DARCY LAW'S

Q = kiA (For Laminar flow) (i)

where, Q = Discharge

k = Coefficient of permeability

i = Hydraulic gradient =
$$\frac{\Delta h}{I}$$

A = Area of flow.

(ii)
$$\frac{Q}{A} = V = ki$$
 where, $V = Discharge velocity$

where, V_S = Seepage velocity

n = Porosity.

where, k' = Constant having value 400.

i = Hydraulic gradient

 D_{10} = Effective size of soil particle

Y = Dynamic viscosity.

where, C=Shape factor (which is a function of porosity, packing and grain size distribution).

d = Average size of particle.

v = Kinematic viscosity.

SPECIFIC YIELD

$$S_y = \frac{V_{wy}}{V}$$

where, $S_v = Specific yield$.

V_{wv} = Volume of water yielded under gravity effect.

V = Total volume of water drained.

SPECIFIC RETENTION

where, $S_R = Specific retention$.

V_{WR} = Volume of water retain under gravity effect.

V = Total volume of water.

 $S_y + S_R = n$ where, n = Porosity.

SLOT OPENING

Slot size = $D_{10} \pm 8\%$ of D_{10} of gravel pack material.

Slot size = D_{60} of aquifer design on the basis of finest aquifer.

PACK AQUIFER RATIO (P.A)

Pack Aquifer Ratio (P.A) =
$$\frac{D_{50} \text{ of gravel}}{D_{50} \text{ of aquifer}}$$

$$\boxed{9 < PA < 12.5}$$
 if $\left(C_u = \frac{D_{60}}{D_{10}}\right) \le 2$.

$$12 < PA < 15.5$$
 if $(C_u > 2)$

WELL LOSSES

Jacob-equilibrium formula for confined aquifer,

$$s = \frac{Q}{4\pi T} \left\{ log_e \frac{4Tt}{r^2 A} - 0.5772 \right\}$$

where.

s = Drawdown in observation well after time t.

r = Radial distance of observation well from main pump well.

T = Coefficient of transmissibility = k.d

A = Coefficient of storage.

$$s_2 - s_1 = \frac{2.303Q}{4\pi T} \log_{10} \frac{t_2}{t_1}$$

 s_2 = Drawdown of observation well at time t_2 .

 s_1 = Drawdown of observation well at time t_1 .

$$\frac{t_1}{r_1^2} = \frac{t_2}{r_2^2}$$

where, r_1 and r_2 is the distance of drawdown in time t_1 and t_2 respectively.