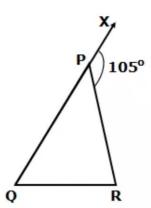
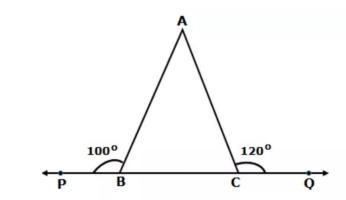
Ex 11.1

Answer 1.



 $\begin{array}{l} \angle Q: \angle R=1:2\\ \text{Let } \angle Q=x^{\circ}\\ \Rightarrow \angle R=2x^{\circ}\\ \text{Now, } \angle RPX=\angle Q+\angle R \quad \dots [\text{Exterior angle property}]\\ \Rightarrow 105^{\circ}=x^{\circ}+2x^{\circ}\\ \Rightarrow 105^{\circ}=3x^{\circ}\\ \Rightarrow x^{\circ}=35^{\circ}\\ \Rightarrow \angle Q=x^{\circ}=35^{\circ} \text{ and } \angle R=2x^{\circ}=70^{\circ} \end{array}$

Answer 2.



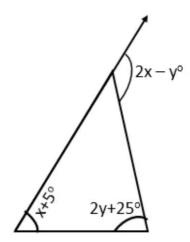
 $\angle ABP + \angle ABC = 180^{\circ}$ (Linear pair) $\Rightarrow 100^{\circ} + \angle ABC = 180^{\circ}$ $\Rightarrow \angle ABC = 180^{\circ} - 100^{\circ} = 80^{\circ}$

 $\angle ACQ + \angle ACB = 180^{\circ}$ (Linear pair) $\Rightarrow 120^{\circ} + \angle ACB = 180^{\circ}$ $\Rightarrow \angle ACB = 180^{\circ} - 120^{\circ} = 60^{\circ}$

Now, in $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ (Angle sum property of a triangle) $\Rightarrow \angle A + 80^{\circ} + 60^{\circ} = 180^{\circ}$ $\Rightarrow \angle A = 180^{\circ} - 80^{\circ} - 60^{\circ} = 40^{\circ}$

Hence, the angles of a triangle are 40°, 60° and 80°.

Answer 3.

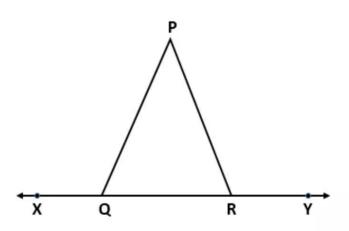


....(Exterior angle property)

 $(2x - y)^{\circ} = (x + 5)^{\circ} + (2y + 25)^{\circ}$ $\Rightarrow 2x^{\circ} - y^{\circ} = x^{\circ} + 5^{\circ} + 2y^{\circ} + 25^{\circ}$ $\Rightarrow 2x^{\circ} - x^{\circ} = 2y^{\circ} + y^{\circ} + 30^{\circ}$ $\Rightarrow x^{\circ} = 3y^{\circ} + 30^{\circ}$

When y = 15°, we have x° = $3 \times 15^{\circ} + 30^{\circ} = 45^{\circ} + 30^{\circ} = 75^{\circ}$

Answer 4.



In <u>APQR</u>,

 $\begin{array}{ll} \angle \mathsf{P} + \angle \mathsf{Q} = 130^\circ & \dots(\text{given}) \\ \text{Now, } \angle \mathsf{P} + \angle \mathsf{Q} = \angle \mathsf{PRY} & \dots(\mathsf{Exterior angle property}) \\ \Rightarrow \angle \mathsf{PRY} = 130^\circ \\ \angle \mathsf{PRY} + \angle \mathsf{R} = 180^\circ & \dots(\mathsf{Linear pair}) \\ \Rightarrow 130^\circ + \angle \mathsf{R} = 180^\circ \\ \Rightarrow \angle \mathsf{R} = 180^\circ - 130^\circ = 50^\circ \end{array}$

Also, $\angle P + \angle R = 120^{\circ}$ (given) Now, $\angle P + \angle R = \angle PQX$ (Exterior angle property) $\Rightarrow \angle PQX = 120^{\circ}$ $\angle PQX + \angle Q = 180^{\circ}$ (Linear pair) $\Rightarrow 120^{\circ} + \angle Q = 180^{\circ}$ $\Rightarrow \angle Q = 180^{\circ} - 120^{\circ} = 60^{\circ}$

In $\triangle PQR$, $\angle P + \angle Q + \angle R = 180^{\circ}$ (Angle sum property of a triangle) $\Rightarrow \angle P + 60^{\circ} + 50^{\circ} = 180^{\circ}$ $\Rightarrow \angle P = 180^{\circ} - 110^{\circ} = 70^{\circ}$

Thus, the angles of $\triangle PQR$ are as follows: $\angle P = 70^{\circ}$, $\angle Q = 60^{\circ}$ and $\angle R = 50^{\circ}$

Answer 5.

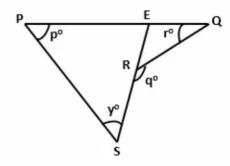
For any triangle, sum of measures of all three angles = 180° Thus, we have $(x + 10)^{\circ} + (x + 30)^{\circ} + (x - 10)^{\circ} = 180^{\circ}$ $\Rightarrow x^{\circ} + 10^{\circ} + x^{\circ} + 30^{\circ} + x^{\circ} - 10^{\circ} = 180^{\circ}$ $\Rightarrow 3x^{\circ} + 30^{\circ} = 180^{\circ}$ $\Rightarrow 3x^{\circ} = 150^{\circ}$ $\Rightarrow x = 50$

Now, $(x + 10)^{\circ} = (50 + 10)^{\circ} = 60^{\circ}$ $(x + 30)^{\circ} = (50 + 30)^{\circ} = 80^{\circ}$ $(x - 10)^{\circ} = (50 - 10)^{\circ} = 40^{\circ}$

Thus, the angles of a triangle are 60°, 80° and 40°.

Answer 6.

SR is produced to meet PQ at E.



In $\triangle PSE$, $\angle P + \angle S + \angle PES = 180^{\circ}$ $\Rightarrow p^{\circ} + y^{\circ} + \angle PES = 180^{\circ}$ $\Rightarrow \angle PES = 180^{\circ} - p^{\circ} - y^{\circ}$

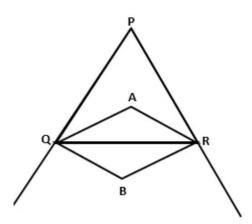
....(Angle sum property of a triangle)(i)

In ARQE,

Now, $\angle PES + \angle REQ = 180^\circ$ (Linear pair) $\Rightarrow (180^\circ - p^\circ - \gamma^\circ) + (q^\circ - r^\circ) = 180^\circ$ [From (i) and (ii)] $\Rightarrow -p^\circ - \gamma^\circ + q^\circ - r^\circ = 0$ $\Rightarrow -\gamma^\circ = -q^\circ + p^\circ + r^\circ$ $\Rightarrow \gamma^\circ = q^\circ - p^\circ - r^\circ$

Answer 7.

In $\triangle PQR$, $\angle P + \angle Q + \angle R = 180^{\circ}$ (angle sum property) $\Rightarrow 4x^{\circ} + 5x^{\circ} + 9x^{\circ} = 180^{\circ}$ $\Rightarrow 18x^{\circ} = 180^{\circ}$ $\Rightarrow x = 10$ $\Rightarrow \angle P = 4x^{\circ} = 4 \times 10^{\circ} = 40^{\circ}$ $\angle Q = 5x^{\circ} = 5 \times 10^{\circ} = 50^{\circ}$ $\angle QPR = \angle PRS$ (Alternate angles) And, $\angle QPR = 40^{\circ}$ $\Rightarrow \angle PRS = 40^{\circ}$ By exterior angle property, $\angle PQR + \angle QPR = \angle PRS + y^{\circ}$ $\Rightarrow 40^{\circ} + 50^{\circ} = 40^{\circ} + y^{\circ}$ $\Rightarrow y = 50^{\circ}$



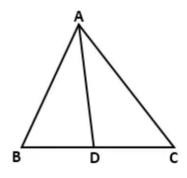
By exterior angle property, $\angle RQS = \angle P + \angle R$ and $\angle QRT = \angle P + \angle Q$ Sinœ QB bisects ∠RQS, $\angle BQR = \frac{1}{2} \angle RQS = \frac{1}{2} (\angle P + \angle R)$ Also RB bisects ∠QRT, $\angle BRQ = \frac{1}{2} \angle QRT = \frac{1}{2} (\angle P + \angle Q)$ In AQBR, \angle QBR + \angle BRQ + \angle BQR = 180° $\Rightarrow \angle QBR + \frac{1}{2}(\angle P + \angle Q) + \frac{1}{2}(\angle P + \angle R) = 180^{\circ}$ $\Rightarrow \angle QBR + \frac{1}{2} (\angle P + \angle Q + \angle P + \angle R) = 180^{\circ}$ $\Rightarrow \angle QBR + \frac{1}{2}(\angle P + 180^\circ) = 180^\circ \qquad \dots [\angle P + \angle Q + \angle R = 180^\circ]$ $\Rightarrow 2\angle QBR + \angle P + 180^\circ = 360^\circ$ ⇒ 2∠0BR = 180° - ∠P(i) Sin œ QB bi sects ∠PQR, $\angle AQR = \frac{1}{2} \angle PQR$ Also RA bisects ∠PRQ, $\angle QRA = \frac{1}{2} \angle PRQ$ In AAQR, $\angle AQR + \angle QRA + \angle QAR = 180^{\circ}$ $\Rightarrow \frac{1}{2} \angle PQR + \frac{1}{2} \angle PRQ + \angle QAR = 180^{\circ}$ $\Rightarrow \frac{1}{2} (\angle PQR + \angle PRQ) + \angle QAR = 180^{\circ}$ $\Rightarrow \angle PQR + \angle PRQ + 2\angle QAR = 360^{\circ}$ $\Rightarrow 2\angle QAR = 360^\circ - \angle PQR - \angle PRQ$ \Rightarrow 2 \angle QAR = 180° + (180° - \angle PQR - \angle PRQ) $\Rightarrow 2\angle QAR = 180^\circ + \angle P$ (ii)

Adding (i) and (ii), $\Rightarrow 2\angle QAR + 2\angle QBR = 180^{\circ} + \angle P + 180^{\circ} - \angle P$ $\Rightarrow 2\angle QAR + 2\angle QBR = 360^{\circ}$ $\Rightarrow \angle QAR + \angle QBR = 180^{\circ}$

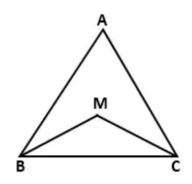
Answer 9.

By exterior angle property, $\angle p = \angle PQR + \angle PRQ$ $\angle q = \angle QPR + \angle PRQ$ $\angle r = \angle PQR + \angle QPR$ Now, $\angle p + \angle q + \angle r = \angle PQR + \angle PRQ + \angle QPR + \angle PRQ + \angle PQR + \angle QPR$ $\Rightarrow \angle p + \angle q + \angle r = 2\angle PQR + \angle 2PRQ + 2\angle QPR$ $\Rightarrow \angle p + \angle q + \angle r = 2\angle PQR + \angle PRQ + \angle QPR$ $\Rightarrow \angle p + \angle q + \angle r = 2\angle PQR + \angle PRQ + \angle QPR$ $\Rightarrow \angle p + \angle q + \angle r = 2 \angle PQR + \angle PRQ + \angle QPR$ $\Rightarrow \angle p + \angle q + \angle r = 360^{\circ}$

Answer 10.



Given, $\angle CAD = \angle B$ (i) By exterior angle property, $\angle ADB = \angle CAD + \angle C$ Also, $\angle ADC = \angle BAD + \angle B$ $\Rightarrow \angle ADC = \angle BAD + \angle CAD$ [From (i)] $\Rightarrow \angle ADC = \angle BAC$

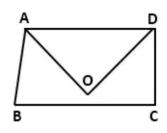


Since BM and CM are bisectors of $\angle ABC$ and $\angle ACB$, $\angle B = 2\angle OBC$ and $\angle C = 2\angle OCB$ (i)

In $\triangle ABC$, $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + 2\angle OBC + 2\angle OCB = 180^{\circ}$ [From (i)] $\Rightarrow \frac{\angle A}{2} + \angle OBC + \angle OCB = 90^{\circ}$ [Dividing both sides by 2] $\Rightarrow \angle OBC + \angle OCB = 90^{\circ} - \frac{\angle A}{2}$ (ii)

Now, in
$$\triangle BMC$$
,
 $\angle OBC + \angle OCB + \angle BMC = 180^{\circ}$
 $\Rightarrow 90^{\circ} - \frac{\angle A}{2} + \angle BMC = 180^{\circ}$ [From (ii)]
 $\Rightarrow \angle BMC = 180^{\circ} - 90^{\circ} + \frac{\angle A}{2}$
 $\Rightarrow \angle BMC = 90^{\circ} + \frac{\angle A}{2}$

Answer 12.



Since AO and DO are bisectors of $\angle A$ and $\angle D$ of quadrilateral ABCD, $\angle A = 2\angle OAD$ and $\angle D = 2\angle ODA$ (i)

In ∆AOD,

∠OAD + ∠ODA + ∠AOD = 180°

⇒ 2∠OAD + 2∠ODA + 2∠AOD = 360°[Multiplying both sides by 2] ⇒ 2∠OAD + 2∠ODA = 360° - 2∠AOD(ii)

In quadriateral ABCD, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $\Rightarrow 2\angle OAD + \angle B + \angle C + 2\angle ODA = 360^{\circ}$ [From (i)] $\Rightarrow \angle B + \angle C = 360^{\circ} - 2\angle OAD - 2\angle ODA$ $\Rightarrow \angle B + \angle C = 360^{\circ} - (2\angle OAD + 2\angle ODA)$ $\Rightarrow \angle B + \angle C = 360^{\circ} - (360^{\circ} - 2\angle AOD)$ [From (ii)] $\Rightarrow \angle B + \angle C = 360^{\circ} - 360^{\circ} + 2\angle AOD$ $\Rightarrow \angle B + \angle C = 2\angle AOD$

Answer 13.

Consider $\triangle ABC$. Now, $\angle A < \angle B + \angle C$ $\Rightarrow \angle A + \angle A < \angle A + \angle B + \angle C$ $\Rightarrow \angle A < 180^{\circ}$ $\Rightarrow \angle A < \frac{180^{\circ}}{2}$ $\Rightarrow \angle A < 90^{\circ}$ Similarly, we have $\angle B < 90^{\circ}$ and $\angle C < 90^{\circ}$. Hence, the triangle is acute-angled.

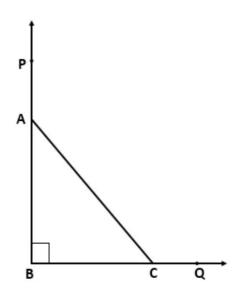
Answer 14.

Let the angles of a triangle be 2x, 4x and 6x. Then, we have $2x + 4x + 6x = 180^{\circ}$ $\Rightarrow 12x = 180^{\circ}$ $\Rightarrow x = 15^{\circ}$ $\Rightarrow 2x = 2 \times 15^{\circ} = 30^{\circ}$ $4x = 4 \times 15^{\circ} = 60^{\circ}$ $6x = 6 \times 15^{\circ} = 90^{\circ}$ Since one angle is 90°, the triangle is a right-angled triangle.

Answer 15.

Let ABC be a triangle such that $\angle A + \angle B = 139^{\circ}$ (i) and, $\angle A - \angle B = 5^{\circ}$ (ii) Adding (i) and (ii), we get $2\angle A = 144^{\circ}$ $\Rightarrow \angle A = 72^{\circ}$ From (i), we have $\angle B = 139^{\circ} - 72^{\circ} = 67^{\circ}$ Now, 3^{rd} angle = $180^{\circ} - (\angle A + \angle B) = 180^{\circ} - 139^{\circ} = 41^{\circ}$ Thus, the angles of a triangle are 72°, 67° and 41°.

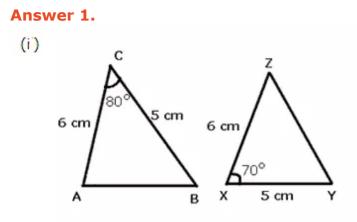
Answer 16.



In $\triangle ABC, \angle B = 90^{\circ}$ And, $\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$ $\Rightarrow \angle BAC + \angle ACB = 180^{\circ} - \angle ABC$ $\Rightarrow \angle BAC + \angle ACB = 180^{\circ} - 90^{\circ}$ $\Rightarrow \angle BAC + \angle ACB = 90^{\circ}$ (i) By exterior angle property, ∠PAC = ∠ABC + ∠ACB(ii) ∠QCA = ∠ABC + ∠BAC(iii)

Adding (ii) and (iii), we get $\angle PAC + \angle QCA = \angle ABC + \angle ACB + \angle ABC + \angle BAC$ $\Rightarrow \angle PAC + \angle QCA = (\angle ACB + \angle BAC) + 2\angle ABC$ $\Rightarrow \angle PAC + \angle QCA = 90^{\circ} + 2 \times 90^{\circ}$ [From (i)] $\Rightarrow \angle PAC + \angle QCA = 90^{\circ} + 180^{\circ}$ $\Rightarrow \angle PAC + \angle QCA = 270^{\circ}$

Ex 11.2



In AABC and AXYZ

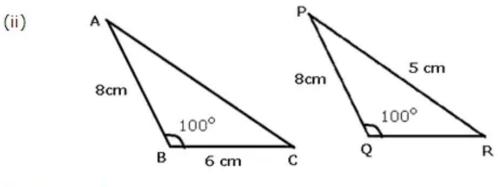
AC = XZ

$$BC = XY$$

The included angle $\angle C=80^{\circ}$ is not equal to $\angle X$ i.e. 70°.

Now, for $\triangle ABC$ to be congruent to $\triangle XYZ$, AB should be equal to XY and YZ should be equal to BC. Then, $\angle A = \angle C$ and $\angle X = \angle Z$. So, the measure of $\angle B$ will not be equal to $\angle Y$.

Therefore, $\triangle ABC$ cannot be congruent to $\triangle XYZ$.



In AABC and APQR

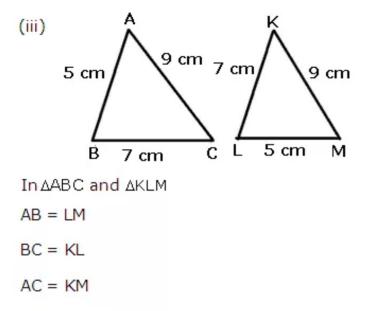
AB = PQ

$$\angle B = \angle Q =$$

BC can be equal to QR or AC can be equal to RP

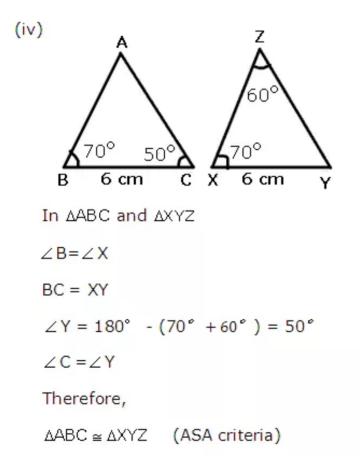
Therefore,

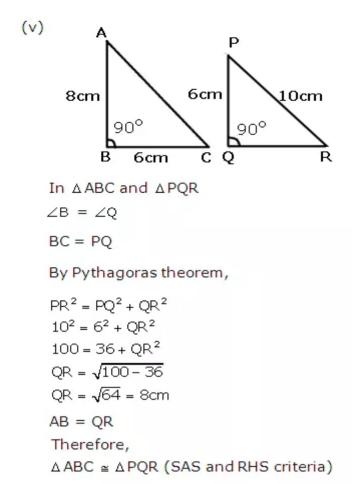
ΔABC can be congruent to ΔPQR.

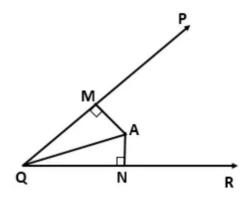


Therefore,

ΔABC ≅ ΔKLM (SSS criteria)





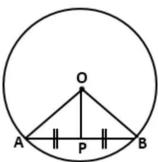


Given, AM⊥PQ and AN⊥QR AM= AN

In \triangle AQM and AQN, AM = AN(given) AQ = AQ(common) \angle AMQ = \angle ANQ(Each = 90°) So, by RHS congruence, we have \triangle AQM $\cong \triangle$ AQN $\Rightarrow \angle$ AQM = \angle AQN(cpct) $\Rightarrow \angle$ AQP = \angle AQR

Answer 3.

Given: In the figure, O is centre of the circle and AB is chord. P is the mid-point of $AB \Rightarrow AP = PB$ To prove: $OP \perp AB$



Construction: Join OA and OB

Proof:

In ∆OAP and ∆OBP

OA = OB[radii of the same cirde]

 $OP = OP \qquad \dots [\infty mmon]$

AP = PB[given]

```
_\odot By Side-Side-Side ariterion of congruency,
```

∆OAP ≅ ∆OBP

The corresponding parts of the congruent triangles are congruent.

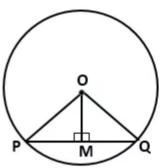
∴ ∠OPA=∠OPB

But∠OPA +∠OPB = 180° [linear pair]

 $\therefore \angle OPA = \angle OPB = 90^{\circ}$ Hence OP \perp AB.

Answer 4.

Given: In the figure, O is centre of the dirde and PQ is a chord. $OM \perp PQ$ To prove: PM = QM



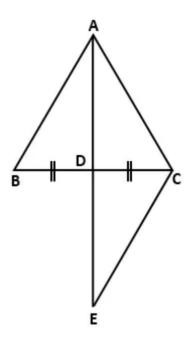
Construction: Join OP and OQ Proof: In right triangles △OPM and △OQM, OP = OQ[radii of the same dircle] OM = OM[common] ∴ By Right angle-Hypotenuse-Side criterion of congruency, △OPM ≅ △OQM The corresponding parts of the congruent triangles are congruent. ∴ PM = QM

Answer 5.

In \triangle ABC and \triangle PQR and AB = PQ BC = QR \angle ABX + \angle ABC = \angle PQY + \angle PQR = 180° \angle ABX = \angle PQY $\Rightarrow \angle$ ABC = \angle PQR Therefore, \triangle ABC $\cong \triangle$ PQR (SAS criteria)

Answer 6.

Given: D is mid-point of BC ⇒ BD = DC DE = AD To prove: a. ∆ABD ≅ ∆ECD b. AB = EC c. AB || EC



a. In ∆ABD and ∆ECD, BD = DC(given)

∠ADB = ∠CDE(vertically opposite angles) AD = DE(given) ∴ By Side-Angle-Side criterion of congruence, ΔABD ≅ ΔECD

- b. The corresponding parts of the congruent triangles are congruent. : AB = EC
- c Also, ∠DAB = ∠DEC(cp.c.t)
 ∴ AB || EC(∠DAB and ∠DEC are alternate angles)

Answer 7.

In $\triangle BAP \text{ and } \triangle CAP$ $\angle BAP = \angle CAP \text{ (AD is the bisector of } \angle BAC)}$ AP = AP $\angle BPD + \angle BPA = \angle CPD + \angle CPA = 180^{\circ}$ $\angle BPD = \angle CPD$ $\Rightarrow \angle BPA = \angle CPA$ Therefore, $\triangle CAP \cong \triangle BAP$ (ASA criteria) Hence, CP = BP.

Answer 8.

In \triangle GCB and \triangle DCE and $\angle 1 + \angle$ GBC = $\angle 2 + \angle$ DEC = 180° $\angle 1 = \angle 2 =$ $\Rightarrow \angle$ GBC = \angle DEC BC = CE \angle GCB = \angle DCE = (vertically opposite angles) Therefore, \triangle GCB \cong \triangle DCE (ASA criteria)

Answer 9.

In AABC, Since AB = AC $\angle C = \angle B$ (angles opposite to the equal sides are equal) BO and CO are angle bisectors of $\angle B$ and $\angle C$ respectively Hence, $\angle ABO = \angle OBC = \angle BCO = \angle ACO$ Join AO to meet BC at D In △ ABO and △ ACO and AO = AOAB = AC $\angle C = \angle B =$ Therefore, $\triangle ABO \cong \triangle ACO$ (SAS criteria) Hence, ∠ BAO=∠CAO ⇒AO bisects angle BAC In △ ABO and △ ACO and AB = ACAO = AO $\angle BAD = \angle CAD = (proved)$ △ABO ≅ △ACO (SAS criteria) Therefore,

BO = CO

Answer 10.

In $\triangle ABD$ and $\triangle FEC$ AB = FE BD = CE(BC = DE; CD is common) $\angle B = \angle E$ $\triangle ABD \cong \triangle FEC$ (SAS criteria)

Answer 11.

In \triangle BMR and \triangle DNR BM = DN \angle BMR= \angle DNR= 90° \angle BRM= \angle DRN = (vertically opposite angles) Hence, \angle MBR= \angle NDR (sum of angles of a triangle = 180°) \triangle BMR \cong \triangle DNR (ASA criteria) Therefore, BR = DR So, AC bisects BD.

Answer 12.

In \triangle QLM and \triangle RNM QM = MRLM = MN $\angle QLM = \angle RNM = 90^{\circ}$ Therefore, $\triangle QLM \cong \triangle RNM$ (RHS criteria) Hence, QL = RN (i) Join PM In $\triangle PLM$ and $\triangle PNM$ and (common) PM = PMLM = MN $\angle PLM = \angle PNM = 90^{\circ}$ Therefore, $\triangle PLM \cong \triangle PNM$ (RHS criteria) Hence, PL = PN (ii) From (i) and (ii) PQ = PR

Answer 13.

 $\angle 1 = 2 \angle 2$ and $\angle 4 = 2 \angle 3$ 1 = 22 and $4 = 2 \exists \angle 1 = \angle 4$ (vertically opposite angles) $\Rightarrow 2 \angle 2 = 2 \angle 3$ or $\angle 2 = \angle 3$ (i) $\angle R = \angle S = (since RT = TS and angle opposite to equal sides are equal)$ $\Rightarrow \angle TRB = \angle TSA =(ii)$ In $\triangle RBT$ and $\triangle SAT$. RT = TS $\angle TRB = \angle TSA$ $\angle RTB = \angle TSA$ $\angle RTB = \angle TSA = (common)$ Therefore, $\triangle RBT \cong \triangle SAT$. (ASA criteria)

Answer 14.

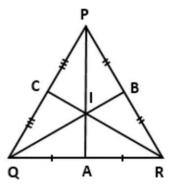
In \triangle CAD and \triangle CBE CA = CB (Isosceles triangle) \angle CDA= \angle CEB = 90° \angle ACD= \angle BCE = (common) Therefore, \triangle CAD \cong \triangle CBE (AAS criteria) Hence, CE = CD But, CA = CB \Rightarrow AE + CE = BD + CD \Rightarrow AE = BD

Answer 15.

In $\triangle ABC$ AB = AC AX = AY $\Rightarrow BX = CY$ In $\triangle BXC$ and $\triangle CYB$ BX = CY BC = BC $\angle B = \angle C = C$ (AB = AC and angles opposite to equal sides are equal) Therefore, $\triangle BXC \cong \triangle CYB$ (SAS criteria) Hence, CX = BY

Answer 16.

Given: In \triangle PQR, PA is the perpendicular bisector of QR \Rightarrow QA = RA RC is the perpendicular bisector of PQ \Rightarrow PC = QC QB is the perpendicular bisector of PR \Rightarrow PB = RB PA, RC and QB meet at I.



To prove: IP = IQ = IRProof: In $\triangle QIA$ and $\triangle RIA$ QA = RA[Given] $\angle QAI = \angle RAI$ [Each = 90°] IA = IA[Common] \therefore By Side-Angle-Side criterion of congruence,

∆QIA ≅ ∆RIA

The corresponding parts of the congruent triangles are congruent. : IQ = IR(i) Similarly, in Δ RIB and Δ PIB RB = PB[Given] \angle RBI = \angle PBI[Each = 90°] IB = IB[Common] : By Side-Angle-Side criterion of congruence, Δ RIB $\cong \Delta$ PIB The corresponding parts of the congruent triangles are congruent. : IR = IP(ii)

```
From (i) and (ii), we have
IP = IQ = IR
```

Answer 17.

In \triangle ADE and \triangle BAC AE = AC AB = AD \angle BAD = \angle EAC \angle DAC = \angle DAC = DAC (common) $\Rightarrow \angle$ BAC = \angle EAD = EAD Therefore, \triangle ADE \cong \triangle BAC (SAS criteria) Hence, BC = DE

Answer 18.

```
Given:
ABCD is a parallelogram, where BE = CE
To prove:
a. ∆DCE ≃ ∆LBE
b. AB = BL
c DC = \frac{AL}{2}
                                              D
                                                                            C
                                                                 В
a. In ∆DCE and ∆LBE
  \angle DCE = \angle EBL \dots [DC \parallel AB, alternate angles]
                 ....[given]
   CE = BE
  \angle DEC = \angle LEB \dots [vertically opposite angles]
  .. By Angle-Side-Angle criterion of congruence,
   ΔDCE ≅ ΔLBE
   The corresponding parts of the congruent triangles are congruent.
  : DC = LB
                  ....(1)
                  ....(2)[opposite sides of a parallelogram]
b. DC = AB
  From (1) and (2),
  AB = BL
                 ....(3)
c. AL = AB + BL
  \Rightarrow AL = AB + AB ....[From (3)]
```

 $\Rightarrow AL = 2AB$ $\Rightarrow AL = 2DC \qquad \dots [From (2)]$

Answer 19.

 $\angle BCD = \angle ADC$ $\angle ACB = \angle BDA$ $\angle BCD + \angle ACB = \angle ADC + \angle BDA$ $\Rightarrow \angle ACD = \angle BDCACD = BDC$ $In \triangle ACD and \triangle BCD$ $\angle ACD = \angle BDCACD = BDC$ $\angle ADC = \angle BDC ACD = BDC$ $\angle ADC = \angle BCD$ ADC = BCD CD = CD $Therefore, \triangle ACD \cong \triangle BCD (ASA criteria)$ $Hence, AD = BC and <math>\angle A = \angle B$.

Answer 20.

Since AP and BQ are perpendiculars to the line segment AB, therefore AP and BQ are parallel to each other.

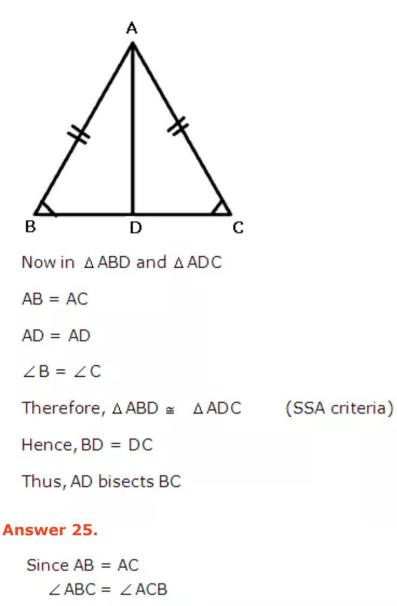
In $\triangle AOP$ and $\triangle BOQ$ $\angle PAO = \angle QBO = 90^{\circ}$ $\angle APO = \angle BQO$ (alternate angles) AP = BQTherefore, $\triangle AOP \cong \triangle BOQ AOP$ BOQ (ASA criteria) Hence, AO = OB and PO = OQThus, O is the mid-point of line segments AB and PQ.

Answer 21.

CE is median to AB \Rightarrow AE = BE(i) BD is median to AC \Rightarrow AD = DC(ii) But AB = AC.....(iii) Therefore from (i), (ii) and (iii) BE = CD In \triangle BEC and \triangle BDC BE = CD \angle EBC = \angle DCB (angles opposite to equal sides are equal) BC = BC (common) Therefore, \triangle BEC \cong \triangle BDC (SAS criteria) Hence, BD = CE

Answer 23.

In \triangle ABC and \triangle PQR BC = QR AD and PM are medians of BC and QR respectively \Rightarrow BD = DC = QM = MR In \triangle ABD and \triangle PQM AB = PQ AD = PM BD = QM Therefore, \triangle ABD \cong \triangle PQMABD PQM (SSS criteria) Hence, \angle B = \angle Q Now in \triangle ABC and \triangle PQR AB = PQ BC = QR \angle B = \angle Q Therefore, \triangle ABC \cong \triangle PQRABC PQR (SAS criteria)



 $But \angle DBC = \angle DCB$

 $\Rightarrow \angle ABD = \angle ACD$

Now in △ABD and △ADC

AB = AC

AD = AD

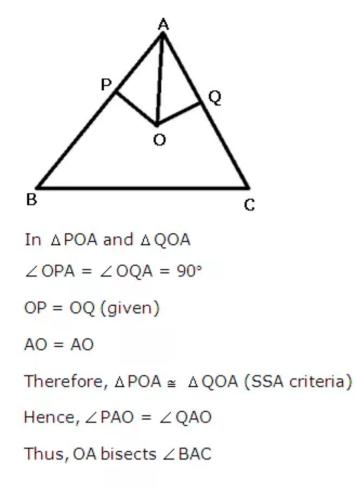
 $\angle ABD = \angle ACD$

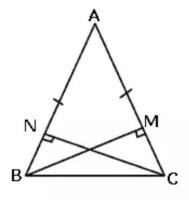
Therefore, △ ABD ≅ △ ADC (SSA criteria)

Hence, $\angle BAD = \angle CAD$

Thus, AD bisects ∠ BAC

Answer 26.





In △BNC and △CMB

 $\angle BNC = \angle CMB = 90^{\circ}$

 $\angle NBC = \angle MCB$ (AB = AC)

BC = BC

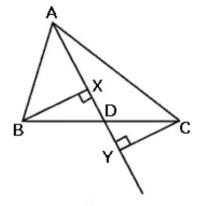
Therefore, $\triangle BNC \cong \triangle CMB$ (AAS criteria)

Hence, BM = CN

Answer 28.

In $\triangle ABC$ AB = AC $\angle ABC = \angle ACB$ (equal sides have equal angles opposite to them)...(i) $\angle GBC = \angle HCB = 90^{\circ}$ (ii) Subtracting (i) from (ii) $\angle GBA = \angle HCA$ (iii) In $\triangle GBA$ and $\triangle HCA$ $\angle GBA = \angle HCA$ (from iii) $\angle BAG = \angle CAH$ (vertically opposite angles) BC = BC Therefore, $\triangle GBA \cong \triangle HCA$ (ASA criteria) Hence, BG = CH and AG = AH

Answer 29.



In △BXD and △CYD

 $\angle BXD = \angle CYD$ (90°)

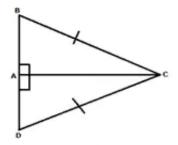
 \angle XDB = \angle YDC (vertically opposite angles)

BD = DC (AD is median on BC)

Therefore, $\triangle BXD \cong \triangle CYD$ (AAS criteria)

Hence, BX = CY

Answer 30.



In AABC and AADC

 $\angle BAC = \angle DAC$ (90°)

BC = DC

AC = AC (common)

Therefore, △ ABC ≅ △ ADC (SSA criteria)

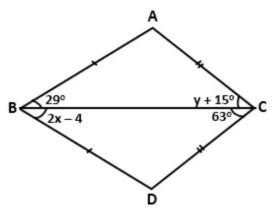
Hence, $\angle BCA = \angle DCA$

Thus, AC bisects ∠ BCD

Answer 31.

 $\angle PQT = \angle RQU \dots (i)$ $\angle TQS = \angle UQS \dots$ (ii) Adding (i) and (ii) $\angle PQS = \angle RQS$ In APQS and ARQS $\angle PQS = \angle RQS$ PQ = RQ (given) QS = QS (common) Therefore, $\triangle PQS \cong \triangle RQS$ (SAS criteria) Hence, $\angle QPS = \angle QRS$ Now in APQT and ARQU $\angle QPS = \angle QRS$ PQ = RQ (given) $\angle PQT = \angle RQU$ (given) (ASA criteria) Therefore, $\triangle PQT \cong \triangle RQU$ Hence, QT = QU.

Answer 32.



In ∆ABC and ∆DBC[given] AB = DB....[given] AC = DC....[common] BC = BC : By Side-Side-Side criterion of congruence, ∆ABC ≅ ∆DBC ∴ ∠ACB = ∠DCB[c.p.c.t.] ⇒ y + 15° = 63° ⇒y=63°-15° ⇒ y = 48° Now, $\angle ABC = \angle DBC \dots [c.p.c.t.]$ ⇒29° = 2x - 4° ⇒ 2x = 29° + 4° ⇒ 2x = 33° $\Rightarrow x = \frac{33^{\circ}}{2}$ ⇒× = 16.5° Hence, $x = 16.5^{\circ}$ and $y = 48^{\circ}$