Revision: 2

1. Fill in the blanks:

- (2) The perfect cube number obtained by cubing 13 is
- $(3) \quad \left(\frac{-5}{9}\right) + \dots = \left(\frac{-5}{9}\right)$
- $(4) \quad \frac{1}{4} \times \left(\frac{1}{3} \times \frac{1}{9}\right) = \left(\frac{1}{4} \times \frac{1}{3}\right) \times \dots$
- (5) $x^2 \times x^{--} = x^7$
- (6) $\frac{7^4}{7^{\cdots}} = \frac{1}{7^8}$
- (7) $E = \{x / x \text{ is a natural number less than 4}\}$ and $F = \{1, 2, 3\}$. These both sets are sets.
- (8) $(-4b) \times (2a + 3b) = \dots$
- (9) $(xy 3)(xy + 4) = \dots$
- (10) pairs of opposite sides and pairs of adjacent sides of a quadrilateral are obtained.
- (11) If diagonals of □ ABCD do not intersect each other, then □ ABCD is quadrilateral.
- (12) In \square PQRS the opposite side of \overline{PQ} is
- (13) $1 \text{ m}^2 = \dots \text{ cm}^2$
- (14) The area of base of a cylinder =
- 2. Answer the following questions with correct alternative from the given alternatives:
 - (1) 3...... {1, 2, 3, 4}
 - (a) ⊏
- (b) **∉**
- (c) ∈
- (d) ⊄

			140 1510	11 . 2		
(2)	0 $\{x/x \text{ is a factor of 5}\}$					
	(a) \subset	(b)	∉	(c) ∈	(d) ⊄	
(3)	{2} { <i>x</i>	x/x is an	even numb	er between 1 and	10}	
	(a) □	(b) ∉		(c) ∈	(d) ⊄	
(4)	Number of	verti	ces of a qua	drilateral are coline	ar.	
	(a) one	(b) tv	wo	(c) three	(d) none	
(5)	In □ KJRM t	he adjacei	nt side of $\overline{\mathbb{R}}$	M is		
	(a) KJ	(b) <u>K</u>	ĪM	(c) KR	(d) JK	
(6)	□ PQRS can	also be w	ritten as	······ ·		
	(a) □ PQSR	(b) [□PSQR	(c) □ QRSP	(d) □ QPRS	
(7)	The formula	to find to	al surface a	rea of a closed cyli	nder is	
	(a) πr^2	(b) 2	$\pi r(h + r)$	(c) $2\pi rh$	(d) $\pi r^2 h$	
(8)	The formula	to find vo	lume of one	rupee coin is		
	(a) $2\pi r$	(b) π	r^2	(c) $l \times b \times h$	(d) $\pi r^2 h$	
(9)	The volume of	of cylinder	with diame	eter 10 cm and heig	tht 4 cm is cm ³ .	
	(a) 100π	(b) 2	0π	(c) 40π	(d) 400π	
Wri	ite the digit at	t the unit	place of th	e number which is	s obtained after cubing	
eacl	n of the follow	wing num	ibers:			
(1)	51 (2)	22	(3) 43	(4) 114		
(5)	25 (6)	227	(7) 36	(8) 88		
Wri	Write opposite number and reciprocal number of given numbers :					

4.

(1) $\frac{4}{7}$ (2) 0.1 (3) $\frac{-3}{11}$ (4) 19

Find the value:

3.

(1) $(5)^{-4}$ (2) $\left(\frac{27}{64}\right)^{\frac{1}{3}}$ (3) $\sqrt[3]{\frac{8}{343}}$ (4) $\left(\frac{2}{3}\right)^2$

Show the following groups by listing and the property method:

No.	Group	Listing method	Property method
1.	Group of odd numbers between 11 to 20		
2.	Group of alphabets of word AHMEDABAD		
3.	Group of factors of 16		
4.	Group of perfect square integers between 1 to 40		

The diameter of base of a cylinder is 60 cm and height is 50 cm, then find its 7. curved surface area. ($\pi = 3.14$)

The height of a water tank is 7 m. In this maximum 5,50,000 litres of water is 8. filled, then find the diameter of this tank.

- How many quadrilaterals are made in the given figure? 9. Name all the quadrilaterals so formed.
- 10. The pair of one of the opposite angles of a quadrilateral is supplementary. The measure of one of the remaining angle is 120th, then find the measure of angle opposite to that angle.
- 11. The measure of four angles of a quadrilateral are (x + 10), (x 10), (x 25), (x + 25) respectively. Then find the measure of all these angles.

12. Expand:

$$(1) (-2b) \times (8a + 9b)$$

$$(1) (-2b) \times (8a + 9b) \qquad (2) (2a + 3b)(5a - 4b) \qquad (3) (2m + 3)(2m - 3)$$

$$(3) (2m+3)(2m-3)$$

$$(4) (2a + 3b)^2$$

$$(5) (10 - y)^2$$

(6)
$$(5m-3)(5m+3)$$

(4)
$$(2a + 3b)^2$$
 (5) $(10 - y)^2$
(7) $(xy - 3)(xy + 4)$ (8) $(7 + 2mn)^2$

$$(8) (7 + 2mn)^2$$

- $(1) 1, 4, 5, 6, 9, 0 \qquad (2) 2197 \qquad (3) 0$ 1.
- $(4) \frac{1}{9}$ (5) 5 (6) 12

- (7) Equal (8) $-8ab 12b^2$ (9) $x^2y^2 + xy 12$ (10) Two, Four (11) Convex
- $(12) \overline{RS}$
 - (13) 10,000
- (14) πr^2

- (1) c 2.

- (2) b (3) a (4) c (5) b (6) c (7) b (8) d
- (9) a

- **3**.
 - (1) 1 (2) 8 (3) 7 (4) 4 (5) 5 (6) 3 (7) 6 (8) 2

- $(1) \frac{-4}{7}, \frac{7}{4}$ (2) (-0.1), 10 $(3) \frac{3}{11}, \frac{-11}{3}$ $(4) (-19), \frac{1}{19}$

Revision: 2

5. (1)
$$\frac{1}{625}$$
 (2) $\frac{3}{4}$ (3) $\frac{2}{7}$ (4) $\frac{4}{9}$

$$(2) \frac{3}{4}$$

$$(3) \frac{2}{7}$$

$$(4) \frac{4}{9}$$

6.	No.	Listing method	Property method
	1.	$A = \{13, 15, 17, 19\}$	$A = \{x / x \text{ is odd numbers between } 11 \text{ to } 20\}$
	2.	$B = \{A, H, M, E, D, B\}$	$B = \{x \mid x \text{ is alphabets of word 'AHMEDABAD'}\}$
	3.	$C = \{1, 2, 4, 8, 16\}$	$C = \{x / x \text{ is factors of 16}\}$
	4.	$D = \{4, 9, 16, 25, 36\}$	$D = \{x \mid x \text{ is a perfect square integers between 1 to 40}\}$

7.
$$9420 \text{ cm}^2$$

- 9. Six quadrilaterals are formed : □ PBQR, □ ABQR, □ APQR, □ PBCR, **11.** 100^a, 80^a, 65^a, 115^a \square PQCR, \square APQC **10.** 60°
- **12.** (1) $-16ab 18b^2$ (2) $10a^2 + 7ab 12b^2$ (3) $4m^2 9$

- (4) $4a^2 + 12ab + 9b^2$ (5) $100 20y + y^2$ (6) $25m^2 9$

- (7) $x^2y^2 + xy 12$ (8) $49 + 28mn + 4m^2n^2$

Set Theory Symbols:

	Symbol	Symbol Name	Meaning / Definition	Example
*	{}	Set	A collection of elements	$A = \{3,7,9,14\},$
				$B = \{9,14,28\}$
•	$A \cap B$	Intersection	Objects that belong to set A and set B	$A \cap B = \{9,14\}$
•	$A \cup B$	Union	Objects that belong to set A or set B	$A \cup B = \{3,7,9,14,28\}$
٠	$A \subset B$	Proper subset / strict subset	Subset has less elements than the set	$\{9,14\} \subset \{9,14,28\}$
•	A ⊄ B	Not subset	Left set not a subset of right set	{9,66} {9,14,28}
•	A = B	Equality	Both sets have the same members	$A = \{3,9,14\}, B = \{3,9,14\},$ A = B
*	$a \in A$	Element of	Set membership	$A = \{3,9,14\}, 3 \in A$