
Appendix A

The Delta Function

A.1 One-Dimensional Delta Function

A.1.1 Various Definitions of the Delta Function

The delta function can be defined as the limit of x when 0 (Figure A.1):

x lim
0

x (A.1)

where

x
1 2 x 2

0 x 2
(A.2)

The delta function can be defined also by means of the following integral equations:

f x x dx f 0 (A.3)

f x x a dx f a (A.4)

We should mention that the -function is not a function in the usual mathematical sense. It can

be expressed as the limit of analytical functions such as

x lim
0

sin x

x
x lim

a

sin2 ax

ax2
(A.5)

or

x lim
0

1

x2 2
(A.6)

The Fourier transform of x , which can be obtained from the limit of sin xx , is

x
1

2
eikxdk (A.7)

which in turn is equivalent to

1

2
eikxdk

1

2
lim
0

1

1

eikxdk lim
0

sin x

x
x (A.8)

653

654 APPENDIX A. THE DELTA FUNCTION

-

6

0
x

x

1

2 2

-

6

0
x

x

Figure A.1 The delta function x as defined by x lim 0 x

A.1.2 Properties of the Delta Function

The delta function is even:

x x and x a a x (A.9)

Here are some of the most useful properties of the delta function:

b

a
f x x x0 dx

f x0 if a x0 b
0 elsewhere

(A.10)

x 0 for x 0 (A.11)

x x 0 (A.12)

ax
1

a
x a 0 (A.13)

f x x a f a x a (A.14)
d

c
a x x b dx a b for c a d c b d (A.15)

b

a
x dx 1 for a 0 b (A.16)

[g x]
i

1

g xi
x xi (A.17)

where xi is a zero of g x and g xi 0. Using (A.17), we can verify that

[x a x b]
1

a b
[x a x b] a b (A.18)

x2 a2
1

2 a
[x a x a] a 0 (A.19)

A.1. ONE-DIMENSIONAL DELTA FUNCTION 655

-

6

0
x

x

1

Figure A.2 The Heaviside function x .

A.1.3 Derivative of the Delta Function

The Heaviside function, or step function is defined as follows; see Figure A.2:

x
1 x 0

0 x 0
(A.20)

The derivative of the Heaviside function gives back the delta function:

d

dx
x x (A.21)

Using the Fourier transform of the delta function, we can write

d x

dx
x

i

2
keikxdk (A.22)

Another way of looking at the derivative of the delta function is by means of the following

integration by parts of x a :

f x x a dx f x x a f x x a dx f a (A.23)

or

f x x a dx f a (A.24)

where we have used the fact that f x x a is zero at . Following the same procedure,

we can show that

f x x a dx 1 2 f a f a (A.25)

Similar repeated integrations by parts lead to the following general relation:

f x n x a dx 1 n f n a (A.26)

656 APPENDIX A. THE DELTA FUNCTION

where n x a d n[x a] dxn and f n a d n f x dxn x a . In particular, if

f x 1 and n 1, we have

x a dx 0 (A.27)

Here is a list of useful properties of the derivative of the delta function:

x x (A.28)

x x x (A.29)

x2 x 0 (A.30)

x2 x 2 x (A.31)

A.2 Three-Dimensional Delta Function

The three-dimensional form of the delta function is given in Cartesian coordinates by

r r x x y y z z (A.32)

and in spherical coordinates by

r r
1

r2
r r cos cos

1

r2 sin
r r (A.33)

since, according to (A.17), we have cos cos sin .

The Fourier transform of the three-dimensional delta function is

r r
1

2 3
d3k eik r r (A.34)

and

d3r f r r f 0 d3r f r r r0 f r0 (A.35)

The following relations are often encountered:

r

r2
4 r 2 1

r
4 r (A.36)

where r the unit vector along r .
We should mention that the physical dimension of the delta function is one over the di-

mensions of its argument. Thus, if x is a distance, the physical dimension of x is given by

[x] 1 [x] 1 L, where L is a length. Similarly, the physical dimensions of r is 1 L3,
since

r x y z
1

[x]

1

[y]

1

[z]

1

L3
(A.37)

Appendix B

Angular Momentum in Spherical

Coordinates

In this appendix, we will show how to derive the expressions of the gradient , the Laplacian
2, and the components of the orbital angular momentum in spherical coordinates.

B.1 Derivation of Some General Relations

The Cartesian coordinates x y z of a vector r are related to its spherical polar coordinates
r by

x r sin cos y r sin sin z r cos (B.1)

The orthonormal Cartesian basis x y z is related to its spherical counterpart (r) by

x r sin cos cos cos sin (B.2)

y r sin sin cos sin cos (B.3)

z r cos sin (B.4)

Differentiating (B.1), we obtain

dx sin cos dr r cos cos d r sin sin d (B.5)

dy sin sin dr r cos sin d r sin cos d (B.6)

dz cos dr r sin d (B.7)

Solving these equations for dr , d , and d , we obtain

dr sin cos dx sin sin dy cos dz (B.8)

d
1

r
cos cos dx

1

r
cos sin dy

1

r
sin dz (B.9)

d
sin

r sin
dx

cos

r sin
dy (B.10)

657

658 APPENDIX B. ANGULAR MOMENTUM IN SPHERICAL COORDINATES

We can verify that (B.5) to (B.10) lead to

r

x
sin cos

x

1

r
cos cos

x

sin

r sin
(B.11)

r

y
sin sin

y

1

r
sin cos

y

cos

r sin
(B.12)

r

z
cos

z

1

r
sin

z
0 (B.13)

which, in turn, yield

x r

r

x x x

sin cos
r

1

r
cos cos

sin

r sin
(B.14)

y r

r

y y y

sin sin
r

1

r
cos sin

cos

r sin
(B.15)

z r

r

z z z
cos

r

sin

r
(B.16)

B.2 Gradient and Laplacian in Spherical Coordinates

We can show that a combination of (B.14) to (B.16) allows us to express the operator in

spherical coordinates:

x
x

y
y

z
z

r
r

1

r

1

r sin
(B.17)

and also the Laplacian operator 2:

2 r
r r r sin

r
r r r sin

(B.18)

Now, using the relations

r

r
0

r
0

r
0 (B.19)

r
r 0 (B.20)

r
sin cos r sin cos (B.21)

we can show that the Laplacian operator reduces to

2 1

r2 r
r2
r

1

sin
sin

1

sin2

2

2
(B.22)

B.3. ANGULAR MOMENTUM IN SPHERICAL COORDINATES 659

B.3 Angular Momentum in Spherical Coordinates

The orbital angular momentum operator L can be expressed in spherical coordinates as

L R P ihr r ihr r r
r r r sin

(B.23)

or as

L ih
sin

(B.24)

Using (B.24) along with (B.2) to (B.4), we express the components Lx L y Lz within the con-

text of the spherical coordinates. For instance, the expression for Lx can be written as follows:

Lx x L ih r sin cos cos cos sin
sin

ih sin cot cos (B.25)

Similarly, we can easily obtain

L y ih cos cot sin (B.26)

L z ih (B.27)

From the expressions (B.25) and (B.26) for Lx and L y , we infer that

L Lx i L y he i i cot (B.28)

The expression for L2 is

L2 h2r2 r r h2r2 2 1

r2 r
r2
r

(B.29)

it can be easily written in terms of the spherical coordinates as

L2 h2
1

sin
sin

1

sin2

2

2
(B.30)

This expression was derived by substituting (B.22) into (B.29).

Note that, using the expression (B.29) for L 2, we can rewrite 2 as

2 1

r2 r
r2
r

1

h2r2
L 2

1

r

2

r2
r

1

h2r2
L 2 (B.31)

660 APPENDIX B. ANGULAR MOMENTUM IN SPHERICAL COORDINATES

Appendix C

C++ Code for Solving the

Schrödinger Equation

This C++ code is designed to solve the one-dimensional Schrödinger equation for a harmonic

oscillator (HO) potential as well as for an infinite square well (ISW) potential as outlined in

Chapter 4. My special thanks are due to Dr. M. Bulut and to Prof. Dr. H. Mueller-Krumbhaar

and his Ph.D. student C. Gugenberger who have worked selflessly hard to write and test the

code listed below. Dr. Mevlut wrote an early code for the ISW, while Prof. Mueller-Krumbhaar

and Gugenberger not only wrote a new code (see the version listed below) for the HO but also

designed it in a way that it applies to the ISW potential as well (they have also added effective

didactic comments so that our readers can effortlessly understand the code and make use of it).

Note: to shift from the harmonic oscillator code to the infinite square well code, one needs sim-

ply to erase the first double forward-slash (i.e., "//") from the oscillator’s program line below:

E_pot[i] = 0.5*dist*dist; // E_pot[i]=0;//E_pot=0:Infinite Well!

Of course, one still needs to rescale the energy and the value of ’xRange’ in order to agree with

the algorithm outlined at the end of Chapter 4.

The C++Code: osci.cpp

/* osci.cpp: Solution of the one-dimensional Schrodinger equation for

a particle in a harmonic potential, using the shooting method.

To compile and link with gnu compiler, type: g++ -o osci osci.cpp

To run the current C++ program, simply type: osci

Plot by gnuplot: /GNUPLOT> set terminal windows

/GNUPLOT> plot "psi-osc.dat" with lines */

#include <cstdio>

#include <cstdlib>

#include <cmath>

#define MAX(a, b) (((a) > (b)) ? (a) : (b))

int main(int argc, char*argv[])

{// Runtime constants

const static double Epsilon = 1e-10; // Defines the precision of

//... energy calculations

661

662 APPENDIX C. C++ CODE FOR SOLVING THE SCHRÖDINGER EQUATION

const static int N_of_Divisions = 1000;

const static int N_max = 5; //Number of calculated Eigenstates

FILE *Wavefunction_file, *Energy_file, *Potential_file;

Wavefunction_file = fopen("psi-osc.dat","w");

Energy_file = fopen("E_n_Oszillator.dat","w");

Potential_file = fopen("HarmonicPotentialNoDim.dat", "w");

if (!(Wavefunction_file && Energy_file && Potential_file))

{ printf("Problems to create files output.\n"); exit(2); }

/* Physical parameters using dimensionless quantities.

ATTENTION: We set initially: hbar = m = omega = a = 1, and

reintroduce physical values at the end. According to Eq.(4.117),

the ground state energy then is E_n = 0.5. Since the wave function

vanishes only at -infinity and +infinity, we have to cut off the

calculation somewhere, as given by ’xRange’. If xRange is chosen

too large, the open (positive) end of the wave function can

diverge numerically in this simple shooting approach. */

const static double xRange = 12; // xRange=11.834 corresponds to a

//... physical range of -20fm < x < +20fm, see after Eq.(4.199).

const static double h_0 = xRange / N_of_Divisions;

double* E_pot = new double[N_of_Divisions+1];

double dist;

for (int i = 0; i <= N_of_Divisions; ++i)

{ // Harmonic potential, as given in Eq. (4.115), but dimensionless

dist = i*h_0 - 0.5*xRange;

E_pot[i] = 0.5*dist*dist; // E_pot[i]=0;//E_pot=0:Infinite Well!

fprintf(Potential_file, "%16.12e \t\t %16.12e\n", dist, E_pot[i]);

}

fclose(Potential_file);

/* Since the Schrodinger equation is linear, the amplitude of the

wavefunction will be fixed by normalization.

At left we set it small but nonzero. */

const static double Psi_left = 1.0e-3; // left boundary condition

const static double Psi_right = 0.0; // right boundary condition

double *Psi, *EigenEnergies;// Arrays to hold the results

Psi = new double[N_of_Divisions+1]; //N_of_Points = N_of_Divisions+1

EigenEnergies = new double[N_max+1];

Psi[0] = Psi_left;

Psi[1] = Psi_left + 1.0e-3; // Add arbitrary small value

int N_quantum;//N_quantum is Energy Quantum Number

int Nodes_plus; // Number of nodes (+1) in wavefunction

663

double K_square;// Square of wave vector

// Initial Eigen-energy search limits

double E_lowerLimit = 0.0;// Eigen-energy must be positive

double E_upperLimit = 10.0;

int End_sign = -1;

bool Limits_are_defined = false;

double Normalization_coefficient;

double E_trial;

// MAIN LOOP begins:-----------------------------------

for(N_quantum=1; N_quantum <= N_max; ++N_quantum)

{

// Find the eigen-values for energy. See theorems (4.1) and (4.2).

Limits_are_defined = false;

while (Limits_are_defined == false)

{ /* First, determine an upper limit for energy, so that the wave-

function Psi[i] has one node more than physically needed. */

Nodes_plus = 0;

E_trial = E_upperLimit;

for (int i=2; i <= N_of_Divisions; ++i)

{ K_square = 2.0*(E_trial - E_pot[i]);

// Now use the NUMEROV-equation (4.197) to calculate wavefunction

Psi[i] = 2.0*Psi[i-1]*(1.0 - (5.0*h_0*h_0*K_square / 12.0))

/(1.0 + (h_0*h_0*K_square/12.0))-Psi[i-2];

if (Psi[i]*Psi[i-1] < 0) ++Nodes_plus;

}

/* If one runs into the following condition, the modification

of the upper limit was too aggressive. */

if (E_upperLimit < E_lowerLimit)

E_upperLimit = MAX(2*E_upperLimit, -2*E_upperLimit);

if (Nodes_plus > N_quantum) E_upperLimit *= 0.7;

else if (Nodes_plus < N_quantum) E_upperLimit *= 2.0;

else Limits_are_defined = true; // At least one node should appear.

} // End of the loop: while (Limits_are_defined == false)

// Refine the energy by satisfying the right boundary condition.

End_sign = -End_sign;

while ((E_upperLimit - E_lowerLimit) > Epsilon)

{ E_trial = (E_upperLimit + E_lowerLimit) / 2.0;

for (int i=2; i <= N_of_Divisions; ++i)

{ // Again eq.(4.197) of the Numerov-algorithm:

K_square = 2.0*(E_trial - E_pot[i]);

Psi[i] = 2.0*Psi[i-1] * (1.0 - (5.0*h_0*h_0*K_square / 12.0))

/(1.0 + (h_0*h_0*K_square/12.0))-Psi[i-2];

}

if (End_sign*Psi[N_of_Divisions] > Psi_right) E_lowerLimit = E_trial;

else E_upperLimit = E_trial;

} // End of loop: while ((E_upperLimit - E_lowerLimit) > Epsilon)

664 APPENDIX C. C++ CODE FOR SOLVING THE SCHRÖDINGER EQUATION

// Initialization for the next iteration in main loop

E_trial = (E_upperLimit+E_lowerLimit)/2;

EigenEnergies[N_quantum] = E_trial;

E_upperLimit = E_trial;

E_lowerLimit = E_trial;

// Now find the normalization coefficient

double Integral = 0.0;

for (int i=1; i <= N_of_Divisions; ++i)

{ // Simple integration

Integral += 0.5*h_0*(Psi[i-1]*Psi[i-1]+Psi[i]*Psi[i]);

}

Normalization_coefficient = sqrt(1.0/Integral);

// Output of normalized dimensionless wave function

for (int i=0; i <=N_of_Divisions; ++i)

{ fprintf(Wavefunction_file, "%16.12e \t\t %16.12e\n",

i*h_0 - 0.5*xRange, Normalization_coefficient*Psi[i]);

}

fprintf(Wavefunction_file,"\n");

} // End of MAIN LOOP. --------------------------------

fclose(Wavefunction_file);

/*Finally convert dimensionless units in real units. Note that

energy does not depend explicitly on the particle’s mass anymore:

hbar = 1.05457e-34;// Planck constant/2pi

omega = 5.34e21; // Frequency in 1/s

MeV = 1.602176487e-13; // in J

The correct normalization would be hbar*omega/MeV = 3.5148461144,

but we use the approximation 3.5 for energy-scale as in chap. 4.9 */

const static double Energyscale = 3.5;// in MeV

// Output with rescaled dimensions; assign Energy_file

printf("Quantum Harmonic Oscillator, program osci.cpp\n");

printf("Energies in MeV:\n");

printf("n \t\t E_n\n");

for (N_quantum=1; N_quantum <= N_max; ++N_quantum)

{ fprintf(Energy_file,"%d \t\t %16.12e\n", N_quantum-1,

Energyscale*EigenEnergies[N_quantum]);

printf("%d \t\t %16.12e\n", N_quantum-1,

Energyscale*EigenEnergies[N_quantum]);

}

fprintf(Energy_file,"\n");

fclose(Energy_file);

printf("Wave-Functions in File: psi_osc.dat \n");

printf("\n");

return 0;

}

