

Fluid Properties

Match List-I (Fluid) with List-II (Classification of fluid) and select the correct answer using the codes given below the lists:

List-I

- A. Gasoline
- Suspended starch solution
- C. Tooth paste
- D. Blood

List-II

- Shear thickening fluid
- Shear thinning fluid
- Bingham plastic fluid
- 4. Newtonian fluid
- Thixotropic fluid

Codes:

C Α В 2 5 4 1 3 2 3 1 2

4 1 5

- Q.2 Work done in blowing a soap bubble of diameter 12 cm will be (Assume surface tension of soap
 - solution as 0.04 N/m] (a) 18,09 x 10⁻¹ N-m
 - (b) 9.05 x 10-4 N-m
 - (c) $7.24 \times 10^{-3} \text{ N-m}$
 - (d) 36.2 x 10⁻⁴ N-m
- Q.3 The dimensions of dynamic viscosity (µ) are
 - (a) ML-1 T-2 (c) MLT-2
- (b) ML-1T-1
- (d) Milita
- Q.4 The liquid used in manometers should have
 - (a) low density
 - (b) high density
 - low surface tension
 - (d) high surface tension

- Q.5 A circular disc of diameter 'd' is slowly rotated in a liquid of large viscosity μ at a small distance h from a fixed surface. The minimum torque required to maintain an angular velocity wwill be
- (c) $\frac{\mu\pi d^3\omega}{32h}$
- Q.6 What is the capillary rise in a narrow twodimensional slit of width 'w?
 - (a) Half of that in a capillary tube of diameter
 - (b) Two-third of that in a capillary tube of
 - (c) One-third of that in a capillary tube of diameter 'w'
 - (d) One fourth of that in a capillary tube of diameter 'w'
- Q.7 Consider the following statements:
 - 1. A small bubble of one fluid immersed in another fluid has a spherical shape.
 - 2. The droplets of a fluid move upward or downward in another fluid due to unbalance between gravitational and buoyant forces.
 - 3. Droplets of bubbles attached to a solid surface can remain stationary in a gravitational fluid if the surface tension exceeds buoyant lorces.
 - 4. Surface tension of a bubble is proportional to its radius while buoyant force is proportional to the cube of its radius

Which of these statements are correct?

- (a) 1, 2, 3 and 4
- (b) 1, 2 and 4
- (c) 1 and 3 only
- (d) 2, 3 and 4
- Q.8 A fluid (sp. gr. = 0.9, μ = 1.2 Pas) flows in a laminar state between two stationary parallel plates set 3 cm apart. If the steady discharge is 600 cm3/s per cm width or plates, the shear stress at a distance 1 cm from either boundary is
 - (a) 160 Pa
- (b) 320 Pa
- (c) 480 Pa
- (d) 640 Pa
- Q.9 An increase in pressure of 2 bars decreases the volume of a liquid by 0.01%. The bulk modulus of elasticity of liquid is
 - (a) $2 \times 10^5 \text{ N/m}^2$
- (b) $2 \times 10^7 \text{ N/m}^2$
- (c) 2 × 109 N/m²
- (d) 2 x 1011 N/m2
- Q.10 Which of the following statement is correct?
 - (a) Dynamic viscosity of water is nearly 50 times to that of air
 - (b) Kinematic viscosity of water is 30 times more that of air
 - (c) Water is soil is able to rise a considerable distance above the groundwater table due to viscosity
 - (d) Vapour pressure of a liquid is inversely proportional to the temperature.
- Q.11 Which one of the following pressure unitrepresents the least pressure?
 - (a) millibar
- (b) mm of Ha
- (c) N/mm²
- (d) kg(/cm²
- Q.12 Assertion (A): At the standard temperature, the kinematic viscosity of air is greater than that of water at the same temperature.

Reason (R): The dynamic viscosity of air at standard temperature is lower than that of water at the same temperature.

- (a) both A and B are true and B is the correct explanation of A
- (b) both A and R are true but R is not a correct explanation of A
- (c) A is true but R is talse
- (d) A is false but R is true
- Q.13 Match List-I with List-II and select the correct answer using the codes given below the lists:
 - · List-I
 - A. Lubrication
 - B. Rise of sap in trees
 - C. Formation of droplets
 - D. Cavitation
 - List-II
 - 1. Capillary
 - 2. Vapour pressure
 - Viscosity
 - 4. Surface tension

Codes:

- A B С
- (a) 2 4 1 (b) 3 4 1 2
- (c) 2 1 4 3
- (d) 3 1 4 2
- Q.14 Force necessary to lift a thin platinum wire ring of 3 cm diameter from a water surface will be [neglect the weight of wire]
 - (a) 0.0137 N
- (b) 0.0275 N
- (c) 0.0069 N
- (d) 0.0034 N
- Q.15 Assertion (A): Cavitation occurs when the velocity is high and pressure is low.

Reason (R): Vapour cavitation is less damaging than air cavitation.

- (a) both A and R are true and R is the correct explanation of A
- (b) both A and R are true but R is not a correct explanation of A
- (c) A is true but R is lalse
- (d) A is false but R is true

Answers Fluid Properties

- 1. (b) 2. (d) 3. (b) 4. (a) 11. (a) 12. (b) 13. (d) 14. (a)

Explanations Fluid Properties

(d)
 The soap bubble has two interfaces

:. Workdone =
$$0.04 \times 4\pi \times (6 \times 10^{-2})^2 \times 2$$

= 36.2 × 10⁻⁴ N-m

- (/6)
- The liquid used in manometer should be of light density so as to measure even small variation in
- pressure.5. (a)Consider an element of disc at a distance r and

Shear stress =
$$\mu \frac{dv}{dy}$$

Torque = Shear stress × area × r
= $\tau \times 2 \pi r dr \times r = \mu \frac{du}{dv} 2\pi r^2 dr$

Assuming that gap h is small so that velocity distribution may be assumed linear

$$\frac{du}{dy} = \frac{r\omega}{h}$$

$$dT = \mu \frac{r\omega}{h} 2\pi r^2 dr$$

$$T = \int \frac{d^2 2\pi \mu \omega}{h} r^2 dr = \frac{\mu \pi O^4 \omega}{32h}$$

(a)
 For small gap, τ is assumed to be constant

small gap, t is assumed to be consist

$$v_{neq} = \frac{Q}{V} = \frac{600}{3} = 200 \text{ cm/sec}$$

 $\therefore \quad \frac{dv}{dy} = \frac{200}{1.5}$

7. (a)

6. (a)

9. (c)

10.

5. (a)

15. (c)

 $\pi = \mu \frac{dV}{dy} = 1.2 \times \frac{200}{1.5} = 160 \text{ Pa}$

8. (a)

9. (c) 10. (a)

dp = Increase in pressure = 2 bars dV = Decreases in volume = 0.01% $\therefore -\frac{dV}{V} = \frac{0.01}{100}$ Bulk modulus, K is given by

$$K = \frac{dp}{\frac{dV}{dV}} = \frac{2}{0.01} = 2 \times 10^4 \text{ bars}$$

- Now, $1 \text{ bar} = 10^5 \text{ N/m}^2$ $\therefore K = 2 \times 10^4 \times 10^5 \text{ N/m}^2$ $= 2 \times 10^3 \text{ N/m}^2$
- (a) Water is about 50 times viscous than air. Kinematic viscosity of air is more than that of water.
- Kinematic viscosity of air is more than that water.

 11. (a)
- 1 millibar < 1 mm Hg < 1 kgl/cm² < 1 N/mm²

 14. (a) $\sigma = 0.073 \, \text{N/m}$
 - Considering length
 = 2 × Circumference of ring
 ∴ Force = σ × I
 - = $0.073 \times 2 \times \pi \times d$ = $0.073 \times 2 \times 3.14 \times 0.03$ = 0.0137 N
- (c)
 A is true but R is false.