

Polynomials

MATHEMATICAL REASONING

- 1. $px^3 + qx^2 + rx + s = 0$ is said to be cubic polynomial, if _____. (a) $s \neq 0$ (b) $r \neq 0$
 - (c) $q \neq 0$ (d) $p \neq 0$
- 2. If sum of all zeros of the polynomial $5x^2 (3+k)x + 7$ is zero, then zeroes of the polynomial $2x^2 2(k+11)x + 30$ are (a) 3, 5 (b) 7, 9 (c) 3, 6 (d) 2, 5
- 3. If the sum of the product of the zeroes taken two at a time of the polynomial $f(x) = 2x^3 - 3x^2 + 4tx - 5$ is -8, then the value of t is _____. (a) 2 (b) 4 (c) -2 (d) -4
- **4.** if a and b are the roots of the quadratic equation $x^2 + px + 12 = 0$ with the condition a-b=1, then the value of 'p' is
 - (a) 1
 - (b) 7
 - (c) –7
 - (d) 7 or −7
- 5. What will be the value of p(3), if 3 is one I of zeroes of polynomial $p(x) = x^3 + bx + D$? (a) 3 (b) D (c) 27 (d) 0
- 6. A cubic polynomial with sum of its zeroes, sum of the product of its zeroes taken two at a time and the product of its zeroes as -3, 8, 4 respectively, is ____.
 - (a) $x^{3}-3x^{2}-8x-4$ (b) $x^{3}+3x^{2}-8x-4$ (c) $x^{3}+3x^{2}+8x-4$ (d) $x^{3}-3x^{2}-8x+4$

7. If p, q are the zeroes of the polynomial $f(x) = x^2 + k(x-1) - c$, then (p-1)(q-1) is equal to _____. (a) c-1 (b) 1-c (c) c (d) 1+c

- 8. When $x^3 3x^2 + 3x + 5$ is divided by $x^2 x + 1$, the quotient and remainder are (a) x + 2, 7 (b) x - 2, -7 (c) x - 2, 7 (d) x + 2, -7
- 9. What should be subtracted from $f(x) = 6x^3 + 11x^2 39x 65$ so that f(x) is exactly divisible by $x^2 + x 1$? (a) 38x + 60 (b) -38x - 60 (c) -19x - 30 (d) 9x + 10
- **10.** Which of the following graph has more than three distinct real roots?

11. If one zero of the polynomial $f(x) = (k^2 + 4)x^2 + 13x + 4k$ is reciprocal of the other, then k is equal to _____. (a) 2 (b) -2 (c) 1 (d) -1

12. A polynomial of the form $ax^5 + bx^3 + cx^2 + dx + e$ has at most _____ zeroes. (a) 3 (b) 5 (c) 7 (d) 11

- **13.** If α and β are the roots of the equation $2x^2 - 7x + 8 = 0$, then the equation whose roots are $(3\alpha - 4\beta)$ and $(3\beta - 4\alpha)$ is____. (a) $2x^2 + 7x + 98 = 0$ (b) $x^2 + 7x + 98 = 0$ (c) $2x^2 - 7x - 98 = 0$ (d) $2x^2 - 7x + 98 = 0$
- 14. For $x^2 + 2x + 5$ to be a factor of $x^4 + \alpha x^2 + \beta$, the values of α and β should respectively be (a) 2, 5 (b) 5, 25 (c) 6, 25
 - (d) 5, 2

15. If α, β be two zeroes of the quadratic polynomial $ax^2 + bx - c = 0$, then find the

value of
$$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$$
.
(a)
$$\frac{b^2 - 2ac}{a^2}$$

(b)
$$\frac{3abc - b^3}{c^3}$$

(c)
$$\frac{3abc - b^3}{a^2c}$$

(d)
$$\frac{b^3 + 3abc}{a^2c}$$

EVERYDAY MATHEMATICS

16. Area of a triangular field is $(x^4 - 6x^3 - 26x^2 + 138x - 35)m^2$ and base of the triangular field is $(x^2 - 4x + 1)m$. Find the height of the triangular field. (a) $2(x^2 - 2x - 35)m$

(a)
$$2(x^2 - 2x - 35)m$$

(b) $\frac{1}{2}(x^2 - 2x - 35)m$
(c) $2(3x^2 - x - 4)m$
(d) $\frac{1}{2}(3x^2 - x - 4)m$

- **17.** A rectangular garden of length $(2x^3 + 5x^2 7)$ m has the perimeter $(4x^3 2x^2 + 4)m$. Find the breadth of the garden. (a) $(6x^2 - 9)m$
 - (b) $(-6x^2+9)m$
 - (c) $(2x^3 7x^2 + 11)m$
 - (d) $(6x^3 + 7x^2 + 9)m$
- 18. Raghav had Rs.(6x³ + 2x² + 3x) and he bought (4x² + 3) shirts. The price of each shirt is Rs.(x+5). How much money is left with Raghav?
 (a) Rs.(2x³ 18x² 15)
 (b) Rs.(4x² + 2x + 3)
 (c) Rs.(x³ 3x)
 - (d) $Rs.(2x^3 + 2x^2 15)$
- **19.** Two different container contains $(2x^3 + 2x^2 + 3x + 3)L$

 $(4x^3 - 2x^2 + 6x - 3)L$ water. What is biggest measure that can measure both quantities exactly?

and

- (a) $(x^2 + 2x)L$
- (b) $(2x^2+3)L$
- (c) (2x-1)L
- (d) (x+1)L
- **20.** Length and breadth of a rectangular park are $(3x^2 + 2x)m$ and $(2x^3 3)m$ respectively. Find the area of the park, when x = 3. (a) $1924m^2$ (b) $1492m^2$ (c) $1881m^2$ (d) $1683m^2$

ACHIEVERS SECTION (HOTS)

21. Find the roots of $ax^2 + bx + 6$, if the polynomial $x^4 + x^3 + 8x^2 + ax + b$ is exactly divisible by $x^2 + 1$. (a) -1,3 (b) 2,5 (c) -1,-6 (d) -3,2 **22.** Which of the following options hold?

Statement - I: If p(x) and g(x) are two polynomials with $g(x) \neq 0$, then we can find polynomials q(x) and r(x) such that $p(x) = g(x) \times q(x) + r(x)$, where degree of r(x) is greater than degree of g(x).

Statement - II: When $4x^5 + 3x^3 + 2x^2 + 8$ is divided by $4x^2 + 2x + 1$, then degree of remainder is 1.

(a) Both Statement - I and Statement - II are true.

(b) Statement -1 is true but Statement - II is false.

(c) Statement -1 is false but Statement - II is true.

(d) Both Statement - I and Statement -Hi are false.

- **23.** Obtain all the zeroes of the polynomial $f(x) = 3x^4 + 6x^3 2x^2 10x 5$, if two of its zeros are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$. (a) 1,-1 (b) 1, 1 (c) -1,-1 (d) 1,0
- **24.** Match the following.

Column -I	Column - II
(P) If one of the zero of the polynomial $f(x) = (k^2 + 4)x^2$ +13x+4 is reciprocal of the other, then k is equal to	(i) 1
(Q) Sum of the zeroes of the polynomial $f(x) = 2x^3 + kx^2 + 4x + 5$ is 3, then A-is equal to	(ii) O
(R) If the polynomial $f(x) = ax^3 + bx + c$ is exactly divisible by $g(x) = x^2 + bx + c$, then ab is equal to	(iii) <i>—</i> 6

 $\begin{array}{ll} (a) \ (P) \rightarrow (iii); \ (Q) \rightarrow (i); & (R) \rightarrow (ii) \\ (b) \ (P) \rightarrow (ii); \ (Q) \rightarrow (iii); & (R) \rightarrow (i) \\ (c) \ (P) \rightarrow (i); \ (Q) \rightarrow (iii); & (R) \rightarrow (ii) \\ (d) \ (P) \rightarrow (ii); \ (Q) \rightarrow (i); & (R) \rightarrow (iii) \end{array}$

25. If 1 and -1 are zeroes of polynomial $Lx^4 + Mx^3 + Nx^2 + Rx + P$, then Find: (i) L+N+P(ii) M+R(iii) $M^3 + R^3$

	(i)	(ii)	(iii)
(a)	1	1	-1
(b)	0	-1	0
(c)	0	0	0
(d)	-1	1	1

ANSWER KEY									
1.	D	2.	А	3.	D	4.	D	5.	D
6.	С	7.	В	8.	С	9.	В	10.	С
11.	А	12.	В	13.	А	14.	С	15.	D
16.	А	17.	В	18.	А	19.	В	20.	D
21.	С	22.	С	23.	С	24.	В	25.	С

HINTS AND SOLUTION

1. (d): For a cubic polynomial to exist, coefficient of term x^3 must not be equal to zero.

2.	(a) : Sum of zeroes of polynomial
	$5x^2 - (3+k)x + 7$ is $\frac{-[-(3+k)]}{5}$ i.e., $\frac{3+k}{5}$
	According to question, $\frac{3+k}{5} = 0 \Longrightarrow k = -3$
	Now, $2x^2 - 2(k+11)x + 30$ becomes
	$2x^2 - 16x + 30.$
	i.e., $2x^2 - 16x + 30 = 0$ or $x^2 - 8x + 15 = 0$ $\Rightarrow x = 3,5$
	Hence, zeroes of polynomial $2x^2 - 16x + 30$ are 3, 5.

3. (d) : Given polynomial is $2x^3 - 3x^2 + 4tx - 5$ Sum of product of roots taken two at a time 4t

$$\therefore \quad \frac{4t}{2} = -8 \implies t = -4$$

- 4. (d) : Given equation is $x^2 + px + 12 = 0$ Now, if a and b are its roots, then Sum of roots, a+b=-p and Product of roots, $a \times b = 12$ Also, a-b=1 (Given) We know that, $(a-b)^2 = (a+b)^2 - 4ab$ $\Rightarrow 1 = p^2 - 4 \times 12 \Rightarrow 1 = p^2 - 48$ $\Rightarrow p^2 = 49 \Rightarrow = \pm 7$
- **5.** (d) : Since, 3 is one of the zeroes of polynomial p(x). So, p(3) = 0
- 6. (c): For a cubic polynomial, $ax^{3} + bx^{2} + cx + d$ Sum of zeroes $= -\frac{b}{a}$

Sum of the product of zeroes taken two at a time $=\frac{c}{a}$

Product of zeroes $= -\frac{d}{a}$

We have, $-\frac{b}{a} = -3$, $\frac{c}{a} = 8$ and $\frac{-d}{a} = 4$ $\therefore x^3 + 3x^2 + 8x - 4$ is the required polynomial.

7. (b) : Given equation is
$$x^2 + k(x-1) - c$$

 $= x^2 + kx - (k+c)$
Since, p and q are the zeroes,
 $\therefore p+q = -k$ and $pq = -(k+c)$
Now, $(p-1)(q-1) = pq - q - p + 1$
 $= pq - (p+q) + 1 = -(k+c) - (-k) + 1$
 $= -k - c + k + 1 = 1 - c$

8. (c) :

9. (b) : By long division method, we have $\begin{array}{r}
\frac{6x+5}{5x^2+x-1} & \frac{6x^3+11x^2-39x-65}{5x^2-39x-65} \\
-\frac{6x^3+}{5x^2-33x-65} \\
-\frac{5x^2+}{5x-5} \\
-38x-60 \end{array}$

We must subtract the remainder so that f(x) is exactly divisible by $x^2 + x - 1$

Hence, -38x - 60 is to be subtracted.

- 10. (c) : For more than three distinct real roots the graph must cut x-axis at least four times. So, graph in option (C) has more than three distinct real roots.
- 11. (a) : $f(x) = (k^2 + 4)x^2 + 13x + 4k$ Now, let α and β be the roots, then according to the question, $\alpha = \frac{1}{\beta} \Rightarrow \alpha\beta = 1$ Now, we know that $\alpha\beta = \frac{4k}{k^2 + 4}$ $\Rightarrow \quad 1 = \frac{4k}{k^2 + 4} \Rightarrow k^2 - 4k + 4 = 0$ $\Rightarrow \quad (k-2)^2 = 0 \Rightarrow k - 2 = 0 \Rightarrow k = 2$
- **12.** (b) : Since, degree of given polynomial is 5, so $ax^5 + bx^3 + cx^2 + dx + e$ has atmost 5 zeroes.
- **13.** (a) :
- 14. (c) : For $x^2 + 2x + 5$ to be a factor of $x^4 + \alpha x^2 + \beta$, remainder should be zero. $x^2 - 2x + 5$ $x^2 + 2x + 5\sqrt[]{x^4 + \alpha x^2 + \beta}}$ $x^4 + 2x^3 + 5x^2$ $-2x^3 + (\alpha - 5)x^2 + \beta$ $-2x^3 - 4x^2 - 10x$ + + + + $(\alpha - 1)x^2 + 10x + \beta$ $5x^2 + 10x + 25$ $-(\alpha - 6)x^2 + \beta - 25$

Now, remainder should be equal to zero. $\therefore \quad \alpha - 6 = 0 \text{ and } \beta - 25 = 0$ $\Rightarrow \quad \alpha = 6 \text{ and } \beta = 25$

15. (d) : Since, α and β are the zeroes of quadratic equation $ax^2 + bx - c = 0$

$$\therefore \quad \alpha + \beta = \frac{-b}{a} \text{ and } \alpha\beta = \frac{-c}{a}$$

Now, $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^2 + \beta^3}{\alpha\beta}$

$$= \frac{(\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta)}{\alpha\beta}$$
$$= \frac{-b}{a} \times \frac{-a}{c} [(\alpha + \beta)^{2} - 3\alpha\beta] = \frac{b}{c} \left[\frac{b^{2}}{a^{2}} + \frac{3c}{a}\right]$$
$$= \frac{b}{c} \left[\frac{b^{2} + 3ca}{a^{2}}\right] = \frac{b^{3} + 3abc}{a^{2}c}$$

16.

(a) : Base of the triangular field $= (x^{2}-4x+1)m$ Area of the triangular field $= \frac{1}{2} \times Base \times Height$ Now, $x^{4} - 6x^{3} - 26x^{2} + 138x - 35$ $\frac{1}{2} \times (x^{2} - 4x + 1) \times Height$ $\Rightarrow \text{Height} = \frac{2(x^{4} - 6x^{3} - 26x^{2} + 138x - 35)}{x^{2} - 4x + 1}$ $x^{2} - 4x + 1 \int \frac{x^{2} - 2x - 35}{x^{4} - 4x^{3} + x^{2}} - \frac{x^{4} - 4x^{3} + x^{2}}{-2x^{3} - 27x^{2} + 138x - 35}$ $= \frac{x^{4} - 4x^{3} + x^{2}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{3} + x^{2}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{3} + x^{2}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{2} + 140x - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{4} + 10x^{4} - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{4} + 10x^{4} - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{4} + 10x^{4} - 35} - \frac{x^{4} - 4x^{4} + 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{4} + 10x^{4} - 35} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{4} + 10x^{4} - 35} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - 4x^{4}}{-35x^{4} + 10x^{4} - 35} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - 4x^{4}}{-3x^{4} + 10x^{4} - 35} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - \frac{x^{4} - 4x^{4} - \frac{x^{4} - \frac{x^{4} - 4x^{4} - \frac{x^{4} -$

- 17. (b) : Length of the garden $= (2x^{3} + 5x^{2} - 7)m$ Perimeter of the garden = 2× (length + breadth) $\therefore 4x^{3} - 2x^{2} + 4 = 2(2x^{3} + 5x^{2} - 7 + breadth)$ $\Rightarrow 2x^{3} - x^{2} + 2 = (2x^{3} + 5x^{2} - 7) + breadth$ So, breadth of the rectangle $= 2x^{3} - x^{2} + 2 - 2x^{3} - 5x^{2} + 7 = (-6x^{2} + 9)m$
- **18.** (a) : Total amount Raghav had = $Rs.(6x^3 + 2x^2 + 3x)$ Cost of one shirt = Rs.(x+5)Number of shirts he bought = $4x^2 + 3$ \therefore Amount spent by him = $Rs.(x+5)(4x^2+3)$ = $Rs.(4x^3 + 20x^2 + 3x + 15)$

Hence, money left with Raghav = $Rs.(6x^3 + 2x^2 + 3x - 4x^3 - 20x^2 - 3x - 15)$ = $Rs.(2x^3 - 18x^2 - 15)$

19. (b) : Capacity of both the containers is $(2x^3 + 2x^2 + 3x + 3)L$ and $(4x^3 - 2x^2 + 6x - 3)L$ i.e., $(2x^2 + 3)(x + 1)L$ and $(2x^2 + 3)(2x - 1)L$ Barwined measure is the LLC E of superity

Required measure is the H.C.F. of capacity of both the containers i.e., $(2x^2 + 3)L$

- **20.** (d) : Length of rectangular park = $(3x^2 + 2x)m$ Breadth of rectangular park = $(2x^3 - 3)m$ Area of park = length × breadth = $(3x^2 + 2x)(2x^3 - 3) = (6x^5 + 4x^4 - 9x^2 - 6x)m$ For x = 3, $6x^5 + 4x^4 - 9x^2 - 6x$ = $6 \times 243 + 4 \times 81 - 9 \times 9 - 6 \times 3 = 1683$ Hence, area of park = $1683 m^2$
- 21. (c) : $x^4 + x^3 + 8x^2 + ax + b$ is exactly divisible by $x^2 + 1$ \Rightarrow Remainder must be zero. $x^{2^2 + x + 7}$ $x^2 + 1 \int x^4 + x^3 + 8x^2 + ax + b$ $-x^4 - x^2$ $-x^3 - x^2 + x + 5$ $-x^4 - x^2$ $-x^3 - x^2 + x + b$ $-x^3 - x^2 + x + b$ $-x^3 - x^2 + 7$ (a - 1)x + (b - 7) = 0 $\Rightarrow a - 1 = 0$ and $b - 7 = 0 \Rightarrow a = 1$ and b = 7Now, $ax^2 + bx + 6$ becomes $x^2 + 7x + 6$. $x^2 + 7x + 6 = x^2 + 6x + x + 6 = 0$ $\Rightarrow x(x + 6) + 1(x + 6) = 0$ $\Rightarrow (x + 1)(x + 6) = 0 \Rightarrow x = -1, -6$
- **22.** (c) : Statement I is false because if p(x) and g(x) are two polynomials with $g(x) \neq 0$, . then we can find polynomials q(x) and r(x) such that

 $p(x) = g(x) \times q(x) + r(x)$ where r(x) = 0 or degree of r(x) < degree of g(x). Statement - II is false as when

 $4x^5 + 3x^3 + 2x^2 + 8$ is divided by $4x^2 + 2x + 1$, the remainder is $-\frac{5x}{4} + \frac{31}{4}$ which is a polynomial of degree 1.

23. (c) :
$$\sqrt{\frac{5}{3}}$$
 and $-\sqrt{\frac{5}{3}}$ are the zeroes of polynomial $f(x)$

 $\therefore \left(x - \sqrt{\frac{5}{3}}\right), \left(x + \sqrt{\frac{5}{3}}\right) \text{ are factors of}$ i.e., $\left(x^2 - \frac{5}{3}\right)$ exactly divides f(x). Now, $3x^4 + 6x^3 - 2x^2 - 10x - 5$

Now, $3x^{4} + 6x^{3} - 2x^{2} - 10x - 5$ = $\left(x^{2} - \frac{5}{3}\right)(3x^{2} + 6x + 3) = 3\left(x^{2} - \frac{5}{3}\right)(x+1)^{2}$

For zeroes of polynomial f(x), f(x) = 0

$$\Rightarrow 3\left(x^2 - \frac{5}{3}\right)(x+1)^2 = 0 \Rightarrow x = \sqrt{\frac{5}{3}},$$
$$-\sqrt{\frac{5}{3}}, -1, -1$$

24. (b): (P) $f(x) = (k^2+4)x^2+13x+4$ Let one root be a, then other root must be <u>1</u>

> $\therefore \text{ Product of roots} = \frac{1}{\alpha} \times \alpha = 1$ $\therefore \quad 1 = \frac{4}{k^2 + 4} \Longrightarrow k^2 + 4 = 4 \Longrightarrow k^2 = 0 \Longrightarrow k = 0$ (Q) $f(x) = 2x^3 + kx^2 + 4x + 5$ k

Sum of zeroes of $f(x) = -\frac{k}{2}$

According to question, $-\frac{k}{2} = 3 \implies k = -6$

(R) f(x) is exactly divisible by g(x), i.e., when f(x) is divided by g(x) remainder must be zero.

$$x^{2} + bx + c \int ax^{3} + bx - c$$

$$ax^{3} + abx^{2} + acx$$

$$- (ab)x^{2} + (b - ac)x - c$$

$$- (ab)x^{2} - ab^{2}x - abc$$

$$+ + +$$

$$(b - ac + ab^{2})x + (abc - c)$$

$$\therefore (b - ac + ab^{2})x + (abc - c) = 0$$

$$\Rightarrow b - ac + ab^{2} = 0 \text{ and } abc - c = 0$$

$$\therefore abc - c = 0 \Rightarrow ab = 1$$

25. (c) : Since, 1 and -1 are zeroes of

$$Lx^4 + Mx^3 + Nx^2 + Rx + P$$
.
 \therefore $L+M+N+R+P=0$...(1)
and $L-M+N-R+P=0$...(2)
Adding (1) and (2), we get
 $2L+2N+2P=0 \Rightarrow L+N+P=0$
Subtracting (1) from (2), we get
 $-2M-2R=0 \Rightarrow M+R=0$
Now, $(M+R)^3=0$ ($\because M+R=0$)
 $\Rightarrow M^3+R^3+3MR(M+R)=0$
 $\Rightarrow M^3+R^3+3MR\times 0=0$ [$\because M+R=0$]
 $\Rightarrow M^3+R^3=0$