तर या प्रयोगाच्या निरीक्षणावरून तुम्ही काय अनुमान काढाल?
- उत्तरः वरील प्रयोगामध्ये, द्रावणातून विद्युतधारा प्रवाहित होऊन बल्ब पेटेल याचाच अर्थ कॅल्शिअम हायड्रॉक्साइड किंवा सोडिअम हायड्रॉक्साइड द्रावणांतून विद्युतधारा प्रवाहित होते, कारण या दोन्ही द्रावणांत आयन तयार होतात.

*17. स्पष्ट करा – हायड्रोनिअम आयन उत्तरः हायड्रोनिअम आयनः

- आम्लाच्या आयनीभवन प्रक्रियेत हायड्रोजन आयन (H⁺) तयार होतात; परंतु त्यास स्वतंत्र अस्तित्व नसते.
- ii. हायड्रोजन आयन पाण्याबरोबर संयोग करून हायड्रोनिअम आयन (H_3O^+) तयार करतात.
- iii. आयनीभवन प्रक्रिया पुढीलप्रमाणे: $H^{^{+}}_{(aq)} + H_2O_{(I)} \rightarrow H_3O^{^{+}}_{(aq)}$ ः हायड्रोनिअम आयन

18. साध्या मिठाचे (NaCl) उपयोग सांगा. उत्तर: साध्या मिठाचे (NaCl) उपयोग:

- NaCl चा उपयोग इतर क्षार जसे Na₂CO₃, NaHCO₃ इ. तयार करण्यासाठी केला जातो.
- ii. अन्तपदार्थांच्या साठवणुकीसाठी NaCl चा वापर मोठ्या प्रमाणात केला जातो.
- iii. अन्नपदार्थातील NaCl हा महत्त्वाचा घटक असतो.
- iv. मिठामुळे शरीराची pH पातळी योग्य राखण्यास मदत होते.

19. ब्राईन द्रावणातून विद्युतधारेचे वहन केल्यास काथ होईल?

उत्तर: i. बाईन द्रावणात 10% NaCl असते.

- ii. सोडिअम क्लोराइडच्या द्रावणातून विद्युतधारेचे वहन केल्यास सोडिअम क्लोराइडचे अपघटन होऊन सोडिअम हायड्रॉक्साइड तयार होते.
- iii. या क्रियेमध्ये, ॲनोडजवळ क्लोरीन तर कॅथोडजवळ हायड्रोजन वायू मुक्त होतो.

 $2NaCl_{(aq)} + 2H_2O_{(I)} \rightarrow 2NaOH_{(aq)} + Cl_{2(g)} + H_{2(g)}$ सोडिअम पाणी सोडिअम क्लोरीन हायड्रोजन क्लोराइड हायड्रॉक्साइड

20. वितळलेल्या सोडिअम क्लोराइडमधून विद्युतप्रवाह सोडला गेल्यास काय होईल?

- उत्तर: i. वितळलेल्या सोडिअम क्लोराइडमधून विद्युत प्रवाहाचे वहन केल्यास सोडिअम आणि क्लोराइडचे आयन तयार होतात. № आयन कॅथोडकडे प्रवाहित होतात तर ८० ऑनोडकडे प्रवाहित होतात.
 - ii. अभिक्रिया पुढीलप्रमाणे:

 $NaCl \rightarrow Na^+ + Cl^-$ कॅथोडजवळ : $Na^+ + e^- \longrightarrow Na$ ॲनोडजवळ : $2Cl^- \longrightarrow Cl_{2(g)} + 2e^-$

iii. अशा प्रकारे, Na आयन कॅथोडवर जमा होतो आणि Cl₂ वायू ॲनोड जवळ मुक्त होतो.

*21. बेकिंग सोड्याचे उपयोग सांगा.

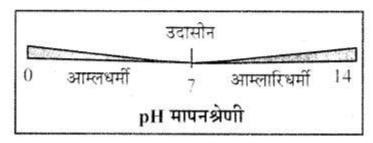
उत्तर: बेकिंग सोड्याचे उपयोग:

- बेकिंग सोड्याचा उपयोग हलके आणि सिच्छिद्र असे पदार्थ बनविण्याकरिता केला जातो. उदा. ब्रेड, केक किंवा ढोकळा इ.
- पोटातील आम्लिपत्त कमी करण्याकरिता याचा उपयोग होतो.
- iii. बेकिंग सोडा हा अग्निशमन उपकरणातील एक महत्त्वाचा घटक असून कार्बनडायऑक्साइड तयार करण्यासाठी त्याचा वापर होतो.

22. ब्लीचिंग पावडरचे महत्त्वाचे उपयोग सांगा.

उत्तर: ब्लीचिंग पावडरचे महत्त्वाचे उपयोग:

- क्लोरोफॉर्म या द्रावणाच्या निर्मितीसाठी ब्लीचिंग पावडरचा वापर होतो. क्लोरोफॉर्मचा उपयोग भूल देण्यासाठी केला जातो.
- कापसाचे विरंजन करण्यासाठी कापड उद्योगात ब्लीचिंग पावडरचा वापर होतो.
- कागद उद्योगात कागदाच्या लगद्याचे विरंजन करण्यासाठी याचा उपयोग होतो.
- ंथ. ब्लीचिंग पावडर अनेक रासायनिक अभिक्रियांमध्ये
 ऑक्सिडीकारक म्हणून वापरली जाते.
- पुलाई केंद्रात कपड्यांचे विरंजन करण्यासाठी उपयोग होतो.
- vi. निर्जंतुकीकरणासाठीदेखील ब्लीचिंग पावडरचा वापर केला जातो.


23. सोडिअम कार्बोनेट (धुण्याचा सोडा) चे चार उपयोग लिहा. |जुलै 15|

उत्तरः सोडिअम कार्बोनेट (धुण्याचा सोडा) चे उपयोगः

- धुण्याच्या सोड्याचा वापर कपडे स्वच्छ धुण्यासाठी केला जातो.
- याचा उपयोग अपमार्जिक बनविण्यासाठी, कागद
 आणि काच बनविण्यासाठी केला जातो.
- याचा वापर पेट्रोलिअमच्या शुद्धीकरणासाठी करतात.
- तसेच याचा वापर पाणी सुफेन व वापरण्यायोग्य बनविण्यासाठी होतो.

- आपल्या शारीरातील pH मूल्याचे कार्य सांगा.
 उत्तर: आपल्या शारीरातील pH मूल्याचे कार्य:
 - शरीराची कार्ये व्यवस्थित चालण्यासाठी शरीराचे pH मूल्य संतुलित राहणे आवश्यक असते.
 - आपल्या शरीराची pH मर्यादा साधारणतः आम्लारिधर्मी म्हणजेच 7.35 – 7.45 यादरम्यान असते.
 - iii. जठरात तयार होणाऱ्या हायड्रोक्लोरिक आम्लामुळे अन्नाचे पचन होते; पण हे आम्ल प्रमाणापेक्षा जास्त स्रवल्यास आम्लपित्ताचा किंवा अपचनाचा त्रास होतो. या जास्त आम्लाला उदासीन करण्यासाठी आम्लप्रतिबंधकाचा वापर केला जातो व योग्य pH राखला जातो.
 - iv. दातांची झीज रोखण्यासाठी मुखातील pH आम्लारिधर्मी असला पाहिजे (आम्लधर्मी नसावा). pH 5.5 च्या खाली असल्यास तोंडातील आम्ल दंतिन एनॅमेलमधील कॅल्शिअम फॉस्फेटचे क्षरण करते व दातांची झीज होते.

- 2. pH मापनश्रेणी आकृतीसह स्पष्ट करा. |जुलै 16|
- उत्तर: i. आम्लाची किंवा आम्लारीची संहती मोजण्यासाठी जी मापनश्रेणी वापरली जाते व ज्यात 0 (सर्वांत जास्त आम्लघर्मी) ते 14 (सर्वांत जास्त आम्लारिघर्मी) इतके मापन होते, त्या मापनश्रेणीला pH मापनश्रेणी म्हणतात.
 - ii. pH मापनश्रेणीत, p म्हणजे 'पोटेंझ' म्हणजेच जर्मन भाषेत 'संहती'.
 - iii. pH द्रावणातील हायड्रोजन आयनची संहती मोजण्यात मदत करते. तसेच pH मूल्य हे द्रावण आम्लधर्मी की आम्लारिधर्मी आहे ते दर्शविते.
 - iv. pH मूल्य 0 ते 7 च्या दरम्यान असल्यास द्रावण आम्लधर्मी असते.
 - v. pH मूल्य 7 असणारे द्रावण उदासीन असते.
 - vi. pH मूल्य 7 ते 14 च्या दरम्यान असल्यास द्रावण आम्लारिधर्मी असते.

- *3. आम्ल आणि आम्लारी यांची परस्परांशी कशी अभिक्रिया होते? या प्रक्रियेस काय म्हणतात? या अभिक्रियेतून कोणती उत्पादिते मिळतात? |ऑक्टोबर 13|
- उत्तर: i. आम्ल आणि आम्लारी यांची परस्परांशी अभिक्रिया होऊन पाणी व क्षार तयार होतात.
 - ii. या अभिक्रियेस 'उदासिनीकरण' म्हणतात.
 - iii. अभिक्रिया पुढीलप्रमाणे दर्शविता येईल: आम्ल + आम्लारी \rightarrow क्षार + पाणी HA + BOH \rightarrow BA + H₂O A = ॲनायन जसे Cl $^-$, Br $^-$, NO $^-$ ₃ इत्यादी. B = कॅटायन जसे Na $^+$, K $^+$, Ca $^{++}$ इत्यादी.
 - उदा. $HCl_{(aq)} + NaOH_{(aq)} \longrightarrow NaCl_{(aq)} + H_2O_{(I)}$
 - iv. जलीय माध्यमात आम्लांचे आयनीभवन होऊन H⁺ आयन मिळतात, तर आम्लारीचे आयनीभवन होऊन OH⁻ आयन मिळतात.
 - उदा. $HCl_{(l)} + aq \rightarrow H_{(aq)}^+ + Cl_{(aq)}^ NaOH_{(s)} + aq \rightarrow Na_{(aq)}^+ + OH_{(aq)}^-$
 - v. आम्लाचे H⁺ आयन आणि आम्लारीचे OH⁻ आयन परस्परांशी अभिक्रिया करून आयनीभवन न झालेले पाणी तयार करतात.

$$H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_2O_{(l)}$$

- ब्लीचिंग पावडर म्हणजे काय? ती कशी तयार करतात? ब्लीचिंग पावडरच्या विरंजन क्रियेचे वर्णन करा.
- उत्तर: i. ब्लीचिंग पावडर (CaOCl₂) ही पांढऱ्या रंगाची भुकटी आहे जिला 'क्लोराइड ऑफ लाइम' असेही म्हणतात व तिला त्यात असलेल्या क्लोरीनमुळे तीव्र वास असतो.
 - ii. ब्लीचिंग पावडर बनवण्याची प्रक्रियाः विरी गेलेल्या चुन्याची क्लोरीन वायूबरोबर अभिक्रिया झाल्यास विरंजक चूर्ण म्हणजेच ब्लीचिंग पावडर तयार होते.

रासायनिक अभिक्रिया पुढीलप्रमाणेः

 $Ca(OH)_{2(s)} + Cl_{2(g)} \rightarrow CaOCl_{2(s)} + H_2O_{(I)}$ कॅल्शिअम क्लोरीन ब्लीचिंग पाणी हायड्रॉक्साइड पावडर (विरी गेलेला

iii. ब्लीचिंग पावडरची विरंजन क्रिया: ब्लीचिंग पावडर वातावरणातील कार्बनडायऑक्साइडच्या संर्पकात आल्यास कॅल्शिअम कार्बोनेट व क्लोरीन वायू तयार होतात.

 $CaOCl_{2(s)} + CO_{2(g)} \rightarrow CaCO_{3(s)} + Cl_{2(g)}$ क्लीचिंग कार्बन कॅल्शिअम क्लोरीन पावडर डायऑक्साइड कार्बेनिट

iv. मुक्त होणारा क्लोरीन Cl₂ वायू कापड उद्योगात कापसाचे विरंजन करण्यासाठी तसेच कागद उद्योगात कागदाच्या लगद्याचे विरंजन करण्यासाठी वापरला जातो.

*1. दर्शक (योग्य उदाहरणाद्वारे)

- उत्तर: i. दर्शक हे असे नैसर्गिक किंवा कृत्रिम पदार्थ आहेत जे संयुगांचे आम्लधर्मी किंवा आम्लारिधर्मी गुणधर्म ओळखण्यासाठी मदत करतात.
 - ii. दर्शकांच्या गुणधर्मानुसार त्यांची विविध गटांत वर्गवारी केली जाते. ती म्हणजे नैसर्गिक दर्शक, संश्लिष्ट दर्शक, वैश्विक दर्शक आणि गंधदर्शक.
 - iii. काही नैसर्गिक पदार्थ जसे हळद, बीट, गुलाबाच्या पाकळ्या, नीळ इ. नैसर्गिक दर्शक आहेत.
 - iv. संश्लिष्ट दर्शक हे कृत्रिमरीत्या बनविले जातात
 उदा. फिनॉल्फथॅलिन, मिथिल ऑरेंज, इओसिन इ.
 - अनेक दर्शकांच्या एकत्रित मिश्रणाला वैश्विक दर्शक म्हणतात.
 - vi. काही पदार्थांचा आम्लधर्मी किंवा आम्लारिधर्मी माध्यमात गंध बदलतो. अशा पदार्थांना गंध दर्शक म्हणतात.
 - *2. pH मापनश्रेणी (योग्य आकृतीसह) उत्तर: थोडक्यात उत्तरे द्या मधील प्र.२ पाहा.
 - 3.4 आम्ल, आम्लारी व त्यांची क्रियाशीलता

3. उदासिनीकरण अभिक्रिया

- उत्तर: i. आम्ल आणि आम्लारी यांच्यात अभिक्रिया होऊन श्वार व पाणी तयार होत असल्यास त्या अभिक्रियेस उदासिनीकरण अभिक्रिया म्हणतात.
 - उदा. हायड्रोक्लोरिक आम्लाची सोडिअम हायड्रॉक्साइडशी अभिक्रिया करून सोडिअम क्लोराइड हा क्षार व पाणी तयार होते.

 $HCl_{(aq)} + NaOH_{(aq)}
ightarrow NaCl_{(aq)} + H_2O_{(I)}$ हायड्रोक्लोरिक सोडिअम सोडिअम पाणी आम्ल हायड्रॉक्साइड क्लोराइड

 आम्लाची धातूंच्या ऑक्साइडबरोबर व आम्लारीची अधातूंच्या ऑक्साइडबरोबर अभिक्रिया यादेखील उदासिनीकरण अभिक्रिया आहेत.

4. साधे मीठ (NaCl)

- उत्तर: i. सोडिअम क्लोराइड (NaCl) म्हणजेच साधे मीठ.
 - ii. हायड्रोक्लोरिक आम्लाची (तीव्र आम्ल) सोडिअम हायड्रॉक्साइडशी (तीव्र आम्लारी) अभिक्रिया होऊन सोडिअम क्लोराइड हे उदासीन क्षार तयार होते.

 $NaOH_{(aq)}$ + $HCl_{(aq)}$ ightarrow $NaCl_{(aq)}$ + $H_2O_{(\ell)}$ सोडिअम हायड्रोक्लोरिक सोडिअम पाणी हायड्रॉक्साइड आम्ल क्लोराइड

- iii. अशुद्ध स्वरूपातील सोडिअम क्लोराइड तपिकरी रंगाचे असते आणि त्याला रॉक सॉल्ट म्हणतात.
- iv. शुद्ध स्वरूपातील सोडिअम क्लोराइड रंगहीन आणि स्फटिकी आयनिक संयुग आहे.
 - ए. इतर अनेक प्रकारचे क्षार जसे Na₂CO₃,
 NaHCO₃ इ. बनविण्यासाठी याचा उपयोग होतो.

बेकिंग सोडा

- उत्तर: i. सोडिअम बायकार्बोनेट (NaHCO₃) ला बेकिंग सोडा म्हणतात.
 - हे पांढऱ्या रंगाचे चूर्ण आहे.
 - बेकिंग सोडा आम्लारिधर्मी असून त्यामध्ये लाल लिटमस निळा होतो.
 - iv. उच्च तापमानास त्याचे अपघटन होऊन सोडिअम कार्बोनेट, पाणी आणि कार्बनडायऑक्साइड वायू तयार होतात.

 $2NaHCO_3 \xrightarrow{3 \, \text{bound}} Na_2CO_3 + H_2O + CO_2$ सोडिअम पाणी कार्बन बायकार्बेनिट कार्बेनिट डायऑक्साइड

- प. सच्छिद्र पाव, केक आणि ढोकळा बनविण्यासाठी याचा उपयोग होतो.
- vi. पोटातील आम्लपित्त कमी करण्यासाठी बेकिंग सोडा वापरला जातो
- vii. अग्निशमन यंत्रामध्ये बेकिंग सोडा वापरला जातो.

धुण्याचा सोडा

- उत्तर: i. सोडिअम कार्बोनेटच्या स्फटिकी स्थायूला (Na₂CO₃.10H₂O) धुण्याचा सोडा म्हणतात.
 - हा पांढरा स्फटिकी स्थायू असून पाण्यात सहज विरघळतो.
 - iii. धुण्याचा सोडा आम्लारिधर्मी असून त्यामध्ये लाल लिटमस निळा होतो
 - iv. उष्णता दिल्यास त्यातील स्फटिकजल नाहीसे होऊन त्याची भुकटी तयार होते.
 - v. सोडिअम कार्बोनेटच्या भुकटीची हायड्रोक्लोरिक आम्लाशी अभिक्रिया होऊन कार्बनडायऑक्साइड वायू मुक्त होतो.

 $Na_2CO_3 + 2HC1 \rightarrow 2NaC1 + H_2O + CO_2$ सोडिअम हायड्रोक्लोरिक सोडिअम पाणी कार्बम कार्बेनिट आम्ल क्लोराइडं डायऑक्साइड

- vi. कपडे स्वच्छ धुण्यासाठी धुण्याचा सोडा वापरला जातो.
- vii. अपमार्जके, कागद व काच उद्योगात वापर केला जातो.
- viii. पेट्रोलिअमच्या शुद्धीकरणासाठी वापर केला जातो.

*7. स्फटिकजल (योग्य उदाहरणासहित)

- उत्तर: i. क्षाराच्या स्फटिक रचनेत पाण्याच्या रेणूंची संख्या निश्चित असते. यालाच स्फटिकजल म्हणतात.
 - क्षारांचे स्फटिक गुणधर्म आणि रंग हे त्यातील स्फटिकजलामुळे असतात.
 - iii. तापविल्यास किंवा हवेच्या संपर्कात आल्यास स्फटिकजल नाहीसे होते व पांढऱ्या भुकटीसारखा निर्जल पदार्थ तयार होतो.
 - iv. $Na_2CO_3.10H_2O$ या रेणुसूत्रामधील पाण्याचे 10 रेणू म्हणजेच स्फटिकजल होय.

- पदार्थांचा आम्ल अथवा आम्लारिधर्मी गुणधर्म ओळखण्यासाठी दर्शकांचा वापर केला जातो.
- उत्तर: i. आम्ले ही चवीला आंबट तर आम्लारी चवीला तुरट असतात.
 - पण बरीचशी आम्ले तसेच आम्लारी क्षरणकारी असतात व ती हानी पोहोचवू शकतात.
 - iii. म्हणून त्यांना हात न लावण्याचा किंवा चव न घेण्याचा सल्ला दिला जातो.
 - iv. एखादा पदार्थ न हाताळता किंवा चव न घेता तो आम्लधर्मी किंवा आम्लारिधर्मी आहे हे ओळखण्यासाठी दर्शक वापरतात.
 - रर्शक हा पदार्थ आम्लधर्मी किंवा आम्लारिधर्मी आहे हे त्याचा रंग किंवा वास बंदलून दर्शवितो.

म्हणून, पदार्थाचा आम्ल अथवा आम्लारिधर्मी गुणधर्म ओळखण्यासाठी दर्शकांचा वापर केला जातो.

- चुन्याची निवळी लोण्याबरोबर घेतल्यास आम्लिपत्ताचा त्रास कमी होतो.
- उत्तरः i. जठरातील हायड्रोक्लोरिक आम्लाचे प्रमाण वाढल्यास व्यक्तीस आम्लपित्ताचा त्रास सुरू होतो.
 - ii. लोण्यात ब्युटिरिक ॲसिड असते.
 - iii. चुन्याच्या निवळीत आम्लारिधर्मी Ca(OH)2 असते.
 - iv. द्रावणीयतेच्या 'समसमान विरघळते' या तत्त्वावर आधारित आम्लयुक्त पदार्थ आम्लारियुक्त पदार्थात मिसळल्यास आम्लपित्त कमी करता येते.

त्यामुळे, चुन्याची निवळी लोण्याबरोबर घेतल्यास आम्लपित्ताचा त्रास कमी होतो.

7 पेक्षा कमी pH मूल्य असलेले पावसाचे पाणी जीवितास घातक असते.

- उत्तर: i. जेव्हा पावसाच्या पाण्याचे pH मूल्य 7 पेक्षा कमी असते तेव्हा ते आम्लधर्मी होते.
 - गंदा असे आम्लधर्मी पाणी नदीतून वाहते तेव्हा नदीच्या पाण्याचेही pH मूल्य कमी होते. पाण्याचे pH मूल्य थोडे जरी बदलले तरी त्यामुळे ज्या सजीवांच्या जीवनप्रक्रिया पाण्यावर आधारित आहेत अशा सजीवांवर त्याचा दुष्परिणाम होतो.
 - iii. अशा प्रकारे पाण्याच्या आम्लधर्मामुळे जलजीवन प्रभावित होते.
 - ंग्या असे पाणी वनस्पतींकडून शोषले जाते तेव्हा त्यांच्या वाढीवर, फुलांवर आणि फळांवर त्याचे परिणाम होतात.

त्यामुळे, 7 पेक्षा कमी pH मूल्य असलेले पावसाचे पाणी जीवितास घातक असते.

आम्लिपित्तावर नियंत्रण मिळविण्यासाठी आम्लप्रतिबंधकांचा वापर करतात.

- उत्तर: i. जठरातील हायड्रोक्लोरिक आम्लाचे प्रमाण वाढल्यास आम्लपित्त होते.
 - आम्लप्रतिबंधक हे सर्वसाधारणपणे आम्लारिधर्मी पदार्थ असतात, जे जठरातील वाढलेल्या आम्लाबरोबर अभिक्रिया करतात.
 - आम्लप्रतिबंधक घेतल्यावर त्याची जठरातील वाढलेल्या आम्लाशी अभिक्रिया होऊन ते उदासीन होते.

म्हणून, आम्लपित्तावर नियंत्रण मिळविण्यासाठी आम्लप्रतिबंधकांचा वापर करतात.

- पाण्यात आम्ल सावकाश मिसळण्याचा सल्ला दिला जातो.
- उत्तर: i. काही आम्ले अतिशय संहत असतात. त्यांची पाण्याबरोबर वेगात अभिक्रिया होते.
 - पाणी आणि संहत आम्ल यांच्या अभिक्रिया उष्मादायी असतात.
 - iii. पाण्यात आम्ल जलद मिसळल्यावर अभिक्रियेचा वेग वाढतो. त्यामुळे मोठ्या प्रमाणात उष्णता ऊर्जेची निर्मिती होते व द्रावण वेगाने उसळते. त्यामुळे भाजण्यासारखे अपघात घडू शकतात.
 - iv. याउलट आम्ल पाण्यात सावकाश मिसळले तर आम्लाचे पाण्यातील प्रमाण हळूहळू वाढते व त्यामुळे कमी उष्णता तयार होते.

यासाठी, पाण्यात आम्ल सावकाश मिसळण्याचा सल्ला दिला जातो.

- बेकरीमध्ये बेकिंग सोड्याचा उपयोग खाद्यपदार्थ तयार करण्यासाठी केला जातो.
- उत्तर: i. बेकिंग सोडा म्हणजे पांढरे अस्फटिकी चूर्ण ज्याचे रासायनिक सूत्र NaHCO3 आहे.
 - हे अन्नपदार्थांत मिसळून तापविल्यास कार्बनडायऑक्साइड मुक्त होतो.

 $2NaHCO_3 \xrightarrow{3 \, \text{winfl}} Na_2CO_3 + H_2O + CO_2$ ि सोडिअम पाणी कार्बन बायकार्बेनिट कार्बेनिट डायऑक्साइड

iii. अन्तपदार्थांतून कार्बनडायऑक्साइड निघून गेल्याने अन्तपदार्थ उदा. केक, पाव इत्यादी सच्छिद्र व हलके होतात.

त्यामुळे, बेकरीमध्ये बेकिंग सोड्याचा उपयोग खाद्यपदार्थ तयार करण्यासाठी केला जातो.

- कापड उद्योगात ब्लीचिंग पावडरचा विरंजक म्हणून वापर करतात.
- उत्तर: i. ब्लीचिंग पावडर (कॅल्शिअम हायपोक्लोराइट) चा वातावरणातील कार्बनडायऑक्साइडशी संपर्क आल्यास क्लोरीन वायू मुक्त होतो.

 ${
m CaOCl}_{2({
m s})} + {
m CO}_{2({
m g})}
ightarrow {
m CaCO}_{3({
m s})} + {
m Cl}_{2({
m g})}$ र् क्लीचिंग कार्बन कॅल्शिअम क्लोरीन पावडर डायऑक्साइड कार्बोनेट

ii. मुक्त होणारा Cl_2 वायू कापड उद्योगात कापडाचे विरंजन करण्यास वापरतात.

त्यामुळे, कापड उद्योगात ब्लीचिंग पावडरचा विरंजक म्हणून वापर करतात.

- उष्णता दिल्यावर निळ्या रंगाचे कॉपर सल्फेटचे स्फटिक रंगहीन होतात.
- उत्तरः i. निळ्या रंगाच्या कॉपर सल्फेटच्या स्फटिकाचे रासायनिक सूत्र CuSO₄.5H₂O आहे. कॉपर सल्फेटच्या प्रत्येक स्फटिकात स्फटिकजलाचे पाच रेणू असतात.
 - या स्फटिकजलामुळेच कॉपर सल्फेटचे स्फटिक निळे दिसतात.
 - iii. उष्णता दिल्यावर कॉपर सल्फेटच्या स्फटिकातील स्फटिकजल नाहीसे होते व भुकटीसारखे रंगहीन निर्जल CuSO₄ तयार होते.

त्यामुळे, उष्णता दिल्यावर निळ्या रंगाचे कॉपर सल्फेटचे स्फटिक रृंगहीन होतात.

 लोखंडाची विरल हायड्रोक्लोरिक आम्लाबरोबर अभिक्रिया.

उत्तरः लोखंडाची विरल हायड्रोक्लोरिक आम्लाबरोबर अभिक्रिया होऊन फेरस क्लोराइड व हायड्रोजन वायू तयार होतो.

 $Fe_{(s)} + 2HCl_{(aq)} \longrightarrow FeCl_{2(aq)} + H_{2(g)}$ ि लोखंड हायड्रोक्लोरिक फेरस हायड्रोजन अगम्ल क्लोराइड

 सोडिअम कार्बोनेट विरल हायड्रोक्लोरिक आम्लाबरोबर अभिक्रिया करते.

उत्तर: सोडिअम कार्बोनेट विरल हायड्रोक्लोरिक आम्लाबरोबर अभिक्रिया करून सोडिअम क्लोराइड, पाणी आणि कार्बनडायऑक्साइड तयार करते.

 $Na_2CO_{3(s)} + 2HCl_{(aq)} \longrightarrow 2NaCl_{(aq)} + H_2O_{(l)} + CO_{2(g)}$ सोडिअम पाणी कार्बन कार्बोनेट आम्ल क्लोराइड डायऑक्साइड

कार्बनडायऑक्साईड चुन्याच्या निवळीतून जाऊ दिला.

उत्तर: कार्बनडायऑक्साइड चुन्याच्या निवळीतून जाऊ दिला असता कॅल्शिअम कार्बोनेट तयार झाल्यामुळे द्रावण दुधाळ बनते.

 $Ca(OH)_{2(aq)} + CO_{2(g)} \longrightarrow CaCO_{3(s)} \downarrow + H_2O_{(I)}$ कॅल्शिअम कार्बन कॅल्शिअम पाणी हायड्रॉक्साइड डायऑक्साइड कार्बोनेट किंवा चुन्याची निवळी

विरी गेलेल्या चुन्याची क्लोरीन वायूबरोबर अभिक्रिया.

उत्तर: जेव्हा विरी गेलेल्या चुन्याची क्लोरीन वायूबरोबर अभिक्रिया होते तेव्हा विरंजक चूर्ण तयार होते.

$$Ca(OH)_{2(s)} + Cl_{2(g)} \longrightarrow CaOCl_{2(s)} + H_2O_{(I)}$$

विरी गेलेला क्लोरीन ब्लीचिंग पाणी
चुना पावडर

1.

	'अ' गट		'ब' गट
i.	व्हिनेगार	a.	आम्लारियर्मी
ii.	नैसर्गिक दर्शक	b.	आम्लधर्मी
iii.	संश्लिष्ट दर्शक	C.	हळद
iv.	सोडिअम बायकार्बनिट	d.	मिषिल ऑरेंज
7.01.61		e.	उदासीन

उत्तरे: (i - b), (ii - c), (iii - d), (iv - a)

2.

	'अ' गट		'ब' गट
i.	pH < 7	a.	उदासीन
ii.	pH = 7	b.	आम्लधर्मी
iii.	pH > 7	c.	आम्लारिधर्मी

उत्तरे: (i – b), (ii – a), (iii – c)

3.

	'अ' गट		'ब'गट
i.	साधे मीठ	a.	सोडिअम बायकार्बेनिट
ii.	ब्लोचिंग पावडर	b.	सोडिअम कार्बोनेट
iii.	बेकिंग सोडा	c.	कॅल्शिअम हायपोक्लोराइट
iv.	धुण्याचा सोडा	d.	सोडिअम सल्फेट
		e.	सोडिअम क्लोराइड

उत्तरे: (i - e), (ii - c), (iii - a), (iv - b)

1. आम्ल आणि आम्लारी

उत्तर:

	आम्ल	आम्लारी आम्लारी चवीला तुरट असतात.	
i,	आम्ले चवीला आंबट असतात.		
ii.	ही जलीय द्रावणात हायड्रोजन (H ⁺) आयन देतात.	ही जलीय द्रावणात हायड्रॉक्सिल (OH) आयन देतात.	
iii.	निळा लिटमस पेपर लाल होतो.	लाल लिटमस पेपर निळा होतो.	
iv.	आम्लांचे pH मूल्य 0 ते 7 च्या दरम्यान असते.	आम्लारोंचे pH मूल्य 7 ते 14 च्या दरम्यान असते.	

हायड्रोजन आयन आणि हायड्रॉक्सिल आयन उत्तर:

	हायड्रोजन आयन	हायड्रॉक्सिल आयन
i.	आम्ले त्यांच्या जलीय द्रावणात हायड्रोजन आयन देतात.	आम्लारी त्यांच्या जलीय द्रावणात हायड्रॉक्सिल आयन देतात.
ii.	ते H ⁺ असे दशीवले जातात.	ते OH असे दर्शविले जातात.
iii.	पदार्थास आम्लधर्मी गुणधर्म प्रदान करतात.	यदार्श्वांस आम्लारिधर्मी गुणधर्म प्रदान करतात.
iv.	हायड्रोजन आयनांची संहती pH ने दर्शिवली जाते.	हायड्रॉक्सिल आयनांची संहती pOH ने दर्शविली जाते.

धुण्याचा सोडा आणि बेकिंग सोडा

उत्तर:

धुण्याचा सोडा		बेकिंग सोडा	
ì.	षुण्याचा सोडा म्हणजेच स्फटिकी सोडिअम कार्बोनेट.	बेकिंग सोडा म्हणजे सोडिअम बायकार्बोनेट.	
ii.	षुण्याच्या सोड्याचे रासायनिक सूत्र Na ₂ CO ₃ .10H ₂ O आहे.	बेकिंग सोड्याचे रासायनिक सूत्र NaHCO3 आहे.	
iii.	हा साबण व अपमार्जके बनविण्यासाठी वापरला जातो.	हा केक आणि ब्रेड अशी बेकरी उत्पादने बनविण्यासाठी वापरला जातो.	

संकीर्ण

#1. खाली दिलेल्या पदार्थांची चव लिहा.

अनु.	บอล แลกร์	वव		
珃.	घटक पदार्थ	गोड	आंबट	कडू / तुरट
i.	ऊस			
ii.	चिंच			
iii.	तुरटी			
iv.	व्हिनेगार			
v.	आवळा			
vi.	तोंडली			
vii.	कैरी			

उत्तरे: i. ऊस: गोड

ii. चिंच : आंबट

iii. तुरटी : तुरट

iv. व्हिनेगार : आंबट

v. आवळा : आंबट

vi. तोंडली : कडू

vii. कैरी : आंबट

*2. खालील पदार्थांतील / कीटकांतील कार्बोक्सिलीक आम्ले सांगा.

rt e	नैसर्गिक पदार्थ / कीटक	आप्ल
i.	चिंच	
ii.	लोणी	
iii.	वॅलेरम वनस्पतीची मुळे	
iv.	लिंबू	
V.	दूध	
vi.	संत्री	*************
vii.	लाल मुंग्या	
viii.	मधमाशी	

 उत्तरे: i.
 टार्टारिक ॲसिड
 ii.
 ब्युटिरिक ॲसिड

 iii.
 वॅलेरिक ॲसिड
 iv.
 सायट्रिक ॲसिड

 v.
 लॅक्टिक ॲसिड
 vi.
 सायट्रिक ॲसिड

 vii.
 फॉर्मिक ॲसिड
 viii.
 फॉर्मिक ॲसिड

स्तंभ 'अ' साठी स्तंभ 'ब' मधील योग्य घटक निवडून जोड्या जुळवा.

44	स्तंभ 'अ'		स्तंभ 'ब'
i.	इओसीन	a.	हायंड्रोजन निघून जाणे
ii.	ऑक्सिडीकरण	b.	संश्लिष्ट दर्शक
		c.	ऑक्सिजन निघून जाणे
		d.	नैसर्गिक दर्शक

[मार्च 15]

उत्तर: (i - b), (ii - a)

- #4. आम्लामध्ये हायड्रोजन आयन (H⁺) आणि आम्लारीमध्ये हायड्रॉक्सिल आयन (OH⁻)असतात. द्रावणातील या आयनांचे प्रमाण तुम्ही शोधू शकता का? यावरून आम्ल किंवा आम्लारी किती संहत आहेत हे तुम्ही सांगू शकता का?
- उत्तर: i. pH (किंवा pOH) मूल्यावरून द्रावणातील H⁺ (किंवा OH⁻) आयनांची संहती काढता येते. म्हणून pH मूल्य हे द्रावणातील या आयनांचे प्रमाण मोजण्यास मदत करते.
 - ii. द्रावणात H⁺ आयनांची संख्या जितकी जास्त असेल तेवढे ते द्रावण जास्त आम्लधर्मी (संहत आम्ल) असते. द्रावणात OH⁻ आयनांची संख्या जितकी जास्त असेल तितके ते द्रावण जास्त आम्लारिधर्मी (संहत आम्लारी) असते.

म्हणून, आयनांच्या संहतीवरून आम्ल किंवा आम्लारी किती संहत आहे हे आपण सांगू शकतो. #5. तुम्हांला तीन परीक्षानळ्या दिलेल्या आहेत. एकीमध्ये पाणी व इतर दोघांमध्ये आम्ल व आम्लारी आहेत. मिथिल ऑरेंज वापरून आम्ल आणि आम्लारी कसे ओळखाल?

उत्तर:

परीक्षा नळी	द्रावण	मिथिल ऑरेंज मिसळल्यावर द्रावणाचा रंग	निष्कर्ष
i.	पाणी	बदल नाही.	उदासीन
ii.	आम्ल	द्रावणाचा रंग लाल होतो.	आम्लधर्मी
iii.	आम्लारी	द्रावणाचा रंग पिवळा होतो.	आम्लारिधर्मी

6. मिथिल ऑरेंज हा दर्शक वापरून रंगात होणाऱ्या बदलांवरून आम्ल, आम्लारी व उदासीन पदार्थांसाठी खालील तक्ता पूर्ण करा : |मार्च 14|

दर्शक	रंगात होणारा बदल	निकर्ष
	रंग बदलत नाही	
मिथिल ऑरेंज		आम्ल
	पिवळा	

उत्तर:

दर्शक	रंगात होणारा बदल	निष्कर्ष
17758 Militarius (c. ventkuseeks ilistus)	रंग बदलत नाही	उदासीन
मिथिल ऑरेंज	लाल	आम्ल
	पिवळा	आम्लारी

#7. जस्त व विरल HCI यांच्यामधील रासायनिक अभिक्रिया संतुलित समीकरणाद्वारे दर्शवा.

उत्तरः
$$Zn_{(s)}+2HCl_{(aq)}\longrightarrow ZnCl_{2(aq)}+H_{2(g)}$$
 \uparrow झिंक हायड्रोजन आम्ल क्लोराइड

#8. जस्त व सोडिअम हायड्रॉक्साइडच्या अभिक्रियेचे समीकरण लिहा.

उत्तरः
$$Zn_{(s)}+2NaOH_{(aq)}\longrightarrow Na_2ZnO_{2(aq)}+H_{2(g)}$$
 जस्त सोडिअम सोडिअम हायड्रोजन हायड्रॉक्साइड झिंकेट

- *9. वैश्विक दर्शक म्हणजे काय? सोडिअम हायड्रॉक्साइडची Mg(OH)2 बरोबर अभिक्रिया होते का? नसेल तर का?
- उत्तर: i. अनेक दर्शकांच्या एकत्रित मिश्रणाला वैश्विक दर्शक असे म्हणतात.
 - द्रावणाचे आम्ल आणि आम्लारी गुणधर्म ओळखण्यासाठी वैश्विक दर्शकांचा वापर केला जातो.
 - iii. द्रावणातील हायड्रोजन आयनांच्या विविध प्रमाणानुसार द्रावणाचा रंग वेगवेगळा दिसतो.

- iv. वैश्विक दर्शकाचा उपयोग pH मूल्य ठरविण्यासाठी होतो.
- v. वैश्विक दर्शकाचा उपयोग आम्ल किंवा आम्लारीची संहती ठरविण्यासाठी होतो.
- vi. सोडिअम हायड्रॉक्साइड (NaOH) आणि मॅग्नेशिअम हायड्रॉक्साइड [Mg(OH)₂] दोन्ही आम्लारी आहेत. त्यामुळे त्यांची एकमेकांशी अभिक्रिया होऊ शकत नाही.

#10. स्फटिकजल असलेली पाच संयुगे सांगा. उत्तरः स्फटिकजल असलेली पाच संयुगे:

- i. फेरस सल्फेट (FeSO₄.7H₂O)
- ii. कॉपर सल्फेट (CuSO₄.5H₂O)
- iii. तुरटी [K₂SO₄.Al₂(SO₄)₃.24H₂O]
- iv. बॉक्साइट [Al₂O₃.H₂O]
- v. सोडिअम थिओसल्फेट (Na₂S₂O₃.7H₂O)