Chapter : 18. AREA OF A TRAPEZIUM AND A POLYGON

Exercise : 18A

Question: 1

Find the area of

Solution:

Given:

Length of parallel sides is 24 cm and 20 cm

Height (h) = 15 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore, Area of trapezium = $\frac{1}{2} \times (24 + 20) \times 15 = 330 \text{ cm}^2$.

Question: 2

Find the area of

Solution:

Given

Length of parallel sides is 38.7cm and 22.3 cm

Height (h) = 16 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2}$ × (38.7 +22.3) × 16 = 488 cm².

Question: 3

The shape of the

Solution:

Given

Length of parallel sides is 1m and 1.4m

Height (h) = 0.9m

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (1 + 1.4) \times 0.9$

 $=1.08 \text{ m}^2$.

Question: 4

The area of a tra

Solution:

Given

Length of parallel sides is 55 cm and 35 cm

Area of trapezium= 1080 cm^2

Let Height (h) =y cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (55 + 35) \times y = 1080 \text{ cm}^2$.

$$\frac{1}{2} \times (90) \times y = 1080$$

$$\Rightarrow 45 \times y = 1080$$

$$\Rightarrow$$
 y = $\frac{1080}{22}$ = 24

 \therefore Distance between the parallel lines is 24 cm.

Question: 5

A field is in the

Solution:

Given

Let length of parallel sides be 84cm and y cm

Area of trapezium= 1586 cm^2

Let Height (h) = 26 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (84 + y) \times 26 = 1586 \text{ cm}^2$.

$$\frac{1}{2} \times (84 + y) \times 26 = 1586$$

$$\Rightarrow(84 + y) \times 13 = 1586$$

$$\Rightarrow 84 + y = \frac{1586}{13}$$

$$\Rightarrow$$
 y =122- 84 = 38

 \therefore Length of the other parallel side is 38 cm.

Question: 6

The area of a tra

Solution:

Given

Lengths of the parallel sides are in the ratio 4:5

Therefore let one of the side length be 4 X and other side length be 5 X

Area of trapezium= 405 cm^2

Let Height (h) =18 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2}$ x (4X +5X) × 18 =405 cm².

$$\therefore \frac{1}{2} \times (4X + 5X) \times 18 = 405$$
$$\Rightarrow (9X) \times 9 = 405$$
$$\Rightarrow 81X = 405$$
$$\Rightarrow X = \frac{405}{81} = 5$$

 \therefore Length of the parallel sides is $4X=4 \times 5 = 20$ cm and $5X = 5 \times 5 = 25$ cm.

Therefore lengths of the parallel sides are 20 cm, 25 cm.

Question: 7

The area of a tra

Solution:

Given

Let length of first parallel side \boldsymbol{X}

Length of other parallel side is X + 6

Area of trapezium= 180 cm^2

Let Height (h) =9 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (X + 6 + X) \times 9 = 180 \text{ cm}^2$.

$$\frac{1}{2} \times (X + 6 + X) \times 9 = 180$$

= $\frac{1}{2} \times (2X + 6) \times 9 = 180$
= $2X + 6 = \frac{180}{9} \times 2$
= $2X + 6 = 40$
= $2X = 40 - 6 = 34$
= $X = 17$

 \therefore Length of the parallel sides is X=17 cm and X + 6 = 17 + 6 = 23 cm.

Therefore lengths of the parallel sides are 17 cm, 23 cm.

Question: 8

In a trapezium-sh

Solution:

Given

Let length of first parallel side X

Length of other parallel side is 2X

Area of trapezium= 9450 m^2

Let Height (h) =84 m

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (X + 2X) \times 84 = 9450 \text{ cm}^2$.

$$\therefore \frac{1}{2} \times (X + 2X) \times 84 = 9450$$

⇒ (3X) × 42 = 9450
⇒ 126X = 9450
⇒ 2X + 6 = $\frac{9450}{126} = 75$
⇒ X = 17

 \therefore Length of the parallel sides is X=75 m and 2X = 150 m.

Therefore length of the longest is 150 m.

Question: 9

The length of the

Solution:

Given

Length of parallel sides

AD = 42 m

BC = 54 m

Given that total length of fence is 130 m

That is AB + BC + CD + DA = 130

AB + 54 + 19 + 42 = 130

Therefore AB = 15

Height (AB) = 15 m

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (42 + 54) \times 15 = 720 \text{ m}^2$

Question: 10

In the given figu

Solution:

Given

AD = 16 cm

BC = 40 cm

AC = 41 cm

∠ABC = 90

Height = AB = ?

Here in $\triangle ABC$ using Pythagoras theorem

 $AC^{2} = AB^{2} + BC^{2}$ $41^{2} = AB^{2} + 40^{2}$ $AB^{2} = 41^{2} - 40^{2}$ $AB^{2} = 1681 - 1600 = 81$ $AB^{2} = 9$

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (16 + 40) \times 9 = 252 \text{ cm}^2$.

Question: 11

The parallel side

Solution:

Let ABCD be the given trapezium in which AB|| DC,

AB = 20 cm, DC = 10 cm and AD=BC=13 cm

Draw CL \perp AB and CM || DA meeting AB at L and M, respectively.

Clearly, AMCD is a parallelogram.

Now,

AM = DC = 10cm

 $\mathrm{MB}=(\mathrm{AB}\text{-}\mathrm{Am})$

= (20-10) = 10 cm

Also,

CM = DA = 13cm

Therefore, \triangle CMB is an isosceles triangle and CL \perp MB.

And L is midpoint of B.

$$\Rightarrow$$
ML = LB = $\left(\frac{1}{2} \times MB\right) = \left(\frac{1}{2} \times 10\right) = 5 \text{ cm}$

From right \triangle CLM, we have:

$$CL^{2} = (CM2 - ML^{2})$$

 $CL^{2} = (132 - 5^{2})$
 $CL^{2} = (169 - 25)$
 $CL^{2} = 144$
 $CL = 12$

Therefore length of CL is 12 cm that is height of trapezium is 12 cm $\,$

There fore

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (20 + 10) \times 12 = 180 \text{ cm}^2$.

Question: 12

The parallel side

Solution:

Let ABCD be the given trapezium in which AB|| DC,

AB = 25 cm, CD = 11 cm and AD = 13 cm, BC = 15 cm

Draw CL \perp AB and CM || DA meeting AB at L and M, respectively.

Clearly, AMCD is a parallelogram. Now, MC = AD = 13cmAM = DC = 11cmMB = (AB - Am)= (25-11) = 14 cm Thus, in \triangle CMB, we have: CM = 13 cmMB = 14 cmBC = 15 cmHere let ML = X, hence LB = 14 - X and let CL = Y cm Now in \triangle CML, using Pythagoras theorem $CL^2 = (CM2 - ML^2)$ $Y^2 = (132 - X^2) eq - 1$ Again in \triangle CLB, using Pythagoras theorem $CL^2 = (CB2 - LB^2)$ $Y^2 = (152 - (14 - X)^2) eq - 2$ Sub eq 1 in 2, we get $(132 - X^2) = (152 - (14 - X)^2)$ $169 - X^2 = 225 - (196 + X^2 - 28 X)$ $169 - X^2 = 225 - 196 - X^2 + 28 X$ $28X = 169 + 196 - 225 + X^2 - X^2$ 28X = 140X = 5 cmNow substitute X value in eq -1 That is $Y^2 = (132 - X^2)$ $Y^2 = (132 - 5^2)$ $Y^2 = (169 - 25)$ $Y^2 = 144$ Y = 12 cmTherefore CL = 12 cm that is height of the trapezium = 12 cm Therefore We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$ Therefore Area of trapezium = $\frac{1}{2} \times (25 + 11) \times 12 = 216 \text{ cm}^2$.

Exercise : 18B

Question: 1

In the given figu

Solution:

Given: A quadrilateral ABCD

BL⊥AC and DM⊥AC

AC = 24 cm

BL = 8 cm

DM = 7 cm

Here,

Area (quad. ABCD) = area (\triangle ABC) + area (\triangle ADC)

Area of triangle = $\frac{1}{2} \times$ (base) × (height).

Therefore

Area of quad ABCD = $\frac{1}{2} \times (AC) \times (BL) + \frac{1}{2} \times (AC) \times (DM)$ = $\frac{1}{2} \times (24) \times (8) + \frac{1}{2} \times (24) \times (7) = 96 + 84 = 180 \text{ cm}^2$

Therefore area of the quadrilateral ABCD is 180 $\rm cm^2$

Question: 2

In the given figu

Solution:

Given: A quadrilateral ABCD

 $\texttt{AL} \perp \texttt{BD} \ and \ \texttt{CM} \perp \texttt{BD}$

AL = 19 cm

BD = 36 cm

CM = 11 cm

Here,

Area (quad. ABCD) = area (\triangle ABD) + area (\triangle ACD)

Area of triangle = $\frac{1}{2} \times$ (base) × (height).

Therefore

Area of quad ABCD =
$$\frac{1}{2} \times (BD) \times (AL) + \frac{1}{2} \times (BD) \times (CM)$$

= $\frac{1}{2} \times (36) \times (19) + \frac{1}{2} \times (36) \times (11) = 342 + 198 = 540 \text{ cm}^2$

Therefore area of the quadrilateral ABCD is 540 cm^2 .

Question: 3

Find the area of

Solution:

Given: A pentagon ABCDE

```
\mathsf{BL} \perp \mathsf{AC}, \mathsf{DM} \perp \mathsf{AC} \text{ and } \mathsf{EN} \perp \mathsf{AC}
```

AC = 18 CM

AN = 6 cm BL = 4 cm DM = 12 cm EN = 9 cm MC = AC - AM = 18 - 14 = 4 cm MN = AM - AN = 14 - 6 = 8 cmHere,

Area (Pent. ABCDE) = area (\triangle AEN) + area (\triangle DMC) + area (\triangle ABC) + area (Trap. DMNE) Area of triangle = $\frac{1}{2}$ × (base) × (height).

Area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) × height

Here,

Area ($\triangle AEN$) = $\frac{1}{2} \times (AN) \times (EN) = \frac{1}{2} \times (6) \times (9) = 27 \text{ cm}^2$. Area ($\triangle DMC$) = $\frac{1}{2} \times (MC) \times (DM) = \frac{1}{2} \times (4) \times (12) = 24 \text{ cm}^2$. Area ($\triangle ABC$) = $\frac{1}{2} \times (AC) \times (BL) = \frac{1}{2} \times (18) \times (4) = 36 \text{ cm}^2$. Area (Trap. DMNE) = $\frac{1}{2} \times (DM + EN) \times MN = \frac{1}{2} \times (12 + 9) \times 8 = 84 \text{ cm}^2$. \therefore Area (Pent. ABCDE) = area ($\triangle AEN$) + area ($\triangle DMC$) + area ($\triangle ABC$) + area (Trap. DMNE) = 27 + 24 + 36 + 84 = 171 \text{ cm}^2. Area ($\square ABCDE$) = $4\pi 4 = 2$

 \therefore Area (Pent. ABCDE) = 171 cm².

Question: 4

Find the area of

Solution:

Given: A Hexagon ABCDE

 $\mathsf{BL} \perp \mathsf{AD}, \mathsf{CM} \perp \mathsf{AD}, \mathsf{EN} \perp \mathsf{AD} \text{ and } \mathsf{FP} \perp \mathsf{AD}$

AP = 6 CM

PL = 2 CM

LN = 8 CM

NM = 2 CM

MD = 3 CM

FP = 8 CM

EN = 12 CM

BL = 8 CM

CM = 6 CM

AL = AP + PL = 6 + 2 = 8 cm

PN = PL + LN = 2 + 8 = 10 cm

LM = LN + NM = 8 + 2 = 10 cm

ND = NM + MD = 2 + 3 = 5 cm

Here,

Area (Hex. ABCDEF) = area (\triangle APF) + area (\triangle DEN) + area (\triangle ABL) + area (\triangle CMD) + area (Trap. PNEF) + area (Trap. LMCB)

Area of triangle = $\frac{1}{2} \times$ (base) × (height).

Area of trapezium is $\frac{1}{2} \times$ (sum of parallel sides) × height Here.

Area ($\triangle APF$) = $\frac{1}{2} \times (AP) \times (FP) = \frac{1}{2} \times (6) \times (8) = 24 \text{ cm}^2$. Area ($\triangle DEN$) = $\frac{1}{2} \times (ND) \times (EN) = \frac{1}{2} \times (5) \times (12) = 30 \text{ cm}^2$. Area ($\triangle ABL$) = $\frac{1}{2} \times (AL) \times (BL) = \frac{1}{2} \times (8) \times (8) = 32 \text{ cm}^2$. Area ($\triangle CMD$) = $\frac{1}{2} \times (MD) \times (CM) = \frac{1}{2} \times (3) \times (6) = 9 \text{ cm}^2$. Area (Trap. PNEF) = $\frac{1}{2} \times (FP + EN) \times PN = \frac{1}{2} \times (8 + 12) \times 10 = 100 \text{ cm}^2$. Area (Trap. LMCB) = $\frac{1}{2} \times (BL + CM) \times LM = \frac{1}{2} \times (8 + 6) \times 10 = 70 \text{ cm}^2$. \therefore Area (Hex. ABCDEF) = area ($\triangle APF$) + area ($\triangle DEN$) + area ($\triangle ABL$) + area ($\triangle CMD$) + area (Trap. PNEF) + area (Trap. LMCB) = 24 + 30 + 32 + 9 + 100 + 70 = 265 \text{ cm}^2. \therefore Area (Hex. ABCDEF) = 265 cm²

Question: 5

Find the area of

Solution:

Given: A pentagon ABCDE

 $\mathsf{BL} \perp \mathsf{AC}, \mathsf{CM} \perp \mathsf{AD}$ and $\mathsf{EN} \perp \mathsf{AD}$

AC = 10 Cm

AD = 12 CM

BL = 3 CM

CM = 7 CM

EN = 5 CM

Here,

Area (Pent. ABCDE) = area (\triangle ABC) + area (\triangle ACD) + area (\triangle ADE)

Area of triangle = $\frac{1}{2} \times$ (base) × (height).

Here,

Area ($\triangle ABC$) = $\frac{1}{2} \times (AC) \times (BL) = \frac{1}{2} \times (10) \times (3) = 15 \text{ cm}^2$. Area ($\triangle ACD$) = $\frac{1}{2} \times (AD) \times (CD) = \frac{1}{2} \times (12) \times (7) = 42 \text{ cm}^2$. Area ($\triangle ADE$) = $\frac{1}{2} \times (AD) \times (EN) = \frac{1}{2} \times (12) \times (5) = 30 \text{ cm}^2$.

∴ Area (Pent. ABCDE) = area (\triangle ABC) + area (\triangle ACD) + area (\triangle ADE) = 15 + 42 + 30 = 87 cm².

 \therefore Area (Pent. ABCDE) = 87 cm².

Question: 6

Find the area enc

Solution:

Given: A figure ABCDEF

AB = 20 cm

BC = 20 cm

ED = 6 cm

AF = 20 cm

AB || FC

FC = 20 cm

Let distance between FC and ED be h = 8 cm

FC || ED

Here,

From the figure we can see that ABCF forms a square and EFCD forms a trapezium.

Area of square = (side length) 2

Area of trapezium = $\frac{1}{2}$ × (sum of parallel sides) × height

Therefore,

Area of the figure ABCDEF = Area of square (ABCF) + Area of trapezium (EFCD)

Here,

Area of square (ABCF) = (AB) 2 = (20) 2 = 400 cm 2

Area of trapezium (EFCD) = $\frac{1}{2}$ × (FC + ED) × h = $\frac{1}{2}$ × (6 + 20) × 8 = 104 cm²

: Area (ABCDEF) = Area of square (ABCF) + Area of trapezium (EFCD) = $400 + 104 = 504 \text{ cm}^2$.

 \therefore Area (Fig. ABCDEF) = 504 cm².

Question: 7

Find the area of

Solution:

Given: A figure ABCDEFGH

BC = FG = 4 cmAB = HG = 5 cm

CD = EF = 4 cm

ED = 8 cm

ED || AH

AH = 8 cm

Here

 $\underline{\mathsf{A}} \mathrm{ABC}$ and GHF are equal and right angled

AC = AH = ?

In ▲ABC using Pythagoras theorem

 $AB^2 = BC^2 + AC^2$ $5^2 = 4^2 + AC^2$ $25 = 16 + AC^2$ $AC^2 = 25 - 16 = 9$ AC = 3AH = 3Area(ABCDEFGH) = area(Rect. ADEH) + 2 X area (\triangle ABC) Area of rectangle = $(length \times breadth)$ Area of triangle = $\frac{1}{2} \times$ (base) × (height). Area(Rect. ADEH) = (DE × AD) = (DE × (AC + AD)) = (8 × (3 + 4)) = 56 cm² Area($\triangle ABC$) = $\frac{1}{2} \times (BC) \times (AC) = \frac{1}{2} \times (4) \times (3) = 6 \text{ cm}^2$ ∴ Area(ABCDEFGH) = area(Rect. ADEH) + 2 × area (\triangle ABC) = 56 + (2 × 6) = 68 cm² \therefore Area(ABCDEFGH) = 68 cm². **Question: 8** Find the area of Solution: Given: a regular hexagon ABCDEF AB = BC = CD = DE = EF = FA = 13 cmAD = 23 cmHere AL = MDTherefore Let AL = MD = xHere AD = AL + LM + MD23 = 13 + 2x2x = 23 - 13 = 10x = 5Now, In ABL using Pythagoras theorem $AB^2 = AL^2 + LB^2$ $13^2 = x^2 + LB^2$ $13^2 = 5^2 + LB^2$ $169 = 25 + LB^2$ $LB^2 = 169 - 25 = 144$ LB = 12

Here area (Trap. ABCD) = area (Trap. AFED)

Therefore,

Area (Hex. ABCDEF) = $2 \times \text{area}$ (Trap. ABCD)

Area of trapezium = $\frac{1}{2}$ × (sum of parallel sides) × height

Area (Trap. ABCD) = $\frac{1}{2}$ × (BC + AD) × LB = $\frac{1}{2}$ × (13 + 23) × 12 = 216 cm².

 \therefore Area(ABCDEFGH) = 2 × area (Trap. ABCD) = 2 × 216 = 432 cm²

 \therefore Area(ABCDEFGH) = 432 cm².

Exercise : 18C

Question: 1

The parallel side

Solution:

Given

Length of parallel sides is 14 cm and 18 cm

Height (h) = 9 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (14 + 18) \times 9 = 144 \text{ cm}^2$.

Question: 2

The length of the

Solution:

Given

Length of parallel sides is 19 cm and 13 cm

Area of trapezium= 128 cm^2

Let Height (h) = y cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (19 + 13) \times y = 128 \text{ cm}^2$.

$$\frac{1}{2} \times (19 + 13) \times y = 128$$

= $\frac{1}{2} \times (32) \times y = 128$
= 16 × y = 128
= y = $\frac{128}{16} = 8$ cm

 \therefore Distance between the parallel lines is 8 cm.

Question: 3

The parallel side

Solution:

Given

Lengths of the parallel sides are in the ratio 3:4

Therefore let one of the side length be 3X and other side length be $4\mathrm{X}$

Area of trapezium= 630 cm^2

Let Height (h) =12 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (3X + 4X) \times 12 = 630 \text{ cm}^2$.

$$\therefore \frac{1}{2} \times (3X + 4X) \times 12 = 630$$
$$\Rightarrow (7X) \times 6 = 630$$
$$\Rightarrow 42X = 630$$
$$\Rightarrow X = \frac{630}{42} = 15$$

 \therefore length of the parallel sides is $3X = 3 \times 15 = 45$ cm and $4X = 4 \times 15 = 60$ cm. Therefore shortest length of the parallel sides is 45 cm.

Question: 4

The area of a tra

Solution:

Given

Let length of first parallel side X

Length of other parallel side is X + 6

Area of trapezium= 180 cm^2

Let Height (h) =9 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (X + 6 + X) \times 9 = 180 \text{ cm}^2$.

$$\frac{1}{2} \times (X + 6 + X) \times 26 = 180$$

$$\Rightarrow \frac{1}{2} \times (2X + 6) \times 9 = 180$$

$$\Rightarrow 2X + 6 = \frac{180}{9} \times 2$$

$$\Rightarrow 2X + 6 = 40$$

$$\Rightarrow 2X = 40 - 6 = 34$$

$$\Rightarrow X = 17$$

 \therefore length of the parallel sides is X=17 cm and X + 6 = 17 + 6 = 23 cm.

Therefore length of the longer parallel side is 23 cm.

Question: 5

In the given figu

Solution:

Given:

AB||DC, DA \perp AB and CL \perp AB

DC = 7 CM

BC = 10 CM

AB = 13 CM

Therefore here AL = DCThat is AL = 7 cmHence LB = AB - AL = 13 - 7 = 6 cmIn \triangle LCB using Pythagoras theorem $BC^2 = BL^2 + CL^2$ $10^2 = 6^2 + CL^2$ $100 = 36 + CL^2$ $CL^2 = 100 - 36$ $CL^2 = 64$ CL = 8Here CL = AD = height of the trapeziumTherefore height = 8 cm Now, We know that area of trapezium is $\frac{1}{2} \times (\text{sum of part})$

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (7 + 13) \times 8 = 80 \text{ cm}^2$.

Exercise : CCE TEST PAPER-18

Question: 1

The base of a tri

Solution:

Given

Area of triangle = 1350 m^2

Let the length of the height of triangle be ${\rm Y}\xspace$ cm

Therefore its base is 3Y cm

Area of the triangle = $\frac{1}{2}$ × base × height = 1350

$$\frac{1}{2} \times (3Y) \times (Y) = 1350$$

 $3Y^2 = 1350 \times 2 = 2700$

$$Y^2 = \frac{2700}{3} = 900$$

Y = 30 cm

Therefore height of triangle is 30 cm and base is $3 \times 30 = 90$ cm

That is

Base = 90 m, Height = 30 m .

Question: 2

Find the area of

Solution:

Given

Side length of equilateral triangle is 6 cm

We know that area of the equilateral triangle is given by $\frac{\sqrt{3}}{4}a^2$, where a is side length

Therefore area of the triangle is

$$\Rightarrow \frac{\sqrt{3}}{4} \times 6^2 = \frac{\sqrt{3}}{4} \times 36 = \sqrt{3} \times 9 = 9\sqrt{3} \text{ cm}^2.$$

Question: 3

The perimeter of

Solution:

Given: A rhombus

Diagonal AC = 72 cm

Perimeter = 180 cm

Perimeter of the rhombus = 4x

Therefore 4x = 180

hence, the side length of the rhombus is 45 cm

we have :

We know that diagonals of the rhombus bisect each other right angles.

∴ AO =
$$\frac{1}{2}$$
 AC
=AO = $(\frac{1}{2} \times 72)$ cm
=AO = 36 cm
From right \triangle AOB, we
BO² = AB² - AO²
=BO² = AB² - AO²
=BO² = 45² - 36²
=BO² = 2025 - 1296
=BO² = 729
BO = 27 cm
∴ BD = 2 × 27 = 54 cm
Hence, the length of

Area of the rhombus $=\frac{1}{2} \times 72 \times 54 = 1944 \text{ cm}^2$

of the other diagonal is 54 cm.

cm

Question: 4

The area of a tra

Solution:

Given

Let length of first parallel side X

Length of other parallel side is X – 14

Area of trapezium= 216 m^2

Let Height (h) =12 m

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (X - 14 + X) \times 12 = 216 \text{ m}^2$.

$$\frac{1}{2} \times (X - 14 + X) \times 12 = 216$$

$$= \frac{1}{2} \times (2X - 14) \times 12 = 216$$

$$= 2X - 14 = \frac{216}{12} X 2$$

$$= 2X - 14 = 36$$

$$= 2X = 36 + 14 = 50$$

$$= X = 25$$

 \therefore length of the parallel sides is X=25 cm and X - 14 = 25 - 14 = m.

Therefore lengths of the parallel sides are 25 m, 11 m.

Question: 5

Find the area of

Solution:

Given : A quadrilateral

Diagonal AC = 40 cm

Perpendiculars to diagonal AC are: BL = 16 cm and DM = 12 cm

Now,

Area (quad. ABCD) = area (\triangle ABC) + area (\triangle ADC)

Area of triangle = $\frac{1}{2} \times$ (base) × (height).

Therefore

Area of quad ABCD = $\frac{1}{2} \times (AC) \times (BL) + \frac{1}{2} \times (AC) \times (DM)$

$$= \frac{1}{2} \times (40) \times (16) + \frac{1}{2} \times (40) \times (12) = 320 + 240 = 560 \text{ cm}^2$$

Therefore area of the quadrilateral ABCD is 560 cm^2 .

Question: 6

A field is in the

Solution:

Given

A right angled triangle with hypotenuse = 50 cm and one of the side = 30 cm Let base = 30 cm Height = Y cm Area = ? By using hypotenuse theorem Hypotenuse² = base² + height² $50^2 = 30^2 + Y^2$ $Y^2 = 50^2 - 30^2 = 2500 - 900 = 1600$ Therefore X² = 1600 Y = 40cm Area of the triangle = $\frac{1}{2}$ × base × height Area = $\frac{1}{2}$ × 30 × Y = $\frac{1}{2}$ × 30 × 40 = 600 m².

Question: 7

The base of a tri

Solution:

Given

Length of the base of the triangle = 14 cm

Length of the heigth of the triangle = 8 cm

Area of the triangle = $\frac{1}{2} \times \text{base} \times \text{height}$

Therefore area = $\frac{1}{2} \times \text{base} \times \text{height}$

 $=\frac{1}{2} \times 14 \times 8 = 7 \times 8 = 56$ cm

Question: 8

The base of a tri

Solution:

Given

Area of triangle = 50 m^2

Let the length of the height of triangle be Y cm

Therefore its base is 4Y cm

Area of the triangle $=\frac{1}{2} \times base \times height = 50$

$$\frac{1}{2} \times (4Y) \times (Y) = 50$$

 $4Y^2 = 50 \times 2 = 100$
 $Y^2 = \frac{100}{4} = 25$

Y = 5 cm

Therefore length of base is $4 \times 5 = 20$ cm

Question: 9

The diagonal of a

Solution:

Given : A quadrilateral

Diagonal AC = 20 cm

Perpendiculars to diagonal AC are: BL = 11.5 cm and DM = 8.5 cm

Now,

Area (quad. ABCD) = area (\triangle ABC) + area (\triangle ADC)

Area of triangle = $\frac{1}{2} \times$ (base) × (height).

Therefore

Area of quad ABCD = $\frac{1}{2} \times (AC) \times (BL) + \frac{1}{2} \times (AC) \times (DM)$

$$=\frac{1}{2} \times (20) \times (11.5) + \frac{1}{2} \times (20) \times (8.5) = 115 + 85 = 200 \text{ cm}^2$$

Therefore area of the quadrilateral ABCD is 200 cm^2 .

Question: 10

Each side of a rh

Solution:

Given: A rhombus ABCD

Diagonal AC = 24 cm

Side length : AB = BC = CD = DA = 15 cm

We know that diagonals of the rhombus bisect each other right angles.

$$\therefore AO = \frac{1}{2}AC$$

$$\Rightarrow AO = (\frac{1}{2} \times 24) \text{ cm}$$

$$\Rightarrow AO = 12 \text{ cm}$$

From right $\triangle AOB$, we have :
 $BO^2 = AB^2 - AO^2$

$$\Rightarrow BO^2 = AB^2 - AO^2$$

$$\Rightarrow BO^2 = 15^2 - 12^2$$

 $=BO^{2} = 225 - 144$ $=BO^{2} = 81$ =BO = 9 cm $\therefore BD = 2 \times BO$ $BD = 2 \times 9 = 18 \text{ cm}$ Hence, the length of the other diagonal is 18 cm.

Area of the rhombus = $\frac{1}{2} \times 24 \times 18 = 216 \text{ cm}^2$

Question: 11

The area of a rho

Solution:

Given: A rhombus ABCD Diagonal AC = 24 cm Area = 120 cm² Area of the rhombus = $\frac{1}{2} \times AC \times BD$ Therefore, $\frac{1}{2} \times AC \times BD = \frac{1}{2} \times 24 \times BD = 120$ 24 × BD = 120 × 2 BD = $\frac{240}{24} = 10$ cm OB = $\frac{BD}{2} = \frac{10}{2} = 5$ cm OA = $\frac{AC}{2} = \frac{24}{2} = 12$ cm Now, In \triangle AOB using Pythagoras theorem AB² = OA² + OB² AB² = 12² + 5²

 $AB^2 = 144 + 25$

 $AB^2 = 169$

AB = 13

Therefore length of each side of the rhombus = 13 cm

Question: 12

The parallel side

Solution:

Given

Length of parallel sides is 54cm and 26 cm

Height (h) = 15 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (54 + 26) \times 15 = 600 \text{ cm}^2$.

Question: 13

The area of a tra

Solution:

Given

Lengths of the parallel sides are in the ratio 5:3

Therefore let one of the side length be 5X and other side length be 3X

Area of trapezium= 384 cm^2

Let Height (h) =12 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium is $\frac{1}{2} \times (5X + 3X) \times 12 = 384 \text{ cm}^2$.

$$\frac{1}{2} \times (5X + 3X) \times 12 = 384$$

- \Rightarrow (8X) \times 6 = 384
- $\Rightarrow 48X = 384$

$$\Rightarrow X = \frac{384}{48} = 8$$

 \therefore length of the parallel sides is 5X=5 × 8 =40 cm and 3X = 3 × 8 = 24 cm.

Therefore length of the longest side is 40 cm.

Question: 14

Fill in the blank

Solution:

(i) Area of triangle = $\frac{1}{2} \times (\underline{\text{base}}) \times (\underline{\text{height}})$.

- (ii) Area of || gm = (<u>base</u>) × (<u>height</u>).
- (iii) Area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times (\text{height})$

(iv) Given

Length of parallel sides is $14\mbox{cm}$ and $18\mbox{ cm}$

Height (h) = 8 cm

We know that area of trapezium is $\frac{1}{2} \times (\text{sum of parallel sides}) \times \text{height}$

Therefore Area of trapezium = $\frac{1}{2} \times (14 + 18) \times 8 = 128 \text{ cm}^2$.