

CENTRES OF A TRIANGLES

Centres of a Triangle

(i) In-centre

(ii) circum-centre

(iii) Centroid O

(vi) rtho-centre

In-Centre of Triangle -The point of intersection of all the three angle bisectors of a triangle is called its in-centre (I).

The distance between In-centre and its all three sides is always equal and called inradius (r).

ID = IE = IF = r (inradius)

Inradius (r) =
$$\frac{\text{Area of a } \Delta (A)}{\text{semiperimeter}(s)} = \frac{A}{S}$$

$$\angle BIC = 90 + \frac{1}{2} \angle A$$

$$\angle AIC = 90 + \frac{1}{2} \angle B$$

$$\angle AIB = 90 + \frac{1}{2} \angle C$$

Circum-centre of Triangle -The point of intersection of the \(\perp\) bisectors of three sides of a triangle is called its circumcentre.

The distance between Circum-centre and its all three vertices are always equal and called circumradius.

$$OA = OB = OC = R$$
 (circumradius)

Circumradius (R) =
$$\frac{a.b.c}{4A}$$

$$\angle AOC = 2. \angle B$$

NOTE - The circum-centre in

(i) Acute-angled Triangle - Lies inside the Triangle.

(ii) Obtuse-angled Triangle - Lies infront of the obtuse - angle and outside of the triangle.

OA = OB = OC(R)

(iii) Right-angled Triangle - Lies on the triangle, at the midpoint of Hypotenuse.

OA = OB = OC(R)

Centroid - It is the point of intersection of all the three medians. It is denoted by G.

Medians - A line segment joining the mid-point of the side of the side with opposite vertex.

The centroid (G) divides a median in

AG; GD = BG: GE = CG: GF = 2:1

A median divides Area of a Δ in exactly two parts

A centroid divides Area of a A in extactly three parts.

Orhtocentre - It is the point of intersection of all the three altitudes.

Altitude - The altitude of a triangle is a line segment perpendicularly drown from vertex to the side opposite to it. The side on which 1' is drown is called its base.

∠BHC = 180 - ∠A

: 1

∠AHB = 180 - ∠C

∠AHC = 180° - ∠B

Note - The Orthocentre in -

(i) Acute-angled Triangle - lies inside the triangle.

(ii) Obtuse-angled Triangle - lies outside of the triangle, on the back-side of the obtuse angle.

Orthocentre and Circumcentre lie opposite to each other in obtuse angle triangle.

(iii) Right-angled Triagnle - lies on the triangle, at the right angle.

Note - For equilateral Triangle,
All centres i.e. Incentre, Circum
centre, centroid and Orthocentre are
lies at the same point.

Area of equilateral $\Delta = \frac{\sqrt{3}}{4}a^2$

Altitude =
$$\frac{\sqrt{3}}{2}a$$

Some useful results

1. In a \triangle ABC, if the bisectors of \angle B and \angle C meet at 0 then \angle BOC = 90° + $\frac{1}{2}$ \angle A

 In a △ABC, if sides AB and AC are produced to D and E respectively and the bisectiors of ∠DBC and ∠ECB intersect at O, then

3. In a \triangle ABC, if AD is the angle bisector of \angle BAC and AE \perp BC, then \angle DAE = $\frac{1}{2}$ (\angle ABC - \angle ACB)

4. In a ∆ABC, if BC is produced to D and AE is the angle bisector of ∠A, then

∠ABC + ∠ACD = 2∠AEC

5. In a △ABC, if side BC is produced to D and bisectors of ∠ABC and ∠ACD meet at E, then

$$\angle BEC = \frac{1}{2} \angle BAC$$

6. In an acute angle △ ABC, AD is a perpendicular dropped on the opposite side of ∠A, then

$$AC^2 = AB^2 + BC^2 - 2 BD. BC$$

($\angle B < 90^\circ$)

7. In an obtuse angle △ ABC, AD is perpendicular dropped on BC, BC is produced to D to meet AD, then

$$AC^2 = AB^2 + BC^2 + 2BD.BC(<8)$$

In a right angle \triangle ABC, \angle B = 90° AC is hypotenuse. The perpendicular angle on hypotenuse from right angle vertex B, then

8.

(a) BD =
$$\frac{AB \times BC}{AC}$$

(b) AD =
$$\frac{AB^2}{AC}$$

(c) CD =
$$\frac{BC^2}{AC}$$

(d)
$$\frac{1}{BD^2} = \frac{1}{AB^2} + \frac{1}{BC^2}$$

9. Area of triangle (General formula

$$A(\Delta) = \frac{1}{2} \times base \times height$$

$$A(\Delta) = \frac{1}{2} \times BC \times AD$$

$$\sqrt{s(s-a)(s-b)(s-c)}$$

Also, A
$$(\Delta) = r \times s = \frac{abc}{4R}$$

where, a, b and c are the sides of the triangle $r \perp$ inradius R_{\perp} circumradius

$$S \perp \text{semiperimeter} = \frac{a+b+c}{2}$$

11. Area of right angled triangle

$$= \frac{1}{2} \times base \times height$$

$$= \frac{1}{2} \times BC \times AB$$
 (as per the figure)

12. Area of an isosceles triangle

13. Area of an equilateral triangle

Note - (AD \(\text{AD} \) Angle bisector, median, altitude and perpendicular bisector.)

- 14. For the given perimeter of a triangle, the area of equilateral triangle is maximum.
- For the given area of a triangle, the perimeter of equilateral triangle is minimum.
- 15. The ratio of areas of two triangles of equal heights is equal to the ratio of their corresponding bases. i.e.,

 \perp

16. The ratio of areas of triangles of equal bases is equal to the ratio of their heights.

i.e.
$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{BD}{RS}$$

17. The ratio of the areas of two triangles is equal to the ratio of products of base and its corresponding height i.e.,

$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AC \times BD}{PR \times QS}$$

18. If the two triangles have the same base and lie between the same parallel lines (as shown in figure), then the area of two triangles will be equal. i.e. A(Δ ABC) = A(Δ ADB)

19. In a tiangle AE, CD and BF are the medians then
3(AB² + BC² + AC²) = 4(CD² + BF² + AE²)

20. The sum of any two sides of a triangle is always greater than the third side:

21. The difference of any two sides of a triangle is always less than the third side i.e.

Exercise LEVEL - 1

- If any two sides of a triangle are 1. produced beyond its base and the exterior angles thus obtained are bisected, then these bisectors will include:
 - (a) half the sum of the base angles
 - (b) sum of the base angles
 - (c) half the difference of the base angles
 - (d) difference of the base angles
- If I is the in-centre of ABC and A = 60°, then the value of \(\sigma BIC is: \)
 - (a) 100°
- (b) 120°
- (c) 150°
- (d) 110°
- In an obtuse-angled triangle ABC, /A is the obtuse angle and O is the orthocentre. If \(\subseteq BOC = 54^\circ\), then /BAC is:
 - (a) 108°
- (b) 126°
- (c) 136°
- (d) 116°
- ABC is an equilateral triangle. If a,b, and c denotes the lengths of perpendiculars from A,B and C respectively on the opposite sides then:

 - (a) $a \neq b \neq c$ (b) a = b = c
- (c) a = b = 2c (d) a b = cIn the given figure, $\angle A = 80^{\circ}$, $\angle B =$ 60°, $\angle C = 2x$ and $\angle BDC = y^\circ$, BD and CD bisect angles B and C respectively. The value of x and y respectively are:

- (a) 15° and 70°
- (b) 10° and 160°
- (c) 20° and 130°
- (d) 20° and 125°

- 6. The sides of a right triangle containing the right angle measure 3 cm and 4 cm. The radius of the incircle of the triangle is:
 - (a) 3.5 cm
- (b) 1.75 cm
- (c) 1 cm
- (d) 0.875 cm
- If the sides of a right-triangle are x, x+ 1 and x - 1, then the hypotenuse is:
 - (a) 5

7.

(b) 1.75 cm

(c) 1

- (d) 0
- 8. The circum-centre of a triangle is always the point of intersection of the:
 - (a) Medians
- (b) bisectors
- (c) Perpendiculars
- (d) Perpendiculars dropped from the vertices on the opposite sides of the triangle.
- The radius of circum-circle of an 9. equilateral triangle of side 12cm is:
 - (a) $(4/3)\sqrt{3}$
- (b) $4\sqrt{2}$
- (c) $4\sqrt{3}$
- (d) 4
- 10. In \triangle ABC, \angle B is a right angle, AC = 6cm, and D is the mid-point of AC. The length of BD is:
 - (a) 4 cm
- (b) $\sqrt{6}$ cm
- (c) 3 cm
- (d) 3.5 cm
- In the given figure, BO and Co are 11. the bisector of ∠CBD and ∠BCE respectively and $\angle A = 40^{\circ}$, then /BOC is equal to:

- (a) 60°
- (b) 65°
- (c) 75°
- (d) 70°

12. In the given figure, AM ⊥ BC and AN is the bisector of ∠A. What si the measure of ∠MAN?

- (a) 17.5°
- (b) 15.5°
- (c) 16°
- (d) 20°
- 13. If the bisector of an angle of Δ bisects the opposite side, then Δ is:
 - (a) Scalaene
- (b) Isosceles
- (c) Right triangle
- (d) None of these.
- 14. In the given figure, ∠BAD = ∠CAD, aABStatume, AC = 5.2cm, BD = 3cm.

17. In △ ABC, the bisectors of ∠B and intersect each-other at a point of then ∠BOC is equal to:

(a) 90°
$$-\frac{1}{2} \angle A$$

(b)
$$90^{\circ} + \frac{1}{2} \angle A$$

(c)
$$120^{\circ} + \frac{1}{2} \angle A$$

(d)
$$120^{\circ} - \frac{1}{2} \angle A$$

18. In △ ABC, the sides AB and AC are produced to P and Q respectively. The bisectors of ∠ PBC and ∠ QCB intersect at a point O. the

21.	The sides of a triangle are 41cm, 40cm and 9cm respectively, the triangle is: (a) acute (b) obtuse (c) right	26.	The internal bisect ∠ACB of △ ABC me O. If ∠BOC = 120° equal to: (a) 80°	eet each-other at
22.	(d) can't be determined The sides of a triangle are 13cm, 7cm and 9cm respectively, the triangle is: (a) acute (b) obtuse	27.	(c) 60° O is the incentre of 30°, then ∠BOC is:	(d) 90° \triangle ABC and \angle A =
	(c) right (d) can't be determined	107422 00428	(a) 100° (c) 110°	(b) 105° (d) 90°
23.	The three sides of a triangle are given which one of the following is not a right angle:	28.	In \triangle ABC, AD is the of \angle A, meeting the BD = 5cm, BC = 7 AC is:	side BC at D. If
0.4	(a) 16, 63, 65 (b) 20,21,29 (c) 56,90,106 (d) 36,35,74 If a triangle, the circumcentre,		(a) 2:1 (c) 4:5	(b) 1:2 (d) 3:5
24.	incentre, centroid and othocentre coincide, then the triangle is: (a) Isosceles (b) Right-angled	29.	The external bisector of △ ABC meet at possible 80°, then ∠BPC is: (a) 50°	or of $\angle B$ and $\angle C$ oint P. If $\angle BAC =$
25.	 (c) Equilateral (d) Acute angled O is the incentre of △ ABC and ∠BOC = 130°. Find ∠BAC: (a) 80° (b) 40° (c) 150° (d) 50° 	30.	(c) 80° PQR is a triangle su and PR = 4cm the s (a) equal to 5 (b) greater than 5 (c) less than 5 (d) None of these.	ch that PQ = 9cm
	*			9

LEVEL - 2

If in the given figure, ∠PQR = 90°, O 1. is the centroid of $\triangle PQR$, PQ = 5cmand QR = 12cm, then OQ is equal to:

- 2. If P and Q are the mid-points of the sides CA and CB respectively of a triangle ABC, right-angled at C, then the value of 4(AQ2 + BP2) is equal to:
 - (a) 4BC²
- (b) 2AC2
- (c) 2BC²
- (d) 5AB2
- 3. The medians AD, BE CF of a triangle ABC intersect in G. Which of the following istrue for any ABC?
 - (a) GB + GC = 2GA
 - (b) GB + GC < GA
 - (c) GB + GC > GA
 - (d) GB + GC = GA
- If a,b and c are the sides of a triangle 4. and $a^2+b^2+c^2=ab+bc+ca$, then the triangle is:
 - (a) Equilateral
- (b) Isosceles
- (c) Right-angled
- (d) Obtuse-angle
- In the given figure, $\angle B = \angle C = 55^{\circ}$ 5. and $\angle D = 25^{\circ}$ then:

- (a) BC < CA < CD
- (b) BC > CA > CD

6.

- (c) BC < CA, CA > CD
- (d) BC > CA, CA < CD
- In the given figure ∠QPR = 90°, QR = 26 cm, PM = 6 cm, MR = 8cm and \angle PMR = 90°, find the area of \triangle PQR

- (a) 180 cm²
- (b) 240 cm²
- (c) 120 cm²
- (d) 150 cm²
- If H is the orthocentre of ABC, then 7. the orthocentre of A HBC is (figure given):

(a) N

(b) A

(c) L

(d) M

The point in the plane of a triangle which is at equal perpendicular distance from the sides of the triangle is:

- (a) circumcentre
- (b) centroid
- (c) incentre
- (d) orthocentre

- The length of the two sides forming 9. the right angle of a right angled triangle are 6cm and 8cm. The length of its circum-radius:
 - (a) 5 cm
- (b) 7 cm
- (c) 6 cm
- (d) 10 cm
- The equidistant point from the 10. vertices of a tirangle is called its:
 - (a) centroid
- (b) incentre
- (c) circumcentre
- (d) orthocentre
- Internal bisectors of \(\mathbb{B} \) and \(\alpha \) of a ABC intersect at O, if ∠BOC = 102°, then the value of BAC is:
 - (a) 12°
- (b) 24°
- (c) 48°
- (d) 60°
- 12. If G is the centroid and AD be a median with length 12cm of ABC, then the value of AG is:
 - (a) 4 cm
- (b) 6 cm
- (c) 10 cm
- (d) 8 cm
- 13. In a right-angled triangle ABC, AB = 2.5 cm, $\cos B = 0.5$, $\angle ACB = 90^{\circ}$. The length of side AC, in cm is:
 - (a) $5\sqrt{3}$
- (c) $\frac{5}{4}\sqrt{3}$
- (b) $\frac{5}{2}\sqrt{3}$ (d) $\frac{5}{16}\sqrt{3}$
- 14. The in-radius of an equilateral triangle is of length 3cm, Then the length of each of its medians is:
 - (a) 12 cm
- (c) 4cm
- (d) 9 cm

- 15. Two medians AD and BE of ABC intersect at G at right angles. If AD = 9cm and BE = 6cm, then the length of BD, in cm is:
 - (a) 10
- (b) 6

(c) 5

- (d) 3
- 16. In \triangle ABC, \angle BAC = 90° adn AB
 - = $\frac{1}{2}$ BC. Then the measure of \angle ACB
 - is:
 - (a) 60°
- (b) 30°
- (c) 45°
- (d) 15°
- 17. In Δ ABC, AD is the median and AD

=
$$\frac{1}{2}$$
BC. If \angle BAD = 30 is, then \angle ACB

- is:
- (a) 90°
- (b) 45°
- (c) 30°
- (d) 60°
- 18. In \triangle ABC, \angle B = 60°, \angle C = 40°, If AD bisects ∠BAC and AE | BC, then / EAD is:
 - (a) 10°
- (b) 20°
- (c) 40°
- (d) 80°
- 19. $\ln \triangle ABC$, $\angle B = 90^{\circ}$, $\angle C = 45^{\circ}$ and D is the mid-point of AC. If AC =
 - $4\sqrt{2}$ units, then BD is:
 - (a) $2\sqrt{2}$ units
- (b) $4\sqrt{2}$
- (d) 2 units

LEVEL - 3

1. In the given figure, AB = BC and ∠BAC = 15°, AB = 10cm. Find the area of △ABC:

- (a) 50 cm²
- (b) 40 cm²
- (c) 25 cm²
- (d) 32 cm²
- In ΔABC, G is the centroid, AB = 15cm, BC = 18cm, and AC = 25cm. Find GD, where D is th mid-point of BC:
 - (a) $\frac{1}{2}\sqrt{86}$
- (b) $\frac{1}{3}\sqrt{86}$
- (c) $\frac{7}{3}\sqrt{86}$ cm
- (d) $\frac{2}{3}\sqrt{86}$ cm
- 3. In a right angled triangle ABC, \angle B is the right angle and AC = $2\sqrt{5}$ cm, If AB BC = 2cm then the value of(cos²A cos²C) is:
 - (a) $\frac{2}{5}$
- (b) $\frac{3}{5}$

(c) $\frac{6}{5}$

(d) $\frac{3}{10}$

- 4. If G is the centroid of \triangle ABC and AG = BC, then \angle BGC is:
 - (a) 75°
- (b) 45°
- (c) 90°
- (d) 60°
- 5. By decreasing 15° each angle of a triangle the ratios of their angles are 2:3:5, the radian measure for greatest angle is:
 - (a) $\frac{11\pi}{24}$
- (b) $\frac{\pi}{12}$

- (c) $\frac{\pi}{24}$
- (d) $\frac{5\pi}{24}$
- 6. Two sides of a triangle are of length 4cm and 10cm. If the length of the third side is 'a' cm, then:
 - (a) a > 5
- (b) 6≤a≤12
- (c) a < 6
- (d) 6 < a < 14
- 7. O is any point on the bisector of the acute angle ∠ABC. From O a line parallel to CB meets AB at P. Then ABPO is:
 - (a) right angled isosceles triangle
 - (b) isosceles but not a right angled
 - (c) equilateral triangle
 - (d) None of these

Hints and Solutions:

LEVEL-1

$$_{1.(a)}$$
 $\angle BOC = 90^{\circ} - \frac{1}{2} \angle A$

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} \angle A = 90^{\circ} - \frac{1}{2} (\angle B + \angle C)$$

$$\Rightarrow \frac{1}{2} (\angle B + \angle C) = 90^{\circ} - \frac{1}{2} \angle A$$

$$\therefore \angle BOC = \frac{1}{2} (\angle B + \angle C)$$

2.(b)
$$\angle BIC = 90^{\circ} + \frac{A}{2} = 90^{\circ} + 30^{\circ} = 120^{\circ}$$

5.(c)
$$\angle A + \angle B + \angle C = 180^{\circ}$$

⇒
$$\angle$$
C = 180° - (\angle A+ \angle B)
⇒ \angle C = 180° - (80° + 60°) = 40°

$$\Rightarrow 2x = 40 \Rightarrow x = 20^{\circ} \quad (\because C = 2x)$$

$$y = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + \frac{1}{2} (80)$$

 $= 130^{\circ}$

6.(c)

- a. scalane
- b. isosceles
- c. equilateral
- d. right angled and isosceles

$$AC = \sqrt{3^2 + 4^2} = 5cm$$

A = area of
$$\triangle$$
 ABC = $\frac{1}{2} \times 4 \times 3 = 6$ cm

$$s = \frac{3+4+5}{2} = 6cm$$

$$r = A/S = 6/6 = 1cm$$

7.(a) largest side = hypotenuse =
$$(x + 1)$$

$$(x + 1)^2 = x^2 + (x - 1)^2 \Rightarrow x = 4$$

$$\therefore$$
 hypotenuse = $x + 1 = 5$

9.(c)

$$R = \frac{a}{\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}$$

In the right-angled triangle the 10.(c) length of median to the hypotenuse is half the length of the hypot enuse.

Hence, BD =
$$\frac{1}{2}$$
 AC = 3cm

11.(d)
$$\angle BOC$$

= $90^{\circ} - \frac{1}{2} \angle A = 90^{\circ} - \frac{1}{2} (40) = 70^{\circ}$

12.(a)
$$\angle MAN = \frac{1}{2} (\angle B - \angle C)$$

= $\frac{1}{2} (65^{\circ} - 30^{\circ}) = \frac{1}{2} (35^{\circ}) = 17.5^{\circ}$

AC =
$$\sqrt{15^2 - 9^2} = \sqrt{144} = 12_{cm}$$

BC = $\sqrt{15^2 - 12^2} = \sqrt{81} = 9_{cm}$
width of the street = AC + BC = 12 + 9 = 21 m

17.(b)

$$A + B + C = 180^{\circ}$$

$$\Rightarrow A + 2 \angle 1 + 2 \angle 2 = 180^{\circ}$$

$$\Rightarrow \angle 1 + \angle 2 = \frac{1}{2} (180^{\circ} - A) = 90^{\circ}.$$

$$= \frac{1}{2} [\angle B + \angle C) = \frac{1}{2} (180^{\circ} - \angle A)$$

$$=90^{\circ}-\frac{1}{2}\angle A$$

19.(d) We know that the centroid of a triangle divides each median in the ratio of 2:1

$$\Rightarrow BE = \frac{3}{2}BG = \frac{3}{2} \times 6 = 9 \text{ cm}.$$

21.(c)
$$(41)^2 = (40)^2 + (9)^2 \implies \text{right angle}$$

triangle

22.(b)
$$(13)^2 > (7)^2 + (9)^2 \implies \text{obtuse triangle}$$

23.(d) Apply pythagorus theorem or sum of two sides
$$\Rightarrow$$
 third side i.e. 29.(a) \angle BPC = 90° - $\frac{A}{2}$ 36 + 35 \Rightarrow 74

25.(a) ∠BOC = 90° +
$$\frac{1}{2}$$
 (∠BAC)
⇒ ∠BAC = (130 - 90) ×2 = 80°

$$\angle BOC = 90^{\circ} + \frac{1}{2} (\angle BAC)$$

$$\Rightarrow$$
 \angle BAC = (120° - 90°) \times 2 = 60°

27.(b)
$$\angle BOC = 90^{\circ} + \frac{1}{2} (\angle A) = 105^{\circ}$$

28.(a)
$$\frac{AB}{AC} = \frac{BD}{DC} = \frac{5}{7.5 - 5} = \frac{50}{25} = \frac{2}{1}$$

= 2 : 1

29.(a)
$$\angle BPC = 90^{\circ} - \frac{A}{2}$$

= 90° - 40°.
= 50°

$$= 50^{\circ}$$
30.(b) QR > PQ - PR
$$\Rightarrow QR > 9 - 4 \Rightarrow QR > 5$$

LEVEL-2

$$\sqrt{PQ^2 + QR^2} = \sqrt{5^2 + 12^2} = 13cm$$

∴ O is the centroid ⇒ QM is median and M is the mid-point of PR.

$$\therefore QM = PM = \frac{13}{2}$$

centroid divides median in ratio 2:1

$$\therefore$$
 OQ = $\frac{2}{3}$ QM = $\frac{2}{3} \times \frac{13}{2} = \frac{13}{3} = 4\frac{1}{3}$ cm

2.(d)

$$AQ^2 = AC^2 + QC^2$$

 $BP^2 = BC^2 + CP^2$
 $AQ^2 + BP^2 = (AC^2 + BC^2) + (QC^2 + CP^2)$

$$= AB^2 + \left(\frac{BC}{2}\right)^2 + \left(\frac{AC}{2}\right)^2$$

$$= AB^2 + \frac{1}{4}(BC^2 + AC^2)$$

$$= AB^2 + \frac{1}{4}AB^2 = \frac{5}{4}AB^2$$

 $4(AQ^2 + BP^2) = 5 AB^2$

3.(c)

4.(a)
$$a^2 + b^2 + c^2 = ab + bc + ca (given)$$

 $\Rightarrow a^2 + b^2 + c^2 - ab - bc - ca = 0$

$$\Rightarrow 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0$$

$$\Rightarrow 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0$$

$$\Rightarrow (a - b)^2 + (b - c)^2 + (c - a)^2 = 0$$

: sum of perfect square is 0, : all of them are 0.

$$\Rightarrow$$
 a-b=0=b-c=c-a

$$\Rightarrow$$
 a = b = c

: triangle is equilateral.

5.(d)
$$\angle B = \angle .C \Rightarrow AB = BC$$

 $\angle CAD = 30^{\circ}$

$$\angle$$
 BAC = 180° - 110° = 70° > \angle ABC

6.(c)
$$PR = \sqrt{PM^2 + MR^2} = \sqrt{36+64} = 10cm$$

 $PQ = \sqrt{QR^2 - PR^2} = \sqrt{26^2 - 10^2} = 24cm$

∴ ar
$$(\triangle PQR) = \frac{1}{2} (PR) (PQ)$$

$$=\frac{1}{2} \times 10 \times 24 = 120 \text{cm}^2$$

7.(b) In
$$\triangle$$
 ABC, $HL \perp BC$ and

 $BN \perp CH$

Thus, the two altitudes HI and BN of \triangle HBC, intersect at A.

$$AC = \sqrt{6^2 + 8^2} = 10cm.$$

$$\therefore \text{ circum radius} = \frac{10.}{2} = 5 \text{cm}.$$

i.e. mid-point of hypotenuse.

10.(c) The right bisector of sides meet at a point called 'circumcentre'.

11.(b)
$$\angle BOC = 90^{\circ} + \frac{1}{2} (\angle BAC)$$

$$\Rightarrow$$
 $\angle BAC = (102^{\circ} - 90^{\circ}) \times 2 = 24^{\circ}$

$$AG = \frac{2}{3} AD = \frac{2}{3} \times 12 = 8cm.$$

$$\cos B = 0.5 = \frac{1}{2}$$

. Sin B =

$$\sqrt{1-\cos^2 B} = \sqrt{1-\frac{1}{4}} = \frac{\sqrt{3}}{2}$$

$$\therefore \quad \text{Sin B} = \frac{AC}{BC} \Rightarrow \text{AC} = \text{AB sin B}$$

$$= 2.5 \times \frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{4}$$

14.(d)

In equilateral triangle centroid, incentre, orthocentre concide at the same point.

$$\therefore \frac{AD}{3} = 3cm \implies AD = 9cm = median.$$

15.(c)

$$AD = 9cm \Rightarrow GD = \frac{1}{3} \times 9 = 3cm$$

BE = 6cm
$$\Rightarrow$$
 BG = $\frac{2}{3} \times 6$ = 4cm

∴ BD =
$$\sqrt{3^2 + 4^2}$$
 = 5cm.

16.(b)

$$\sin C = \frac{AB}{BC} = \frac{1}{2}$$

$$\Rightarrow \angle C = 30^{\circ} \Rightarrow \angle ACB = 30^{\circ}$$

17.(d)

$$BD = CD = AD$$

Now in ∆ABD

$$\angle$$
 ABD = 30° (: BD = AD)

$$\therefore AD = DC : \angle DAC = \angle DCA = \theta \text{ (let)}$$

Now, $\angle A+ \angle B + \angle C = 180^{\circ}$

$$\Rightarrow$$
 30°+ θ + 30° + θ = 180°

$$\Rightarrow 2\theta = 120^{\circ} \Rightarrow \theta = \angle ACB = 60^{\circ}$$

18.(a) B E D C

$$\angle EAD = \frac{1}{2} (60^{\circ} - 40^{\circ}) = 10^{\circ}$$

19.(a)

BD = AD = CD (mid-point of hypotenuse is circumcentre.)

:. BD =
$$\frac{1}{2}$$
 (4 $\sqrt{2}$) = 2 $\sqrt{2}$ units.

LEVEL-3

i.(c)
$$\angle BAC = 15^{\circ}$$

 $\therefore \angle BCA = 15^{\circ} \ (\because AB = BC)$
 $\therefore \angle ABC = 180^{\circ} - (15^{\circ} + 15^{\circ})$
 $= 150^{\circ}$

$$\frac{AD}{AB} \Rightarrow \frac{1}{2} = \frac{AD}{10} \Rightarrow AD = 5cm.$$

$$\therefore$$
 Area of \triangle ABC =

$$\frac{1}{2} \times BC \times AD = \frac{1}{2} \times 10 \times 5 = 25 \text{cm}^2$$

2.(d)

$$\angle AB^2 + AC^2 = 2(AD^2 + BD^2)$$

$$\Rightarrow$$
 225 + 625 = 2(AD² + 81)

$$\Rightarrow$$
 AD² = 344

$$AD = 2\sqrt{86}$$
 and $GD = \frac{1}{3}AD$

$$\Rightarrow$$
 GD = $\frac{2}{3}\sqrt{86}cm$

3.(b) Let BC =
$$x$$
 : AB = $x + 2$
AC² = AB² + BC²

$$\Rightarrow (2\sqrt{5})^2 = (x+2)^2 + x^2$$

$$\Rightarrow$$
 20 = $x^2 + 4 + 4x + x^2$

$$\Rightarrow 2x^2 + 4x - 16 = 0$$

$$\Rightarrow x^2 + 2x - 8 = 0$$

$$\Rightarrow (x-2)(x+4)=0$$

$$\Rightarrow x = 2 = BC$$

:.
$$AB = 2 + 2 = 4cm$$

$$\therefore \cos^2 A - \cos^2 C =$$

$$\left(\frac{AB}{AC}\right)^2 - \left(\frac{BC}{AC}\right)^2 = \frac{16}{20} - \frac{4}{20} = \frac{12}{20} = \frac{3}{5}$$

4.(c)

$$AG = BC = 2x$$
 (let)

:.
$$GD = x$$
 (: centroid divides median in 2:1)

Now in
$$\triangle$$
 BDG, BD = GD = x

$$\therefore$$
 $\angle DBG = \angle BGD = \theta_1$ (let)

Similarly in
$$\triangle$$
 DGC, CD = GD = x

$$\therefore \angle DCG = \angle DGC = \theta_2 \text{ (let)}$$

$$\therefore$$
 $\angle BGC = \theta_1 + \theta_2$

Now in
$$\triangle$$
 BGC = $\theta_1 + \theta_2 + (\theta_1 + \theta_2)$
= 180°

$$\Rightarrow \theta_1 + \theta_2 = 90^\circ$$

5.(a)
$$2x + 3x + 5x = 180^{\circ} - 45^{\circ} = 135^{\circ}$$

$$\Rightarrow x = \frac{135}{10} = \frac{27}{2}$$

$$\therefore$$
 largest angle = $5x + 15^{\circ}$ =

$$\left(5 \times \frac{27}{2}\right)^{\circ} + 15^{\circ} = \frac{165^{\circ}}{2}$$

$$\therefore$$
 180° = π radian

$$\frac{165^{\circ}}{2} = \frac{\pi}{180} \times \frac{165}{2} = \frac{11\pi}{24}$$
 radian

6.(d) The sum of any two sides of a triangle is greater than third side and their difference is less than third side.

Answer Key

(b)

(c)

(a)

••	$\frac{1}{2} \angle ABC < 45^{\circ}$	ê
_	/ DOR - / DRO - 45°	

C

∠BPO > 90° Hence, Δ PBO is isosceles Δ but not a right-angled triangle.

LEVEL - 1

(a)

	_	7 8	U.
4. (b)	5.	(c)	6.
7. (a)	8.	(b)	9.
10. (c)	11.	(d)	12.
13. (b)	14.	(a)	15.
16. (c)	17.	(b)	18.
19. (d)	20.	(d)	21.
00 (%)	23	(a)	

2.

(c) 22. (b) 23. (d)24. (c) 26. 25. (a) (c) 27. 28. (a) 29. (a) 30.

LEVEL - 2

	<u>\$</u>			
1. (b)	2.	(d)	3.	(c)
4. (a)	5.	(d)	6.	(c)
7. (b)	8.	(c)	9.	(a)
10. (c)	11.	(b)	12.	(d)
13. (c)	14.	(d)	15.	(c)
16. (b)	17.	(d)	18.	(a)
19. (a)		3 3		4.3
2/ 1047	LE	VEL - 3		

1. (c) 2. (d) 3. (b) 4. (c) 5. (d) (a) 6. 7. (b)