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FUNDAMENTAL DUTIES

It shall be the duty of every citizen of India

(A)

(B)

©
(D)

(E)

(F)
G)

(H)

)

)

(K)

to abide by the Constitution and respect its ideals and institutions,
the National Flag and the National Anthem;

to cherish and follow the noble ideals which inspired our national
struggle for freedom;

to uphold and protect the sovereignty, unity and integrity of India;

to defend the country and render national service when called upon
to do so;

to promote harmony and the spirit of common brotherhood
amongst all the people of India transcending religious, linguistic
and regional or sectional diversities; to renounce practices
derogatory to the dignity of women;

to value and preserve the rich heritage of our composite culture;

to protect and improve the natural environment including forests,
lakes, rivers and wild life, and to have compassion for living

creatures;

to develop the scientific temper, humanism and the spirit of inquiry

and reform;

to safeguard public property and to abjure violence;

to strive towards excellence in all spheres of individual and
collective activity so that the nation constantly rises to higher levels
of endeavour and achievement;

to provide opportunities for education by the parent or the guardian,
to his child or a ward between the age of 6-14 years as the case may
be.

*Constitution of India : Section 51 A
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About This Textbook...

We have created a background in the book of Mathematics for standard 11,
semester [ about formation of new syllabus and writing textbooks following curriculum
of NCERT.

First of all, this book was written in English. It was reviewed by teachers and
professors teaching in English medium schools and colleges. According to the
suggestions made by experts, necessary amendments were made and the manuscript was
translated in Gujarati. It was again reviewed by experts teaching in Gujarati medium;
considering their suggestions, the necessary changes were made.

Thus, the manuscript prepared was compeletely read by the authors in workshops
and the authors gave final touches to the manuscript.

In chapter 1, mathematical induction which is a tool to prove many properties
about statements related to natural numbers is studied. Also, we have shown the use of
mathematical induction in various fields using various formats. Chapter 2 gives an
introduction to complex number system. Fundamental theorem of algebra, square roots
and cube roots of complex numbers, Argand diagrams, inequalities etc. have been
presented in a very lucid manner in this chapter. Any algebraic n degree equation with
real coefficients can be solved using complex numbers and thus complex numbers are very
useful. Chapter 3 introduces binomial theorem which is an extension of expansions of the
squares and the cubes studied at secondary school level. Binomial theorem for positive
index is useful while using polynomials. Chapters 4, 5 and 6 advance the study of
trigonometry studied in semester 1. These chapters are useful to study properties of
triangles and for studying general solution of trigonometric equations.

In chapter 7, there are arithmetic progression, geometric progression and power
series (index 1, 2 and 3). In chapter 8§, elementary study of conics and primary information
have been given. We mention intersection of cones and general second degree curves.
In chapter 9, there is a study of three dimensional geometry. To study this, vector is an
important tool. So in the beginning of the chapter, we have given introduction of vectors.
The study of three dimensional geometry is limited to section of a line segment.

Chapter 10 and 11 suggest the beginning of the calculus. Only intuitive concept of
limit has been taken and then limit has been defined. We have stressed how to obtain
limit using lemmas and theorems. The concept of limit has been explained with the
help of graphs but students are not supposed to draw the graphs. Having defined
differentiation, we have explained how to obtain derivatives of elementary functions.
There are ample number of examples so that a student can understand all the concepts by
himself / herself and a teacher can lead a student to self study. At the end of every chapter
enough number of multiple choice questions have been given so that understanding of
concept can be evaluated. We intend to render a student enough study material
from the textbook itself. Attractive four colour printing is an additional attraction of
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the book. We have given some information about contribution of Indian Mathematicians
at the end of some chapters.

Enough care has been taken to make the textbook maximally interesting and
errorfree. However all constructive suggestions regarding further improvement in the
textbook are most welcome.

We hope teachers and students both will find this book useful and valuable.

— Authors
Please consider following points while teaching textbook.
Following is necessary for study by students and teachers.
But it will not be asked in the board examination.
Chapter Exercise Examples
Chapter 1 Exercise 1 : Ex. No. 21 21,24
Chapter 2 Exercise 2 : Ex. No. 16 -
Chapter 5 Exercise 5 : Ex. No. 19 to 22 -
Chapter 8 — 13, 14, 19, 32
Chapter 10 Article 10.3 14, 15, 16
Exercise 10 : From statements of
examples 1, 2, 3 remove the
word ‘definition’.
Chapter 11 Exercise 11 : Ex. No. 6, 20(4) 17, 26
In Example 19
. i Al — on—1
Let P(n) : Ly Sin'x = nsin X cosx

Following is useful for higher studies and competitive examinations,
but not for board examination.

Chapter Exercise Examples
Chapter 1 Exercise 1 : Ex. No. 9, 24, 29 23
Chapter 2 Exercise 2.3 : Ex. No. 3 -
Chapter 8 Exercise 8.3 : Ex. No. 3, 4 -
Exercise 8.4 : Ex. No. 8, 9
Exercise 8 : Ex. No. 6
Chapter 10 Exercise 10 : Ex. No. 9
Chapter 11 Exercise 11 : Ex. No.20(23)




Chapter |

PRINCIPLE OF
MATHEMATICAL INDUCTION

Mathematics is the queen of science and
number theory is the queen of mathematics.
— Gauss

Mathematics passes not only truth but also supreme beauty !
— Bertrand Russell

1.1 Introduction
We have studied one method of reasoning, deductive reasoning.

For example, consider the following statements :
() 1+2+3+..+100=5050

nn+1)

@ 1+2+3+. +n="0

(3) Letn=100in (2). 1 +2+3 + ... + 100 = 1900D — (50)101) = 5050
2

Here we want to prove that sum of all integers from 1 to 100 is 5050. We have a general result

I+2+3+.. +n=2010

general principle to deduce a particular result.

. We take » = 100 in it and get the required result. Here, we apply a

Consider (1) If 3 divides product ab, then 3 divides a or 3 divides b. (2) If p is a prime and p divides
ab then p divides a or p divides b. (3) Let p = 3 in (2) as 3 is a prime. Hence, if 3 divides product
ab, then 3 divides a or 3 divides b.

Here also we apply a general principle to deduce a particular result.

(1) Amitabh Bachchan is a good actor.
(2) Actors are awarded national Padma honour in their category, if selected.

(3) Amitabh Bachchan was selected and got Padma honour.

PRINCIPLE OF MATHEMATICAL INDUCTION 1



Here also a similar situation occurs.

But consider the following against this deductive reasoning,

4 — 1 = 3 is divisible by 3.

42 — 1 =15 is divisible by 3.

43 — 1 = 63 is divisible by 3.

Here we observe a pattern and we make a conjecture that for every positive integer n,
4" — 1 is divisible by 3. So from a particular case, we conjecture a general result. This is not a
proof. This inductive assumption has to be proved. All conjectures may not be true. For example,
nw—n+41is a prime for n = 1, 2, 3,...39. But for n = 41, 412 — 41 + 41 = 412 is obviously
not a prime. Hence we cannot deduce that n?
n=1,2,3,.39.

— n + 41 is a prime by observing values for

So, inductive argument starts from a particular case and by rigorous deduction the conjecture
is proved.

The history of this dates back to Plato. In 370 B.C. Plato's parmenides (Discussions or Dialogues)
contained an early example of implicit inductive proof. The early traces of mathematical induction
can be found in Euclid's proof that number of primes is infinite. Bhaskara II's cyclic method

(Chakravala) also introduces mathematical induction.

Sorites paradox used the method of descent. He said 10,00,000 grains of sand form a heap.
Removing one grain from the heap does not change the situation. So continuing the argument even one

grain or no grain also forms a heap !

Around 1000 A.D., Al-Karaji introduced mathematical induction for arithmetic sequences in

Al-Fakhri and proved the binomial theorem and properties of Pascal's triangle.

The first explicit formulation of the principle of mathematical induction was given by Pascal in
Traité-du-triangle arithmetique (1665). French mathematician Fermat and Swiss mathematician
Jacob Bernoulli used the principle. The modern rigorous and systematic treatment came only in 19th

century with George Boole, Sanders Peirce, Peano and Dedekind.
1.2 Induction Principle
We start with following principle :

Principle of Induction : If a statement P(n) of natural variable n is true for » = 1 and
if P(k) is true = P(k + 1) is true, k € N, then P(n) is true, Vi € N.

Let us be given a statement P(#) involving a natural variable to be true for all natural numbers 7.

We prove it in two stages :
(1) The basis : We prove it for » = | (or 0 or the lowest value).

(2) Inductive step : Assuming that the statement holds for some natural number &, prove it
forn=k+ 1.

Then P(n) is true for all » € N.
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Domino effect : We are presented with a ‘long’ row of
dominos such that,

(1) The first domino will fall.

(2) Whenever a domino falls, its next neighbour will fall.

So it is concluded that all of the dominos will fall.

So the proof is like this. The first statement in an infinite

sequence of statements is true and if it is true for some £ € N,
it is true for the next value of the variable, then the given

sequence of statements is true for all » € N.

In logical symbols, (VP) [P(1) A (Vk € N) (P(k) = Pk + 1))] = (Vn € N)[P(n)]

This can be proved by using well-ordering principle which states that every non-empty
subset of N has a least element.

Proof : Let S be the set of natural numbers for which P(») is false. 1 & S as P(1) is true.
If S is non-empty, it has a least element # which is not 1. Let # = n + 1. Since 7 is the least

element for which P(7) is false, P(n) is true. Also P(n) = P(n + 1). Hence P(n + 1) = P(¢) is
true, a contradiction. Hence S = ).

P(n) is true, Vn € N.

Sometimes paradoxes are created by misuse of the principle.

There is a famous Polya's proof that there is no horse of different colour.

Basis : If there is only one horse, there is only one colour and hence P(1) is true.

Induction step : Assume that in any set of n horses, all have the same colour. Consider a set of
n + 1 horses numbered 1, 2, 3,... n + 1. Consider the subsets {1, 2, 3,..., n} and {2, 3, 4,...n + 1}. Each
is a set of » horses and therefore they have the same colour and since they are overlapping sets, all
n + 1 horses have same colour. This argument is true for 1 horse and n = 3 horses. But for 2 horses
the set {1} and {2} are disjoint and the argument falls flat.
1.3 Examples

Now we will apply the principle of mathematical induction to some examples.
nn+1)

Example 1 : Prove 1 + 2+ 3+ ... +n= 3 , n € N
Solution : Let P(n) : 1+2+3+...+n=n(nT+l), ne N
Forn =1, LHS. =1 and RH.S. = X2 . Hence, P(1) is true.

2
Let P(k) be true i.e. P(n) is true for n = k, k € N.

k(k+1) (i)

1+2+3+ ... +k= 3

For n = k + 1 we have to prove,

L+24+3 4.+ (+ 1) = EEDEED

Now, | + 243+ . +(k+D)=0+2+3+..+bO+Gk+1D

= XD 4k + 1) by (i)

k
=+ 1) (541) = EibEty

PRINCIPLE OF MATHEMATICAL INDUCTION 3



Hence, P(k + 1) is true.

P(1) is true and P(k) is true, = P(k + 1) is true.

P(n) is true, Vn € N by principle of mathematical induction.
Note : This example has historical importance.

Obviously, 1 +2 + 3 + ... + 100 = 5050 according to this formula. When this formula was not
known, Gauss, at very young age, calculated this by the following method and surprised his teacher
Buttner and assistant teacher Bartels.

Let S=14+24+34+..4+100 @)
S=100+994+98+ ...+ 1 (i)
Adding (i) and (ii)
2S = (101) + (101) + ... 100 times (() + (ii))
S = 101X100 _ 5050. This was done in no time !

2

Let us review a geometric ‘proof”.

Consider a rectangle of sides » and n + 1 divided into

subrectangles of unit sides as shown. The portion under the dark
ladder has area 1 +2 + 3 + ... + n. n

By symmetry the rectangle has area

20+2+3+..+n)=nm+1)

nn+1)
2

n+1

1+2+3+ ... +n=

Example 2 : Prove 12 + 22 + 32 4+ .. + n? = w, ne€ N
Solution : Let P(n) : 12+ 22 + 32 + . + n? = %@’”” ne N
Let = 1. LHS. = 12= 1 and RHS. = X223 = |

6
P(1) is true.
Let P(k) be true, £ € N.

K2 = k(k + 1)k +1)

12+22+32+ ..+ .

Letn =k + 1.
LHS. =124+22+432+ 4+ &2+ (k+ 1) =w“k+1)2

k+ 1) [@ﬂkﬂ)}

2k% + k + 6k +6)
k+ 1) r3

_ (k+1)(2k? + 7k + 6)
6

_ (k+Dk+2)2k+3)
6

_ (k+1)(k+1+61)(2(k+1)+1) = R.H.S.
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P(k + 1) is true.
P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by principle of mathematical induction.

2 2
Example 3 : Prove 13+ 23 +33 4 43 = LEID -y e N
. 2 2
Solution : Let P(n) : 13+ 23+ 33+ .+’ = w, n€ N

2
= 1.

o} 2
Forn =1, LHS. =13=1and RHS. = 22

P(1) is true.
Let P(k) be true.
B+ +3+ 8= _"2("4* D’
Letn =k + 1.
LHS. = 13+ 23+ 3+ .+ B8+ K+ 1) =w + ok + 1)3

= EED 1R + 40k + 1))

2
= &40 1+ 4k + 4)

_ (k+1*(k+2)?
4

2 2
_ (k+0D (li+1+1) — RIS,

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vi € N by P.M.I

(Now onwards we shall abbreviate Principle of Mathematical Induction as P.M.I.)
Example 4 : Prove 1 +3+ 5+ ..+ 2n—1)=n%, ne€ N
Solution : Let Pm) : 1 +3+5+ ..+ Qu—1)=n% ne N
Letn =1 LHS.=1and RHS. =12 = 1.
P(1) is true.
Let P(k) be true.
1+3+5+ ..+ Qk—1)=k

Letn =k + 1.
LHS.=1434+5+..4+Ck—1)+Qk+1)
=k +2k+1

= (k + 1) = RH.S.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.L.

PRINCIPLE OF MATHEMATICAL INDUCTION



Solution

Letn=1.LHS. =1-1!=1,RHS.=(1+ 1) —1=21—1=1

P(1) is true.
Let P(k) be true.

Lol + 2204 o+ kekl = (k+ 1) — 1

Let n = k + 1.

LHS. = 1-10 4220 + 330 + .. + k-kl + (k+ Dk + 1)!

=+ D! — 1+ (k+ Dk + 1)

—k+ D1+ G+ 1] —1
=k+ 1D (k+2) -1
=(k+2)! —1=RHS.

Example 5 : Prove ﬁ + ﬁ + ﬁ + ...+ n(n1+1) = n’il’ n &€ N
Joluti S ST BT B 1 __n
Solution : Let P(I’l) S 102 + -3 + 3 + ...+ nn+l) ~— n+1° ne€ N
Letn = 1. LHS. = 75 = £ and RH.S. = 1

P(1) is true.
Let P(k) be true.
1 1 1 Y
T2 t23 37 T kk+y =~ T+1
Let n = k + 1.
LHS. =5 + 55 + 755 + o + T + T
A ) 2-3 3-4 kk +1) k+1k+2)
_ _k 1
“%+1 T k+nk+2
_ ktk+2)+1
T (k+Dk+2)
kP +2k+1
T k+D)k+2)
o (k+1?
T k+ Dk +2)
k+1
= Z%+2 - RHS.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.
Example 6 : Prove 11! +2:21 + .. +nnl=m+ 1) —1, n € N

cLetPn) : 1-1!+221+ . +nenl=mw+ 1D -1, ne N

MATHEMATICS-2



P(k + 1) is true.

P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.I.
Note : Directly, n-n!=m+1—1)n! =m+ 1)n! —n!

=m+ 1) —n!
Letn =1, 2, 3,... etc. and add
111 +2-21 433 +.+n-n =QI—1D+B!=2)+@'=3)+.+(rn+ 1) —n!)
=m+ 1 —1

2n+1

Example 7 : Prove (1+%)(1+%)(1+%) (1 + ) =m+ 1% neN

Solution : Let P(n) : (1+%)(1+%)(1+%) (1 + 22:-1) =m+ 1% neN

Letn=1.LHS. =1+3 =4and RHS. = (1 + 1)>2=22=4

P(1) is true.
Let P(k) be true.

(1+%)(1+%) (1 + 2kkflj = (k+ 1)?
Let n =k + 1.

LHS. = (1+3)(1+3)(1+3) .. (1 . Zkkjlj(l+(§<k++1)ij

K>+ 2k +1+2k+3
(k + 1)

=(k+1)2><(

=K +4k+ 4

= (k + 2)> = RH.S.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.L

Note : Directly, (1+%)(1+%)(1+%) (1+ 2’:;1)
—2.2.L (”;2”2 =+ 1)

Example 8 : Prove 12 +2:224+3-23+ _+n:2"=m—12""14+2 ne N
(This type of series is called arithmetico geometric series.)
Solution : Let P(n) : 12+ 22243234+  4+n-2"=m—12""1+2. neN
Letn=1.LHS. =2and RHS. =0+2=2
P(1) is true.
Let P(k) be true.

PRINCIPLE OF MATHEMATICAL INDUCTION



Hence, 1-2 + 222+ .+ k- 2k=(k—1)2kT1 42
Let n = k + 1.
L.H.S.

1:2+2:2243-23+ .+ k-2F+ (k+ 12k 1
=Gk -2+ 2+ (k+ 12k F1
=(k—1+k+ 127142
=2k-2T1 42
=k-2kt2 4+ 2 =RHS.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

-1 _ air™ =1

Example 9 : Prove a + ar + ar? + ..+ ar 7

r#1,n€ N

a(r™ -1

Solution : Let Pn) : a + ar + ar + .. + "~ ! = -

(r#1),n €N

—1
Let n = 1. LHS. = a and RHS. = &= -

P(1) is true.
Let P(k) be true.

1 ark -y

atar+ a?+ ..+ ark- o

Letn =k + 1.
LHS.=a+ar+a?+ .. +af-" 1+ a*

k
_art =1 k
= ——1 + ar

k

r-—1 k
=a(ﬁ+r]

k

r —1+rk(r—1)
r—1

(rk—1+rk+1—rk)

r—1

k+1_
= u = RHS
F—1

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.1.
Example 10 : Prove 327 *2 — 81 — 9 is divisible by 8, n € N
Solution : Let P(n) : 32+ 2 — 8n — 9 is divisible by 8, n € N
Letn=1.3*—8—9=81—8—9=64is divisible by 8.

8 MATHEMATICS-2



Let P(k) be true. Hence 32k +2 — 8k — 9 is divisible by 8.
Letn =k + 1.

Now, 326+4 — 8k + 1) — 9 Qk+1)+2=2k+4)

=32%k+2.32 _8k—8—9
=3%+2@8+1)—8—8—09
- 8_32k+2+32k+2_ 8k—8—0
=32k+2 _QF — 9 + 8(32k+2— 1)
Now, 8 divides 32€+2 — 8k — 9
Also, 8 divides 8(32+2 — 1)
8 divides 3%F+2— 8k — 9 + 8(32k+2 — 1)
320+ D+2_ gk + 1) — 9 is divisible by 8.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.
Note : Obviously,
3M+2_gp—9 =32+l 1 -8y —8
=32=D)(GHY'+@YY "+ +1)—8n—8

=8(3%"+32=2+ _ +1)— 8n — 8 is divisible by 8.

Another Method :
P(n) : 32"+ 2 — 8n — 9 is divisible by 8, n € N
Forn=1,32%2— 8(1) — 9 = 64 is divisible by 8.
P(1) is true.
Let P(k) be true.
32k+2 — 8k — 9 is divisible by 8.
32k+2 _ 8k — 9 = 8m where m € N
Now, Let n = k + 1,
32+ D+2_8k+1)—9=3%+2x32—-8—8—-09
=@8k+9+8m9—8k—8—-09
=T72k+ 81+ 72m—8k—8—9
=64k + 72m + 64
= 8(8% + 9m + 8) is divisible by 8.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.L.

3*=9=8+1

by p(k)

(Example 9)

(i)

(From (i))

PRINCIPLE OF MATHEMATICAL INDUCTION



Example 11 : Prove 200227 * 1 4+ 200327 + | js divisible by 4005, n € N
Solution : Let P(n) : 200227 + 1 + 200327 * 1 is divisible by 4005, n € N
Let n = 1.
20023 + 20033 = (2002 + 2003) [(2002)> — (2002)(2003) + (2003)?]
= (4005) [(2002)2 — (2002)(2003) + (2003)2]
(2002)3 + (2003)3 is divisible by 4005.
P(1) is true.
Let P(k) be true.
20022k +1 4 20032k + 1 is divisible by 4005.
Letn =k + 1.
Now, 20022 + D+ 14 200320k + D +1
=2002%k+3 — 20022+ 1 (2003)% + (2002)% + 1. (2003)2 + (2003)% * 3
= (2002)% + 1 [(2002)2 — (2003)2] + (2003)% [(2002)% + 1 + (2003)% + 1
= —(4005) (2002)%c + 1 + (2003)% [(2002)% * 1 + (2003)% *+ 1]
Now, (2002)%¢+ 1 (2003)% + 1 is divisible by 4005. (P(Kk))
(2002)2¢k+ D+ 1 4 (2003)2(k+ D+ 1 i5 djvisible by 4005.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.
Example 12 : Prove " — y2" is divisible by x + y, n € N
Solution : Let P(n) : x** — »2" is divisible by x + y, n € N
Let n = 1.
Then x2 — y2 = (x — y)(x + ») and so x2 — y? is divisible by x + y.
P(1) is true.
Let P(k) be true.
x2k — 32k is divisible by x + y.
Letn =k + 1.
x2(k+ 1) _ y2(k+ 1) =x2k+2— xzky2+ x2ky2_ y2k+2
2k (2 = 32) + 32 (x2k — 52k
=32 (x = )+ y) + 2 =)

Now, x2k — y2k is divisible by (x + y). P(k))

x24T —32(k+ 1) s divisible by (x + y).
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P(k + 1) is true.
P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.L
Example 13 : Prove 12 + 22 + 32 + .+ ©2 >4 ne N
Solution : Let P(n) : 12 + 22 + 32 + .+ n2 > "73 ne N
Letn=1LHS =12=1 RHS. =1 and 1 > 1

P(1) is true.
Let P(k) be true.

P42 +32 4+ 2> K
Letn=4k+ 1.
Now, 12+22+32+...+k2+(k+l)2>kT3+(k+l)2 (i)
Now, kTS +(k+ 12 = L8 + 38 + 6k + 3)
= 2 + 3K + 3k + 1 + 3k +2)
>L + 32 +3k+ Das 13k +2) 23>0
E b+ 12 >3k + 1) (ii)
124224324 4 (k+ 12 > 2+ 1) (by (i) and (ii))

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

Note : 12422432+ +n2= n(n+12(2n+1) = 2”3+36n2+” > 2—23 =”—33,n €N
Example 14 : Prove | + 2+ 3 +..+n<f@n+ D% ne N
Solution : Let P(n) : 1 +2 +3 + ...+ n <%(2n + 12 neN
Let» = 1. LHS. =1, RHS. = %(3)2 = % and 1 < %
P(1) is true.
Let P(k) be true.
I+ 243+ .+ k<gQk+ 1)
Add k + 1 on both the sides.
1+2+3+...+k+(k+1)<%(2k+1)2+(k+1) @)
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Now, $(2k + 12 + (k + 1) = §(4k> + 4k + 1 + 8k + 8)
= (4K + 12k + 9)
$@k+ D2+ (k+ 1) = 1@k +3) @)
L+ 243+ .+ (k+1) <gQk+3) (by (i) and (ii))

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by P.M.L

2 2
Note:1+2+3+. . +n=2000 -4 T <M EIT = Lon+ 1)
Example 15 : Prove (1 + x)" =2 1 + nx, n € N x>-1

Solution : Let P(n) : (1 + x)" 2 1 +nx, n € N
Letn=1.(1+x)'=1+x>1+1-x
P(1) is true.
Let P(k) be true.
(1 +xf 21+ kx
Letn =k + 1.
Now, (1 + x)F T 1= (1 + x)F (1 + x)
2 (1 + k)1 + x) (by P(k) and as x > —1)
T+x)f*1>2 1+ +x+hk?>21+hkx+xaske N, x2>0
(I +x)FT1>1 + *k+ Ix
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

1 1 1
Example16:Provel+2—2+3—2+...+n—232—%, n € N
. . 1 1 1
Solutlon:LetP(n):1+2—2+3—2+...+732—%, ne N
Letn=1,LHS.=1,RHS.=2—-1=1

P(1) is true.

Let P(k) be true.

L L L _ 41
1+22+32+...+k2S2 %

1
Add k +1)2 on both the sides.

Hence, | + = + = + .+ 5 + 707 <2+ 4+ == j
ence, 22 32 k2 (k+1)2 > - T (k+1)2 (l)
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1 1 1 1 1 1
Now, 2=+ e+ 12 =2~ % T +? T o+1 ~ T+

B 1 1 —k—-1+k
=2 %+1 YT h+2 T TRk

| 1 |
=2 %+1 Tkt ~ Tk+y

1 k—k—1
%+ Tt kik +1)2

=2

B 1 1
=2—%+1 ~ k(k +1)?

_1 1 _ 1 : 1 .
2-7t k+1) <2-=Tt (k € N gives k1) > 0) (ii)

1 1 1 1 . .o
1+2_2+3_2+"'+(k+1)2 <2—m (by (i) and (ii))

P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true Vn € N by PM.I.

Note : Thus however large 7, sum 1 + 2% + 3% + ...+ # is ‘bounded’ and less than < 2.

Example 17 : Prove (8) + (’11) + (g) + ..+ (Z) =2" n€eN

Solution : Let P(n) : (g) + (7) + (’21) + ..+ (Z) =2" neN

Letn = 1. LHS. = () + () =2, RHS. =21 =2

. P(1) is true.
Let P(k) be true.

el v v lh) =2

L= (5 (5 e (5 (421
50 (15 (40) + () 0) - (52 () + B
(o )= (5 =) - (E2) -0 - (520)+ (5)
2[5+ () 8]+ (0]

:2.2k
=2k*+1 = RH.S.
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P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true, Vn € N by PM.I.

1.4 Some Variants of P.M.I.

Variant 1 : If P(n) is a statement involving natural variable » and if P(k,) is true for some
positive integer k, and if the truth of P(k) for some integer k = k, implies the truth of P(k + 1),
then P(n) is true Vn € N, such that n = k.

Example 18 : Prove 2" > n%, n =5 ne N
Solution : Let P(n) : 2" > n% n>=5, ne€ N
Let n = 5. (ky = 5), 2° = 32, 52 = 25 and 32 > 25.
P(5) is true.
Let P(k) be true for k > 5. Hence, 28 > k2
Letn = k + 1.
Now, 2k T 1 = 2.2k > 2§2 2 > k) (i)
Now, 2k2 — (k + 1)2 =2k> — k2 — 2k— 1
=K—-2k+1-2
=k+1)2—-2>0ak>5
2k > (k + 1)? (i)
26T 1> (k + 1)? (by (i) and (ii))
P(k + 1) is true.
P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.I.
Variant 2 : Let P(n) be a statement of integer variable n.

If P(1) and P(2) are true and if P(k) and P(k + 1) are true for some positive integer k implies
P(k + 2) is also true, then P(#) is true for all » € N.

Example 19 : Let a, be a sequence of natural numbers with a; = 5, a, = 13 and

a, ., =15a, | — 6a, forn=1.Prove a, =2"+3" Vne N
Solution : Let P(n) : If a, , , =5a, , | — 6a, forn=1,a,=5,a,= 13, thena,=2"+3" Vne N.

Letn=1.a, =5 and 2l +3l=2+3 =5, Hence, P(1) is true.

Letn=2.ay,=13 and 22 +32=4 49 = 13, Hence, P(2) is true.

Let ap =28+ 3K g =2k 1 4+ 36+ 1 for k > 1
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Now, a;, . , = 5a;, ;| — 6q,

=502k 4 3k+ 1y — 6.2k —6-3k
—5.0k.0 4 5.3k.3 — .2k — -3k
=2K(10 — 6) + 35(15 — 6)
= ok.92 4 3k.32
=k +2 4 3k+2

P(k + 2) is true.

P(k) is true and P(k + 1) is true = P(k + 2) is true.

P(n) is true, Vn € N by PM.L

Note : a,  , = 5a, | — 6a,, is called a recurrence relation. Its solution is a, = A0” + Bf”
where O, B are roots of x2 — Sx + 6 = 0 (5 is co-efficient of a
a=3B=2
a, = A3" + B2"

.+ 1> —0 is co-efficient of a,)

a,=3A+2B=35; ay =9A + 4B = 13. Hence, A=B =1
a,=3"+2"1fa, ,=1-a,, , —m-a,, then O and [ are the roots of equation
x2—Ix+m=0.

Miscellaneous Problems :

Example 20 : Prove that any payment of ¥ 4 or more can be made using ¥ 2 and ¥ 5 coins only.

Solution : Let P(n) : Any payment of ¥ 4 or more can be made using ¥ 2 and ¥ 5 coins only.
ne N

For n = 4, we require two coins of ¥ 2 to pay T 4. Let the statement be true for & 2 4.
Letn =k + 1.
Consider two cases :

(1) If the payment for ¥ k contains a ¥ 5 coin, take it back and give 3, ¥ 2 coins. Hence
k+ 6 —5=k+ 1 rupees are paid.

(2) If the payment for ¥ £ does not contain any ¥ 5 coin, since k£ = 4, he must have paid at

least two ¥ 2 coins. Take them back and pay one ¥ 5 coin. Hence T k + 5 — 4 = k + 1 are paid.
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) be true, for Vn € N by P.M.I.
Example 21 : Prove that any integer » > 23 can be put in the form 7x + 5y = n, where
x€ NU {0}, ye N U {0}.

Solution : Let P(n) : Any integer » > 23 can be put in the form 7x + S5y = n, where
x € N U {0}, ye N U {0}.

Let n = 24. Then 7-2 + 5-2 = 24 is the required form with x = y =2.
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Let 7x + Sy =k for k =224, x € N U {0}, y € N U {0}. @)

Now, 5:3 —7:2 =1 (ii)
Tx—2)+ 50 +3)=k+1 (Adding (i) and (ii))

Here y+3 € NU {0} andx —2 € N U {0} if x #0 or 1.

Let x = 0. Then 5y = k = 24. Thus y 2 5, using (i).

7-3—=5-4=1 and 5y = k gives on adding. (iii)
7-3+5p—4)=k+1
Here x=320,y—420 w25

P(k + 1) is true, if x = 0

Let x = 1. Hence, 7 + 5y = &, using (i).

Then 5y =k —7217. Thusy 2 4
7:3—=5+4=1and 7 + 5y = k gives on adding. (iv)
T4 +50y—4)=k+ 1 withy—420andx =4 (Adding in (iv))
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true for Vn € N by PM.I.

Example 22 : (Tower of Hanoi) We have three pegs and a collection of disks of different sizes. Initially
they are on top on each other according to their size
on the first peg, the largest being on the bottom and
the smallest on the top. A move in this game consists

of moving disks from one peg to another such that

larger disk can never rest on a smaller one. Prove S —

= e ETT——

that the number of moves to transfer all disks from

first peg to the last peg using the second peg as intermediate is 2”7 — 1, n € N.

Solution : Let P(n) : The number of moves to transfer all disks from first peg to the last peg
using the second peg as intermediate is 2" — 1, n € N.

Let n = 1, obviously there is only one move.

P(1) is true. 21 — 1 = 1. (p(k))

Suppose there are 2 — 1 moves to transfer k disks as required.

First we move top k disks to the second peg using the third peg as the intermediate one. This
will take 2K — 1 moves. Now move the last disk to the third peg. This is one move. Now move k disks
from second peg to the third peg in 2¥ — 1 moves.

The total number moves is 2 — 1 + 1 + 2k — | =22k — | =2k+ 1
P(k + 1) is proved.
P(k) is true = P(k + 1) is true.

P(n) is true, Vn € N by PM.L
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Example 23 : Prove ’i—lll

Solution : Let P(n) :

Forn=1,”—”+

1

1

P(1) is true.

n
5

3
+ 14 8 e N e N (to be done after chapter 3
5 T 7 165 p
11 5 3
n n n on
_1+?+T+ 165 € N,ne N
3
WL n _ 15+33+55+6 _ 165 _
e T H s 1o 165 1

Uy B4k 62k
Let P(k) be true. Hence, T + = + 5 + 15 €N

Letn =k + 1.

(k + D!

L+ B X428

Consider (

=G+ D" -+ LG+ 1) -+ Tk + 1) -+ 2

11

+

5

3

165 11 5 3 165

<k+1)5+<k+1>3+62<k+1)) B (k“ KL E 62k)

165

= (1 + (e + (H)e +.+ (}é)klo) + 401+ Qe+ () +.+ (3)#)

1

=L

—

(

11
1

)i +

11

+ 41+ (7)x + (;)kz) +

(306 o )00 + 300 30 o e

+%(f)k+§(§)k2+ﬁ+%+% + =

Now, 11, 5, 3 being primes, 11 divides (1,,1) forr=1,2,.. 10

1 1 1
andﬁ+§+§

+

5 divides (i) forr=1,2,3,4

3 divides (}) for r = 1, 2

62
165

The R.H.S. in (1) represents a natural number.

(k+ D!

165

Also L+ K 4 k2 4 82K ¢ N

gk k) 2k+D)

11

_ kll

11

kS k3
++

5

P(k + 1) is true.

3

P(k) is true = P(k + 1) is true.

165

% + a natural number € N

P(n) is true for Vn € N by P.M.L

62
165
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Example 24 : There are 2n persons in a hall. Some persons handshake with others. There do not

exist any three persons who have handshakes with each other. Prove that the number of
handshakes is at most n2.

Solution : Let P(n) : There are 2n persons in a hall. Some persons handshake with others. There

do not exist any three persons who have handshakes with each other. Then the number of

handshakes is at most 72.

For n = 1, there are two persons. Hence there is at most 1 = 12 handshake.
P(1) is true.
Let P(k) be true.
Letn =k + 1.
Now there are 2k + 2 persons. Choose two persons A and B who have had a handshake.
(If there are no two such persons, number of handshakes is zero which is at most (k + 1)2.

Now the remaining 2k persons had at most k% handshakes (P(k) is true). A and B have one

handshake.

Each of 2k persons could shake hands with A or B only as no three persons had handshakes

with each other. Hence the number of handshakes is at most

K+ 1+ 2k=(k+ 1)?
P(k + 1) is true.
P(k) is true = P(k + 1) is true.
P(n) is true for Vn € N by PM.I.
A paradox :
[Note : A paradox is the misinterpretation of a result to arrive at a contradictory result.]

P(n) : A thirsty man can drink »n drops of water.

For n = 1, obviously a thirsty man would like to drink one drop of water.

If he can drink £ drops of water, he can definitely drink £ + 1 drops of water.

So he can drink any amount water to exhaust all resources of water on the earth !

Exercise 1

Prove the following by the principle of mathematical induction : (1 to 19) (n € N)

nn+hHn+2)3n+1)
12

12.2+22.3+ ..+ n2n+1)=

a+(a+d+(@+2d)+..+ (@a+ @ — Dd = tnQa+ (n— Dd

| | | | B
T2 T3 7 t70 vt Gioocnrn ©

n
3n+1

1:2:3 42344+ n(n + (n +2) = LETDOTIOTS

1 +5+94 ..+ @n—23)=n2n—1)

o, L, L L qay
Tttt a=1-(3

18
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1 1 2n

1 1
7o 1ttt Tttt T st T ntd

1 1 1 _ nn+3)
8. T trzat T amThmsy T TmIDmED

nn+Hen+ D3> +3n—1)

9, 144244344+ +pt= =

10. Ifay=1,ay,=1,0a,=a,_,+a,_, n23 thena +a,+ay+..+a,=a,,,— 1L
11. 417 — 1 is divisible by 40.

12. 4007" — 1 is divisible by 2003.

13. 7"— 6n — 1 is divisible by 36.

14. 27"+ 35" — 5 is a multiple of 24.

15. 117+ 2+ 1227+ 1 js divisible by 133.

16. n(n + 1)(2n + 1) is divisible by 6.
17. 1-31 42324333 4 4 p-jn=@n=D3"" 43
4
18. 107 +3-4" %2+ 5 is divisible by 9.
5 3 n
19. L+ +8 eN

@n)! 1
20. Prove 2 = Pt

21. For Lucas' sequence a, =a, _ | +a, _, (n > 3); a, =1, a, =3, prove a, < (1.75)".
22. Prove 2" > n3, if n = 10

nn-—73)

3 diagonals, n > 3

23. Prove a polygon of n sides has

24, Ifa =1,a,=1,a,=a,_+a,_, n23,then prove that

L[S (1=45Y : : : :
a4, =I5 7 7 (This {a,} is called Fibonacci sequence.)

25. ff*N >N, f(D)=1,fQ) =5 Ffn+ 1) =f) + 2f(n — 1), n>2
then prove that f(n) = 2" + (—1)"

26. Iff: N =N, f(1) = 1, f(n + 1) — f(n) = 2"
then prove that f(n) = 2" — 1

n>3

27. Ifa; =1, a,=1,a =a,_ ,+ta

n n -2
then prove that a, + ay + ag+ ...+ a,,=ay, , | — 1

28. Ifa;=1,a,=11and a, = 2a, | +3a,_, n23
then prove that a, = 2(=1)" + 3" forn € N

29. Prove that every integer » = 12 can be written in the form 7x + 3y = n,

xe NU {0}, ye NuU {0}
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30. Prove that (3 + \/g)”+ 3 - s/g)” is even, n € N.

31.

Select a proper option (a), (b), (c) or (d) from given options and write in the box given on the right
so that the statement becomes correct :

(1) For P(n) : 2" < m!, ..... is true. ]
(a) P(1) (b) P(2) (c) any P(n), n € N (d) P(4)

(2) For P(n) : 2" =0, ...... is true. L]
(a) P(1) (b) P(3)
(c) P(10) (d) P(k) = P(k + 1), k € N

(3) P : 14243 +.+ @+ 1= LEDRTD e ]

(a) P(1) requires L.H.S. = 7 = R.H.S.

(b) P(1) requires L.H.S. = 3 = R.H.S.

(c) P(k) = P(k + 1) is not true for £k € N

(d) It is false that P(n) is true, Vi € N by PM.L

) If ... is true and P(k) is true = P(k + 1) is true for k¥ = —1, then P(n) is
true for all » € N U {0, —1}. ]
(a) P(=1) (b) P(0) (c) P(D) (d) P(2)

(5) P(n) : Every prime is of the form 22" + 1 is not true, for n = ...... [ ]
(a) 1 (b) 2 (¢) 0 (d)5

(6) P(n) : 2" — 1 is a prime for n = ...... [ ]
(a) 1 (b) 3 (c) 4 (d) 8

(7) P(n) : n* — n + 41 is a prime, is false for n = ...... ]
(a) 1 (b) 2 (c) 3 (d) 41

(8) P(n) : 2m + 1 is a prime, is false for n = ...... [ ]
(a) 1 (b) 2 (©3 (d) 4

(9) P(n) : 4n + 1 is a prime, is false for n = ... ]
(a) 1 (b) 3 (c) 7 (d) 11

(10)P(n) : 2" > n? is true for n = ...... [ ]
(a) 2 (b) 3 (c) 4 (d)5

Summary

We studied the following points in this chapter :

1.
2.

Principle of Induction and Examples

Different variants of P.M.I. and applications

— ‘ —
o
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Puzzle

There are n people in a room each being put on a hat from amongst at least » white hats and
n — 1 black hats. They stand in a queue, so that every one can see the colour of the hat of the
person standing in front of him. Starting from back we ask the persons in turn, ‘Do you know
what is the colour of your hat ?° If the first (» — 1) persons say no, the person in the front will
say ‘Yes the colour of my hat is white.” Prove.

Solution : Let P(n) : If the first (m — 1) persons say no, the person in the front will say yes.

For n = 1, there is no black hat (1 — 1 = 0). Hence the first person will say, ‘yes, my hat is
white.” Suppose the statement is true for n = k. Let n = k + 1.

See how the man standing in the front would think. Suppose my hat is black. Then excluding
me there are k people with at least £ white hats and & — 1 black hats. By P(k), since the first
(k — 1) persons said no, the person behind me must say yes. ‘I know the colour of my hat.’

But he said no. So the colour of my hat cannot be black. Hence it is white.

oo P(k+ 1) is true.

. P(k) is true = P(k + 1) is true.

*. P(n) is true, Vn € N by PM.L

Explanation : If n = 2, there is one black hat and at least two white hats. If the last person
sees a black hat put on by the person in front of him, he would definitely say, ‘Yes, colour of my
hat is white,” as there is only one black hat. But he is not able to answer. So the first person
logically thinks he has put on a white hat and the person behind might have put on a black or a
white hat.

— ‘ —
L X2

Srinivasa Ramanujan (1887-1920) was one of India's greatest mathematical geniuses.
He made substantial contributions to the analytical theory of numbers and worked on elliptical
functions, continued fractions and infinite series.

In 1990 he began to work on his own on mathematics summing geometric and arithmetic series.

Ramanujan had shown how to solve cubic equations in 1902 and he went to find his own
method to solve the quartic.

In 1904 Ramanujan had begun to undertake deep research. He investigated the series
E(%) and calculated Euler's constant to 15 decimal places.

Continuing his mathematical work Ramanujan studied continued fractions and divergent
series in 1908.
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Chapter 2

COMPLEX NUMBERS J

A mathematician is a device for turning coffee into theorems.
— Paul Erdos

As far as the laws of mathematics refer to reality, they are not certain and as
far as they are certain they do not refer to reality.
— Albert Einstein

2.1 Introduction

In previous classes, we have studied the number sets N, Z, Q and R. We know that the set of
rational numbers and the set of irrational numbers constitute the set of real numbers. We also
studied properties of numbers and solutions of linear equations in one variable and two variables.
We also discussed the solutions of quadratic equations in one variable. We observed that if the
discriminant 52 — 4ac < 0, the quadratic equation a2+ bx+c=0,a b c€ R, a#0 has no
solution in R. For example x2 + 1 = 0 has no solution in R. To allow the square root of negative
numbers, the real number system has to be extended to a larger system. In fact, Greeks were
the first to recognize the fact that square root of a negative number does not exist in the real
number system. The Indian mathematician Mahavira or Maviracharya (850 A.D.) too mentions this
difficulty in his work ‘Ganitasara Sangraha’. The extension of real number system should be in such
a way that the algebraic operations such as addition, subtraction, multiplication and division can be
defined properly. This new set is called the set of Complex Numbers and is denoted by C.

2.2 The Set R X R and the Set of Complex Numbers

We begin with the set R of real numbers to obtain the set C of complex numbers. R X R is the

set of all ordered pairs of real numbers.
RXR={(@a b)|aec R, b e R}

We shall define the equality, addition and multiplication of two elements of R X R.
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(1) Equality : Two elements (a, ) and (¢, d) of R X R are defined to be equal if a = ¢ and
b=d Thus a=c¢, b=d = (a, b) = (¢, d)
For example, (1, 0) = (sin®x + cos?x, logl) but (1, 4) # (4, 1)
(2) Addition : The sum of two elements (a, b) and (¢, d) of R X R is defined as follows :
@ab)+(c,d=@+c, b+ d
For example, (5,2) + (2,3)=(5+2,2+3)=(7,5)
(3) Multiplication : The product of two elements (a, ) and (¢, d) of R X R is defined
as follows :
(a, b)(c, d) = (ac — bd, ad + bc)
For example, (5, 2)(2,3)=(5X2—-2X3,5X3+2X2)=(4,19)
The set R X R with these rules is called the set of complex numbers and it is denoted by C.
Generally, we denote a complex number by z.
2.3 Basic Algebraic Properties of Complex Numbers

We have discussed the properties of closure, commutativity, associativity and distributivity with respect
to operations of addition and multiplication on R. We shall see that these properties hold good in C too.

The operation of addition satisfies the following properties :
(1) The closure property : The sum of two complex numbers is a complex number.

ie.z; +z, € C Vzl, 7, € C

We also say that the addition is a binary operation on C.

(2) The commutative property : z; + z, = z, + z; Vzl, 7z, € C

(3) The associative property : (z; +2,) + 23 =2, + (2, + 23 Vz;, 25, 23 €C

(4) The existence of additive identity : There exists a complex number O = (0, 0),
called an additive identity or the zero complex number, such that

z+40=z=0+z VzecC
It can be proved that the additive identity O is unique.
In fact if (a, ) + (x, ¥) = (a, b) for all (a, b) € C,
then a + x = q, b+y=b,
x =0, y=0.
Thus, (x, y) = (0, 0)
Also (a, b) + (0, 0) = (a, b).
(5) The existence of additive inverse : To every complex number z = (a, b), there

corresponds a complex number (—a, —b), denoted by —z, called the additive inverse
(or negative) of z such that z + (—a, —b) = (0, 0) = O.
We observe that, z + (—z) = (a, b) + (—a, —b)
=(at (-a), b + (=b))
=(0,0)
= 0O (O is the additive identity.)
Also, (—z) +z =0
We can prove that for z € C, its additive inverse —z is unique.
Note : (a, b) + (x, y) = (0, 0) requires a + x =0=5 + y

x=-a,y=—b
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(—a, —b) is the additive inverse of (a, b).
The operation of multiplication satisfies following properties :

(1) The closure property : The product of two complex numbers is a complex number.
ie. z;z, € C, Vzl,zz e C
We also say that the multiplication is a binary operation on C.
(2) The commutative property : 7,2, = 2,7, Vzl, 2, € C
(3) The associative property : (z,2,)73 = 2(2,23) Vzl, 23, 23 € C
(4) The existence of multiplicative identity : There exists a complex number
1, 0), called a multiplicative identity such that z(1, 0) =z = (1, 0)z, Vz € C
By taking z = (@, b), z. (1, 0) = (a, b)(1, 0) = (@a— 0, 0 + b) = (a, b) =z
Also, (1, 0)z =z(1, 0) =z
The multiplicative identity (1, 0) is unique.
Note : If (a, b)(x, ¥) = (a, b). V(a, b) € C, then ax — by =a and ay + bx = b, Va, b € R.
In particular @ = 1, b = 0 gives x = 1, y = 0. Then (a, b)(1, 0) = (a, b), V(a b) € C.

(5) The existence of multiplicative inverse : To each non-zero complex number z = (a, b),

a —_—
there corresponds a complex number (az_'_bpaz_'_bz] (denoted by z7'), called a
multiplicative inverse of z such that

z.z'=(1,00=2z"-2 ((1, 0) is the multiplicative identity)

Since (a, b) # (0, 0), &> + b> # 0 and hence z7! = (az ibz > az__szj € C and

—b
27 = b)(azfll-b2 ’a2+b2)

_ a =b —b a
=\a-Zip? _b°a2+b2’a°a2+b2 +b-a2+b2

2, 12
a-+b° —ab+ab
= 5 = 1’ 0

(az+b2 a’+b? ] {, 0y

Also, z' - z = (1, 0)

Note that for each non-zero z € C, its multiplicative inverse z' is unique.

z7! is also denoted in %

Note : Let z' be a complex number such that zz' = (1, 0)
Let 2! = (x, ¥)

zz' = (a, b)(x, y) = (1, 0)

(ax — by, ay + bx) = (1, 0)

ax —by =1, a0+ bx =0

Solving these equations we get x = 72,777,y = 2,2
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. a —b
27l a2 +p a2+ b2

As z = (a b) # (0, 0) we have &* + b* # 0.

o a —b
2T @+ @+ b2

The existence of multiplicative inverse enables us to show that if a product z,z, is zero, then at
least one of the factors z; and z, is zero. (why ?)

(6) The distributive laws : For any three complex numbers z,, z,, z;
(@) zy(zy + 2z3) = 212y + 2423
(b) (21 + 25)23 = 2123 + 2525
2.4 R as a Subset of C

By definition, every complex number is an ordered pair of real numbers. Let us denote by R' the
set of those complex numbers (a, ) in which » = 0. So, R' = {(g, 0) | @ € R}. Obviously R' C C. Let
(a, 0), (b, 0) be two elements of R'. Note that,

1 (@0 =00 =a=b

2) (@ 0)+ (b, 0)=(a+b 0)e R

(3) (a, 0)b, 0) = (ab, 0) € R'

Thus, the sum as well as the product of two elements of R' is again an element of R'. Moreover,
the first component of the sum or product of two numbers (a, 0) and (b, 0) is obtained merely by adding
or multiplying respectively the first components @ and b, while the second component remains zero. Infact
R' is closed for addition and multiplication as in C. So as far as equality, sum and multiplication are
concerned, the complex numbers of the form (a, 0) behave exactly like real number a. Hence we identify
complex numbers of the form (a, 0) with a and write a for (a, 0). Thus (4, 0) =4, (0, 0) =0 etc. In this
way we look upon every real number a as the complex number (¢, 0), which allows us to identify R
with R' and so R'=R C C. Thus we have N C Z < Q — R < C. Now O = (0, 0) = 0, the additive
identity (1, 0) = 1, the multiplicative identity.

2.5 Representation of a Complex Number in the form a + ib

By writing a for (a, 0) we are able to represent a complex number (a, b) in another form.

Firstly, let us get familiar with a special complex number (0, 1). We use the symbol i for this
complex number. Thus, 7 = (0, 1).

Now, 2= (0, 1)(0, )=(0-0—1-1,0-1+ 1-0)=(—1,0) = —1. In the year 1737 Euler was the
first person to introduce the symbol i for the complex number (0, 1), satisfying 2 = —1. i = (0, 1) is
called an imaginary number.

Now, (a, b) = (a, 0) + (0, b)

= (a, 0) + (0, 1)(b, 0) (0, 1), 0) = (0 — 0, 0 + b) = (0, b))

=a+ib

(a b) =a+ib
Hence, every complex number (a, b) can be expressed in the form a + ib, where

a, b € R and 2 = —1.
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Thus, C = {a +ib | a, b € R}

According to the commutative law for multiplication, ib = bi.

Hence, a + ib = a + bi

For example, (3, 5) =3 + 5., (0, 7)=0+7i=7i,(5,0)=5+0i=5

For the complex number z = a + bi, a is called the real part of z and is denoted by Re(z) and b
is called the imaginary part of z and is denoted by Im(z).

So, z = a + ib = Re(z) + ilm(z). For example, if z = 3 + 2i, then Re(z) = 3 and Im(z) = 2.

Note that both the real and imaginary parts of a complex number are real numbers.

A complex number, whose real part is zero and whose imaginary part is non-zero is called a purely
imaginary number. For example, 97 = 0 + 9/ is a purely imaginary number.

Let us now revert to the algebraic operations on complex numbers which are in the form a + bi.
Equality of two complex numbers :

Two complex numbers z; = a + bi and z, = ¢ + di are equal i.e. (g, b) = (¢, d) if a = ¢ and
b=d

If z=a+ bi =0 then a = 0 and b = 0. =0+ 0)
Example 1 : if 3x + (3x — y)i = 4 + (—6)i, where x and y are real numbers, then find the values of

x and y.

Solution : We have 3x + 3x — y)i =4 + (—6)i. Since a + bi =c +di = a=c and b = d,

we get 3x = 4, 3x — y = —6. On solving, we get x = %, y = 10.

Addition of two complex numbers :

Let zy = a + bi and z, = ¢ + di be any two complex numbers. Then the sum of z; = (a, b),

z, = (¢, d) is as follows :
gtu=@b+@@cd=@+c,bt+d=a+c+ b+ di
For example, (2 + 24/24) + (=3 + V2i)= 2 — 3) + V2 + J2)i
=—1+342i
Difference of two complex numbers :
Let z; and z, be any two complex numbers. The difference z; — z, is defined by,
21— 2 =21t (2
Let z; = (a, b), z, = (¢, d)
Then —z, = (—¢, —d)

=(a b) + (=¢, —d)
=(a@a— ¢, b—4d
=(a— ¢c)+(b—di

For example, (2 + v/3i) — (=3 + 2J3i) =2 — (-3) + (V3 — 2V/3) i
=5—3i
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Multiplication of two complex numbers :
Let zy = a + bi and z, = ¢ + di be any two complex numbers.
zy = (a b), zy = (¢, d)
2,2y = (ac — bd, ad + bc)
212 = (ac — bd) + (ad + bo)i
For example, (2 + V3i)(=3 + V3i) = 2 X (=3) — V3v3) + V3 + V3 X (=3))i
= (=6 —3)+ V3 = 3¥3)i = -9 — 3i

We can open the bracket and multiply them because of the distributive laws.

Quotient of two complex numbers :

. 2.
Let z; and z, be any two complex numbers where, z, # 0. The quotient Z—l is defined as
2
L -
O

1., L
2

l: _1= a , _b — a _ bi
Inf:act,Z z (a2+b2 a2+b2] A+ b

21

6+ 3
For example, Tr—sr = (6 + 30)(10 + 8i)!

-6+ 30 ()

_ 604300 —48{ — 24/°
164

_ 84 —18i
164

I
\e}
—_

+
|T
\O
—~

Powers of i :
We shall assume that the usual laws of indices hold good for integral powers of z.
We know that 2 = —1, 3 = 2i=—i, i* = (22 = (=12 =1, 5 =i, i® = —1 etc.
Remember, 2 = —1, i = —i, i* = 1
Also, we have i~! = % =-xit=L =_; i 2=9 3= i%=1et.

In general, for any integer k, i* =1, H+ 1= fk+2=_q phk+3 =

In mathematics, trichotomy is the property of an order relation. For any real numbers x and y,

exactly one of the following holds : x <y, x =y or x > y. This law of trichotomy holds for comparison

of real numbers. This property is no more valid for complex numbers as C is not ordered.

0T
—-) (i) '+ 2+ B+ A+ 1000

Example 2 : Evaluate (i) [ilg +(z

2 2
Solution : (i) {149 +(%)2S} = {ilé i +(71,)24 (71)}
= (—i —_ i)2
= (—2i)> = —4
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(i) i' + 24+ B+ i+ 4+ 97 4+ 998 4 99 41000
=(i—-1—-i+H)+@G—1—i+1)+.+@G—1—i+1) (250 brackets)
=0+0+..+0=0

Conjugate of a Complex Number :
If z = (a, b) = a + bi, then its conjugate complex number is defined to be the complex number

a — bi = (a, —b) and is denoted by 7.

We note that zZ = (a + bi)(a — bi) = a* — b*> = a®> + b, So just like a surd 7 acts like a

‘rationalising’ factor. Since zZ = a® + b2 is real, we express complex number g as % so that the
denominator ¢gq is real. Let us understand this concept by a few examples.
Example 3 : Express the following in the form of a + ib, where a, b € R
(2 — 8i)(7 + 8i) 1 (+i’ S N
D= (2) G + 4i) G) T ) T¥cos®—isin®
. (2—8i)7+8i) 144160 — 560 — 64i°
Solution : (1) T+3 = 157
_ 14-40i+64 2 _ _
BT @ =-D
78— 400
T+
78 — 401 1—i
=T L x 1_; (multiply and divide by conjugate of 1 + i)

78 — 78i — 40i + 40i>

B 1—i?
_ 38—118i 2 _ _
5 (@ 1)
=19 — 59;
A SR | 3—4i=3—4i=i -(_i)
2 G+ 4) 3+4  3+4i X3=4 ~9Fi6 25 T 7733
3—4i : .
~ yl=5— =34 _3 _ 4 -1
or directly (3 + 4i) 2142 55 55~ s (formula of z7)
3 a+i® P43 eiv3e100 48
) 4+3 4+3]
_1+3i-3-1i
T 443
_ —2+2
o443

(=2 +20)(4 —30)
(4 4 30)(4 — 30)

—8 +8i + 6i — 6i°
16+9

- _2 4 14 2 _ _
75 T o251 @ D
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“

Note :

1 1 1+ cosO + isin®

T+cosO—isin® ~ 1+cosO—isin® =X 1+ cosO + isin®

1+ cosO + isin®
~ (1+ cos9)? + sin’0

1+ cosO + isin®
1 + cos?0 + 2cosO + sin*0

1+ cosO +isin®
2 +2cos9

__l+cosB . sin®
T 20+ cos0) T 121+ cosH)

=gt 21 f@gse)
‘ ) sin © 2sin%c0s% 0
We will see in chapter 5 that T~ = W = ftan .
Example 4 : Find the real values of x and y so that
A+ix —2i 2-3)y+i . iy 3y+4i
317 -1 ! Qw1 3Ty -

(M

Solution : (1)

A +i)x —2i N Q-30)y+i
341 3—; !

x+ =203 —D+[2y+ (1 —=3ilG+i)=0C+H3 — i

(Multiplying both sides by (3 + /)3 — i))
3x+(x—2)+[3x—2)—x]i+6y—(1 =3+ [2v+3(1 =3p)]i=0O + 1)i
Ax+9 —=3)+2x— Ty —3)i=10i
4+9y—3=0and2x— 7y —3 =10 (Equality of two complex numbers)
4+9y—3=0and 2x — 7y — 13 =0

Solving the above simultaneous equations, we get x = 3, y = —1.
iy 3y+4i
@ w1~ 3x+y =0
yGBx +y)— By +4hix+1)=0 (Multiplying both sides by (ix + 1)(3x + y))

(—3y+4x) +iGxy + )2 —3xy—4) =0+ i0
(3y+40)+i2—4)=0+1i0
—3y+4x=0and 2 —4=0 @+bi=0=>a=0,b=0)

y2—4=0givesus y=*£2

- _3

Fory=2wegetx=%andfory=—2wegetx——7.

The solution set is {(%,2),(—%,—2)}.

Exercise 2.1

1. Express the following complex numbers in the form a + bi :

(1) 2 —d—i =20 2 @=3)=2+1)

+1

G) G+0)G - )(L+i) @) = (use 2 307
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1+ 20 2—1 51
G) =t 5 ©) T-he-n6-1

@ (-0 ® | —(71-)34}2

3 R
©) (4211' T 11] (10) (JE( it/%/ig)lgﬁ‘/—gljfi)
Find the real values of x and y, if

() x+4i=xi+y+3

() @G+35ix+@3-2y+i2+6i=0

X y .
G) T+ =143

(4) (*+ 2xi) — Bx2 + yi) = (3 — 5i) + (1 + 2pi)
(5) Bx — 22 + i)? = 10(1 + i)

Find the multiplicative inverse of :

(1) 3—2i (@) —1+i3 (3)‘5“:; @) Q=32  (5)—i

Show that, (1) Re(iz) = —Im(z)  (2) Im(iz) = Re(z)

Verify that each of the two complex numbers z = 1 % i satisfies the equation 2—-2242=0.
*

Conjugate and Modulus of a Complex Number

Complex Conjugate : We know if z = a + bi, 7 = a — bi.

As an example,

(1) Ifz=3+5i, then T =3 — 5i

2)Ifz=5—3i then 7 =5+ 3i

B)Ifz=3=3+0i,thenz =3 —-0i=3

A Ifz=3i=0+3i,then T =0 — 3i=—3i

Here are some basic facts about conjugates.

For any three complex numbers z, z;, z, we have the following properties :

1. )=z 2. ¥=Re(z)
3. % = Im(z) 4. z =7 if and only if z is real.
5. 7 =-—zif and only if z is purely imaginary.
6. 3] iZz = Zl i 22 7. E = ZIZZ
4
8. (;—;j = é, where z, # 0

The above properties are easy to verify. Let us verify some of them.
Letz=a + ib
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