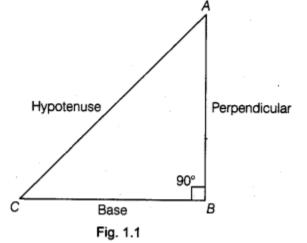
Construct a Square Root Spiral

OBJECTIVE

To construct a square root spiral.

Materials Required

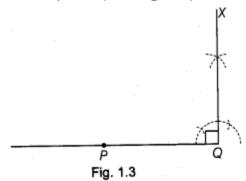

- 1. Adhesive
- 2. Geometry box
- 3. Marker
- 4. A piece of plywood

Prerequisite Knowledge

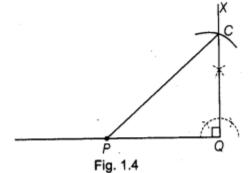
- 1. Concept of number line.
- 2. Concept of irrational numbers.
- 3. Pythagoras theorem.

Theory

- 1. A number line is a imaginary line whose each point represents a real number.
- 2. The numbers which cannot be expressed in the form p/q where q \neq 0 and both p and q are integers, are called irrational numbers, e.g. $\sqrt{3}$, π , etc.
- 3. According to Pythagoras theorem, in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of other two sides containing right angle. ΔABC is a right angled triangle having right angle at B. (see Fig. 1.1)

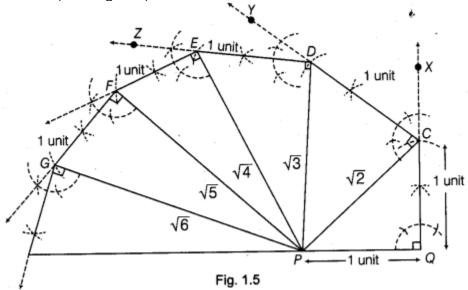


Therefore, $AC^2 = AB^2 + BC^2$ where, AC = hypotenuse, AB = perpendicular and BC = base


Procedure

- 1. Take a piece of plywood having the dimensions 30 cm x 30 cm.
- 2. Draw a line segment PQ of length 1 unit by taking 2 cm as 1 unit, (see Fig. 1.2)

3. Construct a line QX perpendicular to the line segment PQ, by using compasses or a set square, (see Fig. 1.3)



4. From Q, draw an arc of 1 unit, which cut QX at C(say). (see Fig. 1.4)

- 5. Join PC.
- 6. Taking PC as base, draw a perpendicular CY to PC, by using compasses or a set square.
- 7. From C, draw an arc of 1 unit, which cut CY at D (say).

8. Join PD. (see Fig. 1.5)

- 9. Taking PD as base, draw a perpendicular DZ to PD, by using compasses or a set square.
- 10. From D, draw an arc of 1 unit, which cut DZ at E (say).
- 11. Join PE. (see Fig. 1.5)

Keep repeating the above process for sufficient number of times. Then, the figure so obtained is called a 'square root spiral'.

Demonstration

 In the Fig. 1.5, ΔPQC is a right angled triangle. So, from Pythagoras theorem, we have PC² = PQ² + QC²
[∴ (Hypotenuse)² = (Perpendicular)² + (Base)²]
= 1² +1² =2
=> PC = √2
Again, ΔPCD is also a right angled triangle. So, from Pythagoras theorem, PD² =PC² +CD²
= (√2)² +(1)² =2+1 = 3
=> PD = √3
Similarly, we will have PE= √4
=> PF=√5

=> PG = $\sqrt{6}$ and so on.

Observations

On actual measurement, we get PC =,

PD =, PE =, PF =, PG =, $\sqrt{2} = PC = (approx.)$ $\sqrt{3} = PD = (approx.)$ $\sqrt{4} = PE = (approx.)$ $\sqrt{5} = PF = (approx.)$

Result

A square root spiral has been constructed.

Application

With the help of explained activity, existence of irrational numbers can be illustrated.

Viva Voce

Question 1:

Define a rational number.

Answer:

A number which can be expressed in the form of p/q, where $q \neq 0$ and p, q are integers, is called a rational number.

Question 2:

Define an irrational number.

Answer:

A number which cannot be expressed in the form of p/q, where $q \neq 0$ and p, q are integers, is called an irrational number.

Question 3:

Define a real number. **Answer:** A number which may be either rational or irrational is called a real number.

Question 4:

How many rational and irrational numbers lie between any two real numbers?

Answer:

There are infinite rational and irrational numbers lie between any two real numbers.

Question 5:

Is it possible to represent irrational numbers on the number line?

Answer:

Yes, as we know that each point on the number line represent a real number (i.e. both rational and irrational), so irrational number can be represented on number line.

Question 6:

In which triangle, Pythagoras theorem is applicable? **Answer:** Right angled triangle

Question 7:

Give some examples of irrational numbers. **Answer:** Some examples of irrational numbers are $\sqrt{5}$, $3 - \sqrt{7}$, 2π , etc.

Question 8:

Can we represent the reciprocal of zero on the number line.

Answer:

No, because reciprocal of zero is undefined term, so we cannot represent on number line.

Question 9:

In a square root spiral, is it true that in each square root of natural number is equal to the square root of the sum of 1 and previous natural number (> 1)?

Answer:

Yes

Question 10:

Is it possible that we make a square root spiral of negative nymbers? **Answer:**

No

Suggested Activity

Represent square root of 7 and 9 by constructing a square root spiral.