Polynomials

7) If α and β are zeroes of a quadratic polynomial $4x^2 + 4x + 1$, then form a quadratic polynomial whose zeroes are 2α and 2β .

2014/2016 (3 marks)

 α and β are zeroes of polynomial $4x^2 + 4x + 1$.

So,
$$\alpha + \beta = -\frac{4}{1} = -\frac{1}{1}$$
 and $\alpha\beta = \frac{1}{4}$(2)
Now, $2\alpha + 2\beta = 2(\alpha + \beta) = 2(-1)$ [From (1)]

And
$$2\alpha \times 2\beta = 4\alpha\beta = 4\times \frac{1}{\Rightarrow}$$
 [From (2)]

So, the required polynomial is x^2 -(-2) $x+1=x^2+2x+1$.

8) If one zero of the polynomial $2x^2 - 5x - (2k+1)$ is twice the other, find both the zeroes of the polynomial and the value of the k.

2015/2016 (3 marks)

Let one zero of $2x^2-5x-(2k+1)$ be α .

So the other zero is 2α .

So we have:
$$\alpha + 2\alpha = -\frac{5}{2} = \frac{5}{2} \Rightarrow 3\alpha = \frac{5}{2} \Rightarrow \alpha = \frac{5}{6}$$
.

So zeroes are
$$\frac{5}{6}$$
 and $\frac{5}{3}$

Now product of zeroes =
$$\frac{5}{6} \times \frac{5}{3} = \frac{c}{a}$$

$$\Rightarrow \frac{25}{18} = \frac{-(2k+1)}{2} \Rightarrow \frac{25}{9} = -(2k+1)$$

$$\Rightarrow$$
 25 = $-18k - 9$

$$\Rightarrow 18k = -34 \Rightarrow k = \frac{-34}{18} = -\frac{17}{9}$$

Hence the zeroes are $\frac{5}{6}$ and $\frac{5}{3}$ and the value of k is $-\frac{17}{9}$.

9) What should be added in the polynomial x^3 - $2x^2$ - 3x -4 so it is completely divisible by x^2 -x? 2015/2016 (3marks)

We divide
$$x^2 - 2x^2 - 3x - 4$$
 by $x^2 - x$.

$$\begin{vmatrix}
 x^2 - x & x^3 - 2x^2 - 3x - 4 & x - 1 \\
 x^3 - x^2 & - + & -x^2 - 3x - 4 \\
 -x^2 + x & -x^2 + x$$

$$-4x-4$$

Hence remainder is -4x-4 so -(-4x-4) must be added for the polynomial becoming divisible by x^2-x .

10) Find all the zeroes of the polynomial $2x^4$ - $9x^3$ + $5x^2$ + 3x -1, if two of its zeroes are $2 + \sqrt{3}$ and $2 - \sqrt{3}$

2014/2015 (4 marks)

 $2+\sqrt{3}$ and $2-\sqrt{3}$ are zeroes of the polynomial, i.e, $x^2-4x+4-3$ or x^2-4x+1 is a factor of the given polynomial. Now, we have:

$$x^{2} - 4x + 1 \overline{\smash)2x^{4} - 9x^{3} + 5x^{2} + 3x - 1} \ 2x^{2} - x - 1$$

$$2x^{4} - 8x^{3} + 2x^{2}$$

$$- + -$$

$$- x^{3} + 3x^{2} + 3x - 1$$

$$- x^{3} + 4x^{2} - x$$

$$+ - +$$

$$- x^{2} + 4x - 1$$

$$+ - +$$

$$0$$

Hence, we have:

$$2x^{4} - 9x^{3} + 5x^{2} + 3x - 1 = (x^{2} - 4x + 1)(2x^{2} - x - 1)$$
Now,
$$2x^{2} - x - 1 = 2x^{2} - 2x + x - 1$$

$$= 2x(x - 1) + 1(x - 1)$$

$$= (x - 1)(2x + 1)$$

Now,
$$x-1=0 \Rightarrow x=1 \text{ and } 2x+1=0 \Rightarrow x=-\frac{1}{2}$$
.

Thus all the zeroes of the given polynomial are

$$2+\sqrt{3},2-\sqrt{3},1 \text{ and } -\frac{1}{2}.$$

11) If α and β are zeroes of the polynomial $2x^2$ - 7x + 5, then find the value of $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$.

2015/2016(3 marks)

 α and β are zeroes of $2x^2-7x+5$.

So,
$$\alpha + \beta = \frac{-(-7)}{2} = \frac{7}{2} \text{ and } \alpha\beta = \frac{5}{2}$$

$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta} = \frac{(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)}{\alpha\beta}$$
Now, $= \frac{\left(\frac{7}{2}\right)^3 - 3\times\frac{5}{2}\times\frac{7}{2}}{\frac{5}{2}} = \frac{\frac{343}{8} - \frac{105}{4}}{\frac{5}{2}}$

$$= \frac{(343 - 210)}{8} \times \frac{2}{5} = \frac{133}{20}$$