

# System of Co-ordinates

|     |                                                          |                                                            |                                                            | $ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$                           |
|-----|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
|     |                                                          | Basic I                                                    | Level                                                      |                                                            |
| 1.  | From which of the foll                                   | lowing the distance of the point                           | $(1,2,3)$ is $\sqrt{10}$                                   |                                                            |
|     | (a) Origin                                               | (b) x-axis                                                 | (c) y-axis                                                 | (d) z-axis                                                 |
| 2.  | If $A(1,2,3); B(-1,-1,-1)$ b                             | e the points, then the distance                            | AB is                                                      | [MP PET 2001]                                              |
|     | (a) $\sqrt{5}$                                           | (b) $\sqrt{21}$                                            | (c) $\sqrt{29}$                                            | (d) None of these                                          |
| 3.  | Perpendicular distanc                                    | e of the point $(3,4,5)$ from the $y$                      | <i>y</i> -axis, is                                         | [MP PET 1994]                                              |
|     | (a) $\sqrt{34}$                                          | (b) $\sqrt{41}$                                            | (c) 4                                                      | (d) 5                                                      |
| 4.  | Distance between the                                     | points (1,3,2) and (2,1,3) is                              |                                                            | [MP PET 1988]                                              |
|     | (a) 12                                                   | (b) $\sqrt{12}$                                            | (c) $\sqrt{6}$                                             | (d) 6                                                      |
| 5.  | The shortest distance                                    | of the point $(a,b,c)$ from the $x$ -a                     | axis is                                                    | [MP PET 1999; DCE 1999]                                    |
|     | (a) $\sqrt{(a^2+b^2)}$                                   | (b) $\sqrt{(b^2+c^2)}$                                     | (c) $\sqrt{(c^2+a^2)}$                                     | (d) $\sqrt{(a^2+b^2+c^2)}$                                 |
| 6.  | Points (1,1,1), (-2,4,1),                                | (-1, 5, 5) and (2,2,5) are the vert                        | ices of                                                    |                                                            |
|     | (a) Rectangle                                            | (b) Square                                                 | (c) Parallelogram                                          | (d) Trapezium                                              |
| 7.  | The triangle formed by                                   | y the points (0,7,10), (-1,6,6) (-                         | -4,9,6) is                                                 | [Rajasthan PET 2001]                                       |
|     | (a) Equilateral                                          | (b) Isosceles                                              | (c) Right angled                                           | (d) Right angled isosceles                                 |
| 8.  | The points $A(5,-1,1)$ ;                                 | B(7,-4,7); $C(1,-6,10)$ and $D(-1,-3,-1)$                  | 4) are vertices of a                                       | [Rajasthan PET 2000]                                       |
|     | (a) Square                                               | (b) Rhombus                                                | (c) Rectangle                                              | (d) None of these                                          |
| 9.  | The coordinates of a p                                   | oint which is equidistant from                             | the points (0,0,0), (a,0,0),                               | (0,b,0) and $(0,0,c)$ are given by                         |
|     |                                                          |                                                            | [M                                                         | IP PET 1993; Rajasthan PET 2003                            |
|     | (a) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$ | (b) $\left(-\frac{a}{2}, -\frac{b}{2}, \frac{c}{2}\right)$ | (c) $\left(\frac{a}{2}, -\frac{b}{2}, -\frac{c}{2}\right)$ | (d) $\left(-\frac{a}{2}, \frac{b}{2}, -\frac{c}{2}\right)$ |
| 10. | If $A(1, 2, -1)$ and $B(-1, 0)$                          | ,1) are given, then the coordina                           | ates of $P$ which divides $AB$ e                           | xternally in the ratio 1:2, are[                           |
|     | (a) $\frac{1}{3}(1,4,-1)$                                | (b) (3, 4, -3)                                             | (c) $\frac{1}{3}(3,4,-3)$                                  | (d) None of these                                          |

IP PET

The coordinates of the point which divides the join of the points (2,-1,3) and (4,3,1) in the ratio 3:4 internally 11. are given by

[MP PET 1997]

(a)  $\frac{2}{7}, \frac{20}{7}, \frac{10}{7}$  (b)  $\frac{15}{7}, \frac{20}{7}, \frac{3}{7}$ 

(c)  $\frac{10}{7}, \frac{15}{7}, \frac{2}{7}$ 

(d)  $\frac{20}{7}, \frac{5}{7}, \frac{15}{7}$ 

Points (-2, 4, 7), (3, -6, -8) and (1, -2, -2) are 12.

[AI CBSE 1982]

|     | (a) Collinear                               |                                         | (b) Vertices of an equil                | ateral triangle                              |
|-----|---------------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------|
|     | (c) Vertices of an iso                      | •                                       | (d) None of these                       |                                              |
| 13. |                                             | g set of points are non-colling         | ear                                     | [MP PET 1990]                                |
|     | (a) (1, -1, 1), (-1, 1, 1)                  |                                         | (b)                                     | (1, 2, 3), (3, 2, 1), (2, 2, 2)              |
|     | (c) $(-2, 4, -3), (4, -3)$                  |                                         | (d) $(2, 0, -1), (3, 2, -2)$            | , (5, 6, -4)                                 |
| 14. | If the points (-1, 3, 2)                    | $(-4, 2, -2)$ and $(5, 5, \lambda)$ are | collinear, then $\lambda =$             |                                              |
|     | (a) -10                                     | (b) 5                                   | (c) -5                                  | (d) 10                                       |
| 15. | The area of triangle w                      | hose vertices are (1, 2, 3), (2         | , 5, -1) and (-1, 1, 2) is              | [Kerala (Engg.) 2002]                        |
|     | (a) 150 sq. units                           | (b) 145 sq. units                       | (c) $\frac{\sqrt{155}}{2}$ sq. units    | (d) $\frac{155}{2}$ sq. units                |
| 16. | Volume of a tetrahed where <i>K</i> is      | ron is <i>K</i> (area of one face)      | (length of perpendicular from           | n the opposite vertex upon it),              |
|     | (a) $\frac{1}{2}$                           | (b) $\frac{1}{3}$                       | (c) $\frac{1}{4}$                       | (d) $\frac{1}{6}$                            |
| 17. | A point moves so that point is              | t the sum of its distances fro          | m the points $(4,0,0)$ and $(-4,0,0)$   | 0) remains 10. The locus of the              |
|     |                                             |                                         |                                         | [MP PET 1988]                                |
|     | (a) $9x^2 - 25y^2 + 25z^2 =$                | = 225                                   | (b) $9x^2 + 25y^2 - 25z^2 = 2$          | 225                                          |
|     | (c) $9x^2 + 25y^2 + 25z^2$                  | = 225                                   | (d) $9x^2 + 25y^2 + 25z^2 + 2$          | 225 = 0                                      |
| 18. | If the sum of the squ<br>from the origin is | ares of the distances of a po           | oint from the three coordinat           | e axes be 36, then its distance              |
|     | (a) 6                                       | (b) $3\sqrt{2}$                         | (c) $2\sqrt{3}$                         | (d) None of these                            |
| 19. | All the points on the                       | c-axis have                             |                                         | [MP PET 1988]                                |
|     | (a) $x = 0$                                 | <b>(b)</b> $y = 0$                      | (c) $x = 0, y = 0$                      | (d) $y = 0, z = 0$                           |
| 20. | The equations $ x  = p$ ,                   | y  = p, $ z  = p$ in $xyz$ space rej    | present                                 | [Orissa JEE 2002]                            |
|     | (a) Cube                                    | (b) Rhombus                             | (c) Sphere of radius p                  | (d) Point ( <i>p</i> , <i>p</i> , <i>p</i> ) |
| 21. | The orthocentre of the                      | e triangle with vertices (1,2,3         | ), (2,3,1) and (3,1,2) is               |                                              |
|     | (a) (1, 1, 1)                               | (b) (2, 2, 2)                           | (c) (6, 6, 6)                           | (d) None of these                            |
| 22. | If $a+b+c=\lambda$ , then ci                | rcumcentre of the triangle w            | ith vertices $(a,b,c)$ ; $(b,c,a)$ and  | l (c,a,b) is                                 |
|     | (a) $(\lambda, \lambda, \lambda)$           | (b) $(\lambda/2, \lambda/2, \lambda/2)$ | (c) $(\lambda/3, \lambda/3, \lambda/3)$ | (d) None of these                            |
| 23. | (-1,6,6),(-4,9,6) are two                   | vertices of $\Delta ABC$ . If its cent  | roid be $(-5/3, 22/3, 22/3)$ , then     | n its third vertex is                        |
|     | (a) (0, 7, 10)                              | (b) (7, 0, 10)                          | (c) (10, 0, 7)                          | (d) None of these                            |
| 24. | If points (2, 3, 4), (5,                    | a, 6) and $(7, 8, b)$ are colline       | ar, then values of $a$ and $b$ are      | [AISSE 1989]                                 |
|     | (a) $a = 6, b = \frac{-22}{3}$              | <b>(b)</b> $a = 6, b = \frac{22}{3}$    | (c) $a = \frac{22}{3}, b = 6$           | (d) $a = \frac{-22}{3}, b = -6$              |
|     |                                             |                                         | Directi                                 | ion cosines and Projection                   |
|     |                                             |                                         |                                         |                                              |

(b) 60°

25.

(a) 45°

| 26. | If a straight line in space is equally inclined to the coordinate axes, the cosine of its angle of inclination to any one of the axes is |                                                                     |                                                                       | its angle of inclination to any                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------|
|     |                                                                                                                                          |                                                                     |                                                                       | [MP PET 1992]                                                          |
|     | (a) $\frac{1}{3}$                                                                                                                        | (b) $\frac{1}{2}$                                                   | (c) $\frac{1}{\sqrt{3}}$                                              | (d) $\frac{1}{\sqrt{2}}$                                               |
| 27. | If the length of a vector                                                                                                                | be 21 and direction ratios be 2,                                    | -3, 6, then its direction cos                                         | ines are                                                               |
|     | (a) $\frac{2}{21}, \frac{-1}{7}, \frac{2}{7}$                                                                                            | (b) $\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$                        | (c) $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$                           | (d) None of these                                                      |
| 28. | If <i>O</i> is the origin, $OP = 3$                                                                                                      | with d.r.'s $-1$ , 2, $-2$ then the co                              | o-ordinates of P are                                                  | [Rajasthan PET 2000]                                                   |
|     | (a) (-1, 2, -2)                                                                                                                          | (b) (1, 2, 2)                                                       | (c) $\left(-\frac{1}{9}, \frac{2}{9}, -\frac{2}{9}\right)$            | (d) (3, 6, -9)                                                         |
| 29. | The numbers 3, 4, 5 can                                                                                                                  | be                                                                  |                                                                       |                                                                        |
|     | (a) Direction cosines of line in space                                                                                                   | a line                                                              |                                                                       | (b) Direction ratios of a                                              |
|     | (c) Coordinates of a poi                                                                                                                 | nt on the plane $y = 4, z = 0$                                      | (d) Co-ordinates of a poi                                             | int on the plane $x + y - z = 0$                                       |
| 30. | If <i>l</i> , <i>m</i> , <i>n</i> are the <i>d</i> . <i>c</i> .'s or                                                                     | f a line, then                                                      |                                                                       |                                                                        |
|     | (a) $l^2 + m^2 + n^2 = 0$                                                                                                                | (b) $l^2 + m^2 + n^2 = 1$                                           | (c) $l+m+n=1$                                                         | (d) $l = m = n = 1$                                                    |
| 31. | If a line lies in the octa                                                                                                               | nt OXYZ and it makes equal ang                                      | les with the axes, then                                               | [MP PET 2001]                                                          |
|     | (a) $l = m = n = \frac{1}{\sqrt{3}}$                                                                                                     | (b) $l = m = n = \pm \frac{1}{\sqrt{3}}$                            | (c) $l = m = n = -\frac{1}{\sqrt{3}}$                                 | (d) $l = m = n = \pm \frac{1}{\sqrt{2}}$                               |
| 32. | If a line makes equal an                                                                                                                 | gle with axes, then its direction                                   | ratios will be                                                        |                                                                        |
|     | (a) 1, 2, 3                                                                                                                              | (b) 3, 1, 2                                                         | (c) 3, 2, 1                                                           | (d) 1, 1, 1                                                            |
| 33. | The coordinates of the parameter $m$ , $n$ . If $OP = r$ , then                                                                          | point $P$ are $(x, y, z)$ and the direction                         | ection cosines of the line O.                                         | P, when $O$ is the origin, are $l$ ,                                   |
|     | (a) $l = x, m = y, n = z$                                                                                                                | (b) $l = xr, m = yr, n = zr$                                        | (c) $x = lr, y = mr, z = nr$                                          | (d) None of these                                                      |
| 34. |                                                                                                                                          | the diagonals of a cube which cube are coordinate axes)             | joins the origin to the oppo                                          | osite corner are (when the 3 [MP PET 1996]                             |
|     | (a) $\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$                                                                         | (b) -1, 1, -1                                                       | (c) 2, -2, 1                                                          | (d) 1, 2, 3                                                            |
| 35. | If the direction ratios of                                                                                                               | a line are 1, $-3$ , 2, then the dire                               | ection cosines of the line are                                        | [MP PET 1997]                                                          |
|     | (a) $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$                                                                     | (b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ | (c) $\frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$ | (d) $\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$ |
| 36. | If a line make $\alpha, \beta, \gamma$ with                                                                                              | th the positive direction of $x$ , $y$ and                          | and z-axis respectively. The                                          | $\sin \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$ is                 |
|     |                                                                                                                                          |                                                                     | 1                                                                     | Orissa JEE 2002; MP PET 2002]                                          |
|     | (a) 1/2                                                                                                                                  | (b) -1/2                                                            | (c) -1                                                                | (d) 1                                                                  |
| 37• | The direction-cosines of                                                                                                                 | the line joining the points (4, 3                                   | , -5) and (-2, 1, -8) are [1                                          | MP PET 2001; Kurukshetra CEE 1998]                                     |
|     | (a) $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$                                                                                 | (b) $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$            | $(c) \left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right)$              | (d) None of these                                                      |

The direction ratios of the line joining the points (4, 3, -5) and (-2, 1, -8) are

If a line makes angles of  $30^{\circ}$  and  $45^{\circ}$  with x-axis and y-axis, then the angle made by it with z-axis is

(c) 120°

(d) None of these

[AI CBSE 1984; MP PET 1988]

|     | (a) $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$          | (b) 6, 2, 3                                                                             | (c) 2, 4, -13                                                                                          | (d) None of these                               |
|-----|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 39. | The coordinates of a poi                                          | nt P are (3, 12, 4) with respect t                                                      | to origin <i>O</i> , then the direction                                                                | on cosines of <i>OP</i> are [MP PET 1996]       |
|     | (a) 3, 12, 4                                                      | (b) $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$                                             | (c) $\frac{3}{\sqrt{13}}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}$                                    | (d) $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$ |
| 40. | The direction cosines of                                          | a line segment AB are $\frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}$                       | $\frac{-2}{7}$ , $\frac{-2}{\sqrt{17}}$ . If $AB = \sqrt{17}$ and the                                  | e coordinates of $A$ are (3, -6,                |
|     | 10), then the coordinate                                          | es of B are                                                                             |                                                                                                        |                                                 |
|     | (a) (1, -2, 4)                                                    | (b) (2, 5, 8)                                                                           | (c) (-1, 3, -8)                                                                                        | (d) (1, -3, 8)                                  |
| 41. | If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the direction   | ction cosines of a line, then the                                                       | value of $n$ is                                                                                        | [Kerala (Engg.) 2002]                           |
|     | (a) $\frac{\sqrt{23}}{6}$                                         | (b) $\frac{23}{6}$                                                                      | (c) $\frac{2}{3}$                                                                                      | (d) $\frac{3}{2}$                               |
| 42. | If a line makes the $\cos 2\alpha + \cos 2\beta + \cos 2\gamma =$ | ne angle $\alpha, \beta, \gamma$ with three                                             | e dimensional coordinate                                                                               | e axes respectively, then                       |
|     |                                                                   |                                                                                         | [MP PET 19                                                                                             | 94,95,99; Rajasthan PET 2003]                   |
|     | (a) -2                                                            | (b) -1                                                                                  | (c) 1                                                                                                  | (d) 2                                           |
| 43. | A line makes angles of 4 line with the positive ax                | 45° and 60° with the positive axis of $Z$ , is                                          | X es of $X$ and $Y$ respectively.                                                                      | The angle made by the same [MP PET 1997]        |
|     | (a) 30° or 60°                                                    | (b) 60° or 90°                                                                          | (c) 90° or 120°                                                                                        | (d) 60° or 120°                                 |
| 44. | If $\alpha, \beta, \gamma$ be the angle                           | es which a line makes with                                                              | h the positive direction                                                                               | of coordinate axes, then                        |
|     | $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$                  |                                                                                         |                                                                                                        |                                                 |
|     |                                                                   | [Rajasthan PET 2000                                                                     | ; AMU 2002; MP PET 1989,98                                                                             | ,2000,03; Kerala (Engg.) 2001]                  |
|     | (a) 2                                                             | (b) 1                                                                                   | (c) 3                                                                                                  | (d) o                                           |
| 45. | A line makes angles $\alpha, \beta$                               | $\beta, \gamma$ with the coordinate axes. If                                            | $\alpha + \beta = 90^{\circ}$ , then $\gamma =$                                                        |                                                 |
|     | (a) 0°                                                            | (b) 90°                                                                                 | (c) 180°                                                                                               | (d) None of these                               |
| 46. |                                                                   | points $P$ and $Q$ are $(x_1, y_1, z_1)$ are rection cosines are $l$ , $m$ , $n$ , will |                                                                                                        | nen the projection of the line                  |
|     | (a) $(x_2 - x_1)l + (y_2 - y_1)m - (y_1 - y_1)m$                  | $+(z_2-z_1)n$                                                                           | (b) $\left(\frac{x_2 - x_1}{l}\right) + \left(\frac{y_2 - y_1}{m}\right) + \left(\frac{z_1}{l}\right)$ | $\left(\frac{z-z_1}{n}\right)$                  |
|     | (c) $\frac{x_1}{l} + \frac{y_1}{m} + \frac{z_1}{n}$               |                                                                                         | (d) $\frac{x_2}{l} + \frac{y_2}{m} + \frac{z_2}{n}$                                                    |                                                 |
| 47• | The projection of the linare 6, 2, 3, is                          | ne segment joining the points (                                                         | -1, 0, 3) and (2, 5, 1) on the                                                                         | e line whose direction ratios                   |
|     |                                                                   |                                                                                         |                                                                                                        | [AI CBSE 1985]                                  |
|     | (a) 10/7                                                          | (b) 22/7                                                                                | (c) 18/7                                                                                               | (d) None of these                               |
| 48. | The projection of any lir                                         | ne on coordinate axes be respect                                                        | rively 3, 4, 5, then its length                                                                        | is[MP PET 1995; Rajasthan PET 2001              |
|     | (a) 12                                                            | (b) 50                                                                                  | (c) $5\sqrt{2}$                                                                                        | (d) None of these                               |
| 49. | If $\theta$ is the angle betwee                                   | en the lines AB and CD, then proj                                                       | jection of line segment AB o                                                                           | n line <i>CD</i> is [MP PET 1995]               |
|     | (a) $AB \sin \theta$                                              | (b) $AB \cos \theta$                                                                    | (c) $AB \tan \theta$                                                                                   | (d) $CD \cos \theta$                            |

(b) 2, 3, 6

(b)  $PQ \perp RS$ 

(b)  $\frac{\pi}{4}$ 

50.

51.

(a)  $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$ 

(a)  $PQ \parallel RS$ 

(a)  $\frac{\pi}{6}$ 

angle between the lines AB and CD is

60.

61.

are [Pb. CET 1998]

|     | (a) $<-\frac{9}{\sqrt{(17)}}, \frac{12}{\sqrt{(17)}},$ | $\frac{-8}{\sqrt{(17)}} >$                                    | (b) <-9, 12, -8 >                                  |                                                    |                 |
|-----|--------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------|
|     | (c) $<\frac{-9}{289},\frac{12}{289},\frac{-8}{289}$    | >                                                             | (d) $<\frac{-9}{17},\frac{12}{17},\frac{-8}{17}>$  |                                                    |                 |
| 52. | The projections of a segments are                      | a line segment on $x, y, z$ axes                              | s are 12, 4, 3. The length and                     | the direction cosines of th                        | ne line         |
|     |                                                        |                                                               |                                                    | [Kerala (Engg.)                                    | 2000]           |
|     | (a) 13, <12/13, 4/13,                                  | 3/13 >  (b) $19, < 12/19, 4/19,$                              | 3/19 >  (c) $11, <12/11, 4/11, 3$                  | /11 > (d) None of these                            |                 |
| 53. | The coordinates of coordinate axes are                 |                                                               | 7, 8, 7), then the projections                     | of the line segment AB                             | on the          |
|     | (a) 6, 6, 4                                            | (b) 4, 6, 4                                                   | (c) 3, 3, 2                                        | (d) 2, 3, 2                                        |                 |
| 54. |                                                        | ctor) has length 21 and direct<br>ts of the line (vector) are | tion ratios (2, $-3$ , 6). If the lin              | ne makes an obtuse angle v                         | vith <i>x</i> - |
|     | (a) 6, -9, 18                                          | (b) 2, -3, 6                                                  | (c) -18, 27, -54                                   | (d) -6, 9, -18                                     |                 |
|     |                                                        |                                                               |                                                    | Angle between Two L                                | ines            |
|     |                                                        | В                                                             | asic Level                                         |                                                    |                 |
| 55. | The angle between t                                    | the pair of lines with directio                               | on ratios (1, 1, 2) and $(\sqrt{3} - 1, -1)$       | $\sqrt{3}$ -1,4) is [MP PET 1997,                  | , 2000]         |
|     | (a) 30°                                                | (b) 45°                                                       | (c) 60°                                            | (d) 90°                                            |                 |
| 56. | The angle between a                                    | a line with direction ratios 2                                | :2:1 and a line joining (3, 1, 4                   | ) to (7, 2, 12) is [DCE                            | 2002            |
|     | (a) $\cos^{-1}(2/3)$                                   | (b) $\cos^{-1}(-2/3)$                                         | (c) $\tan^{-1}(2/3)$                               | (d) None of these                                  |                 |
| 57. | The angle between t                                    | the lines whose direction cosi                                | ines are proportional to (1, 2,                    | 1) and (2, -3, 6) is                               |                 |
|     | (a) $\cos^{-1}\left(\frac{2}{7\sqrt{6}}\right)$        | (b) $\cos^{-1} \left( \frac{1}{7\sqrt{6}} \right)$            | (c) $\cos^{-1} \left( \frac{3}{7\sqrt{6}} \right)$ | (d) $\cos^{-1} \left( \frac{5}{7\sqrt{6}} \right)$ |                 |
| 58. | If the vertices of a t                                 | riangle are $A$ (1, 4, 2), $B$ (-2, 1                         | 1, 2), C(2, -3, 4), then the angl                  | e B is equal to                                    |                 |
|     | (a) $\cos^{-1}(1/\sqrt{3})$                            | (b) $\pi/2$                                                   | (c) $\cos^{-1}(\sqrt{6}/3)$                        | (d) $\cos^{-1} \sqrt{3}$                           |                 |
| 59. | If the coordinates of                                  | f the points $P$ , $Q$ , $R$ , $S$ be (1, 2)                  | 2, 3), ( 4, 5, 7), ( -4, 3, -6) and                | l ( 2, 0, 2) respectively, then                    | n               |

(c) PQ = RS

If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then the

If the angle between the lines whose direction ratios are 2, -1, 2 and a, 3, 5 be  $45^{\circ}$ , then a =

(c)  $\frac{\pi}{3}$ 

The projections of a line on the co-ordinate axes are 4, 6, 12. The direction cosines of the line are

(c)  $\frac{2}{11}, \frac{3}{11}, \frac{6}{11}$ 

The projections of segment PQ on the coordinate planes are -9, 12, -8 respectively. The direction cosines of PQ

(d) None of these

(d) None of these

(d) 4

[Rajasthan PET 2001]

(c) No such real *b* exists (d) None of these

|     | (a) $\cos^{-1}\left(\frac{2}{65}\right)$                                      | (b) $\cos^{-1} \left( \frac{1}{65} \right)$                            | (c) $\cos^{-1}\left(\frac{3}{65}\right)$                  | (d) $\frac{\pi}{3}$                                                |
|-----|-------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
| 64. | If direction ratio of two                                                     | lines are $a_1, b_1, c_1$ and $a_2, b_2, c_2$ t                        | then these lines are parallel                             | if and only if                                                     |
|     | (a) $a_1 = a_2, b_1 = b_2, c_1 = c_2$                                         | (b) $a_1a_2 + b_1b_2 + c_1c_2 = 0$                                     | (c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$ | (d) None of these                                                  |
| 65. | If $A(k, 1, -1)$ , $B(2k, 0, 2)$ are                                          | and $C(2+2k, k, 1)$ be such that the                                   | line $AB \perp BC$ , then the value                       | e of <i>k</i> will be                                              |
|     | (a) 1                                                                         | (b) 2                                                                  | (c) 3                                                     | (d) o                                                              |
| 66. | A(a,7,10), B(-1,6,6) and                                                      | C(-4, 9, 6) are the vertices of a r                                    | right angled isosceles triangl                            | e. If $\angle ABC = 90^{\circ}$ , then $a =$                       |
|     | (a) O                                                                         | (b) 2                                                                  | (c) -1                                                    | (d) -3                                                             |
|     |                                                                               | Advance .                                                              | Level                                                     |                                                                    |
| 67. | The angle between two                                                         | diagonals of a cube will be                                            | [MP PET 1996, 97,                                         | 2000; Rajasthan PET 2000,02]                                       |
|     | (a) $\sin^{-1} \frac{1}{3}$                                                   | (b) $\cos^{-1} \frac{1}{3}$                                            | (c) Constant                                              | (d) Variable                                                       |
| 68. | If a line makes $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \beta$ | angles $\alpha, \beta, \gamma, \delta$ with the $\cos^2 \delta =$      | four diagonals of a                                       | cube, then the value of                                            |
|     |                                                                               |                                                                        |                                                           | [Rajasthan PET 2002]                                               |
|     | (a) 1                                                                         | (b) $\frac{4}{3}$                                                      | (c) Constant                                              | (d) Variable                                                       |
| 69. | The angle between the l                                                       | ines whose direction cosines sa                                        | atisfy the equations $l+m+n=$                             | $=0, l^2 + m^2 - n^2 = 0$ is given by                              |
|     |                                                                               |                                                                        | [MP                                                       | PET 1993; Rajasthan PET 2001]                                      |
|     | (a) $\frac{2\pi}{3}$                                                          | (b) $\frac{\pi}{6}$                                                    | (c) $\frac{5\pi}{6}$                                      | (d) $\frac{\pi}{3}$                                                |
| 70. | If three mutually perpe                                                       | endicular lines have direction                                         | cosines $(l_1, m_1, n_1), (l_2, m_2, n_2),$               | and $(l_3, m_3, n_3)$ , then the line                              |
|     |                                                                               | $l_1 + l_2 + l_3, m_1 + m_2 + m_3 \text{ and } n_1 + n_2$              |                                                           |                                                                    |
|     | (a) 0°                                                                        | (b) 30°                                                                | (c) 60°                                                   | (d) 90°                                                            |
| 71. | The straight lines whose                                                      | e direction cosines are given by                                       | al + bm + cn = 0, fmn + gnl + hlm                         | u=0 are perpendicular, if                                          |
|     | (a) $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$                             | (b) $\sqrt{\frac{a}{f}} + \sqrt{\frac{b}{g}} + \sqrt{\frac{c}{h}} = 0$ | (c) $\sqrt{af} = \sqrt{bg} = \sqrt{ch}$                   | (d) $\sqrt{\frac{a}{f}} = \sqrt{\frac{b}{g}} = \sqrt{\frac{c}{h}}$ |
| 72. | The angle between the $2lm + 2nl - mn = 0$ , is                               | ne lines whose direction cos                                           | ines are connected by th                                  | e relations $l+m+n=0$ and                                          |
|     | (a) $\frac{\pi}{2}$                                                           | (b) $\frac{2\pi}{3}$                                                   | (c) π                                                     | (d) None of these                                                  |

A(3,2,0), B(5,3,2), C(-9,6,-3) are three points forming a triangle and AD is the bisector of the  $\angle BAC$ , then

(c) 3

(a) 1

(a) 2

62.

63.

73.

coordinates of D are

(b) 2

(b) -2

If O be the origin and P(2, 3, 4) and Q(1, b, 1) be two points such that  $OP \perp OQ$ , then b =

If d.r.'s of two straight lines are 5, -12, 13 and -3, 4, 5 then, angle between them is

(a) 
$$\left(\frac{17}{16}, \frac{57}{16}, \frac{28}{16}\right)$$

(a) 
$$\left(\frac{17}{16}, \frac{57}{16}, \frac{28}{16}\right)$$
 (b)  $\left(\frac{38}{16}, \frac{57}{16}, \frac{17}{16}\right)$ 

(c) 
$$\left(\frac{38}{16}, \frac{17}{16}, \frac{57}{16}\right)$$
 (d)  $\left(\frac{57}{16}, \frac{38}{16}, \frac{17}{16}\right)$ 

(d) 
$$\left(\frac{57}{16}, \frac{38}{16}, \frac{17}{16}\right)$$

The direction cosines of two lines at right angles are  $\langle l_1, m_1, n_1 \rangle$  and  $\langle l_2, m_2, n_2 \rangle$ . Then the d.c. of a line  $\perp$  to 74. both the given lines are

(a) 
$$< m_1 n_2 - m_2 n_1, n_1 l_2 - n_2 l_1, l_1 m_2 - l_2 m_1 > 1$$

(b) 
$$< l_1 + l_2, m_1 + m_2, n_1 + n_2 >$$

(c) 
$$< l_1 - l_2, m_1 - m_2, n_1 - n_2 >$$

- (d) None of these
- Three lines drawn from origin with direction cosines  $l_1, m_1, n_1$ ;  $l_2, m_2, n_2$ ;  $l_3, m_3, n_3$  are coplanar iff  $\begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} = 0$ , 75.

(a) All lines pass through origin

(c) Intersecting lines are coplanar

(b)

It is possible to find a line

perpendicular to all these lines

(d)

None of these

The direction cosines of a variable line in two adjacent positions are l,m,n and  $l+\delta l,m+\delta m,n+\delta n$ . If angle 76. between these two positions is  $\delta\theta$ , where  $\delta\theta$  is a small angle, then  $\delta\theta^2$  is equal to

(a) 
$$\partial l^2 + \partial m^2 + \partial n^2$$

(b) 
$$\delta l + \delta m + \delta n$$

(c) 
$$\partial l \cdot \partial m + \partial m \cdot \partial n + \partial n \cdot \partial l$$

- (d) None of these
- If direction cosines of two lines OA and OB are respectively proportional to 1, -2, -1 and 3, -2, 3 then direction 77. cosine of line perpendicular to given both lines are

(a) 
$$\pm 4/\sqrt{29}$$
,  $\pm 3/\sqrt{29}$ ,  $\pm 2/\sqrt{29}$ 

(b) 
$$\pm 4/\sqrt{29}$$
,  $\pm 3/\sqrt{29}$ ,  $\mp 2/\sqrt{29}$ 

(c) 
$$\pm 4/\sqrt{29}, \pm 2/\sqrt{29}, \pm 3/\sqrt{29},$$

- (d) None of these
- 78. A mirror and a source of light are situated at the origin O and at a point on OX respectively. A ray of light from the source strikes the mirror and is reflected. If the d.r'.s of the normal to the plane are 1, -1, 1, then d.c'.s of the reflected ray are

(a) 
$$\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$$

(b) 
$$-\frac{1}{3}, \frac{2}{3}, \frac{2}{3}$$

(c) 
$$-\frac{1}{3}, -\frac{2}{3}, -\frac{2}{3}$$

(d) 
$$-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$$

### Straight Line

# Basic Level

The equation of straight line passing through the point (a,b,c) and parallel to z-axis, is 79.

(a) 
$$\frac{x-a}{1} = \frac{y-b}{1} = \frac{z-b}{0}$$

(b) 
$$\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{1}$$

(c) 
$$\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$$

(a) 
$$\frac{x-a}{1} = \frac{y-b}{1} = \frac{z-c}{0}$$
 (b)  $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{1}$  (c)  $\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$  (d)  $\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$ 

80. Equation of x-axis is [MP PET 2002]

(a) 
$$\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$$
 (b)  $\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$ 

(b) 
$$\frac{x}{0} = \frac{y}{1} = \frac{z}{1}$$

(c) 
$$\frac{x}{1} = \frac{y}{0} = \frac{z}{0}$$
 (d)  $\frac{x}{0} = \frac{y}{0} = \frac{z}{1}$ 

(d) 
$$\frac{x}{0} = \frac{y}{0} = \frac{z}{1}$$

81. The equation of straight line passing through the points (a, b, c) and (a-b, b-c, c-a), is

(a) 
$$\frac{x-a}{a-b} = \frac{y-b}{b-c} = \frac{z-c}{c-a}$$

(b) 
$$\frac{x-a}{b} = \frac{y-b}{c} = \frac{z-c}{a}$$

(c) 
$$\frac{x-a}{a} = \frac{y-b}{b} = \frac{z-c}{c}$$

(a) 
$$\frac{x-a}{a-b} = \frac{y-b}{b-c} = \frac{z-c}{c-a}$$
 (b)  $\frac{x-a}{b} = \frac{y-b}{c} = \frac{z-c}{a}$  (c)  $\frac{x-a}{a} = \frac{y-b}{b} = \frac{z-c}{c}$  (d)  $\frac{x-a}{2a-b} = \frac{y-b}{2b-c} = \frac{z-c}{2c-a}$ 

The equation of a line passing through the point (-3, 2, -4) and equally inclined to the axes, are 82.

(a) 
$$x-3=y+2=z-4$$
 (b)  $x+3=y-2=z+4$ 

(b) 
$$x+3=y-2=z+4$$

(c) 
$$\frac{x+3}{1} = \frac{y-2}{2} = \frac{z+4}{3}$$
 (d) None of these

The straight line through (a, b, c) and parallel to x-axis are 83.

(a) 
$$\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-a}{0}$$

(a) 
$$\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$$
 (b)  $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{0}$ 

(c) 
$$\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$$

(d) 
$$\frac{x-a}{1} = \frac{y-b}{1} = \frac{z-c}{1}$$

Equation of the line passing through the point (1, 2, 3) and parallel to the line  $\frac{x-6}{12} = \frac{y-2}{4} = \frac{z+7}{5}$  is given by

(a) 
$$\frac{x+1}{12} = \frac{y+2}{4} = \frac{z+3}{5}$$

(b) 
$$\frac{x-1}{l} = \frac{y-2}{m} = \frac{z-3}{n}$$
, where  $12l+4m+5n=0$ 

(c) 
$$\frac{x-1}{12} = \frac{y-2}{4} = \frac{z-3}{5}$$

(d) None of these

85. Let G be the centroid of the triangle formed by the points (1, 2, 0), (2, 1, 1), (0, 0, 2). Then equation of the line OG is given by

(a) 
$$x = y = z$$

(b) 
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$$

(c) 
$$\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{0}$$

(d) None of these

The direction cosines of the line  $\frac{3x+1}{-3} = \frac{3y+2}{6} = \frac{z}{-1}$  are 86.

(a) 
$$\left(\frac{1}{3}, \frac{2}{3}, 0\right)$$

(b) 
$$\left(-1, \frac{2}{3}, 1\right)$$

(c) 
$$\left(-\frac{1}{2}, 1, -\frac{1}{2}\right)$$

(d) 
$$\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$$

87. The direction cosines of the line x = y = z are [MP PET 1989]

(a) 
$$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$$
 (b)  $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ 

(b) 
$$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$$

(d) None of these

The direction ratio's of the line x-y+z-5=0=x-3y-6 are 88.

[MP PET 1999]

(c) 
$$\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$$

(d) 
$$\frac{2}{\sqrt{41}}, \frac{-4}{\sqrt{41}}, \frac{1}{\sqrt{41}}$$

The angle between two lines  $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1}$  and  $\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2}$  is 89.

[MP PET 1996]

(a) 
$$\cos^{-1}\left(\frac{1}{9}\right)$$

(b) 
$$\cos^{-1} \left( \frac{2}{9} \right)$$

(c) 
$$\cos^{-1}\left(\frac{3}{9}\right)$$

(d) 
$$\cos^{-1}\left(\frac{4}{9}\right)$$

The angle between the lines  $\frac{x+4}{1} = \frac{y-3}{2} = \frac{z+2}{3}$  and  $\frac{x}{3} = \frac{y-1}{-2} = \frac{z}{1}$  is 90.

(a) 
$$\sin^{-1}\left(\frac{1}{7}\right)$$

(b) 
$$\cos^{-1} \left( \frac{2}{7} \right)$$

(c) 
$$\cos^{-1}\left(\frac{1}{7}\right)$$

(d) None of these

The angle between the lines  $\frac{x}{1} = \frac{y}{0} = \frac{z}{-1}$  and  $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$  is 91.

(a) 
$$\cos^{-1}\frac{1}{5}$$

(b) 
$$\cos^{-1} \frac{1}{3}$$

(c) 
$$\cos^{-1}\frac{1}{2}$$

(d) 
$$\cos^{-1} \frac{1}{4}$$

The value of  $\lambda$  for which the lines  $\frac{x-1}{1} = \frac{y-2}{\lambda} = \frac{z+1}{-1}$  and  $\frac{x+1}{-\lambda} = \frac{y+1}{2} = \frac{z-2}{1}$  are perpendicular to each other is 92.

(d) None of these

The angle between the straight lines  $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$  and  $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-3}$  is 93.

[MP PET 2000]

(c) 
$$60^{\circ}$$

The angle between the lines 2x = 3y = -z and 6x = -y = -4z, is 94.

[MP PET 1994,99]

(a) oo

| 362  | 2 Three Dimensional Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o-ordinate                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 95.  | The angle between the li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ines $x = 1, y = 2$ and $y = -1$ and $y = -1$                                                  | z = 0 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [Kurukshetra CEE 1993]                                      |
|      | (a) 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 30°                                                                                        | (c) 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) o°                                                      |
| 96.  | The straight line $\frac{x-3}{3}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{y-2}{1} = \frac{z-1}{0}$ is                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Rajasthan PET 2002]                                        |
|      | (a) Parallel to x-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (b) Parallel to <i>y</i> -axis                                                                 | (c) Parallel to z-axis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) Perpendicular to z-axis                                 |
| 97•  | The lines $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{-3}{0}$ and $\frac{x-2}{0} = \frac{y-3}{0} = \frac{z-4}{1}$ are                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
|      | (a) Parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) Skew                                                                                       | (c) Coincident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) Perpendicular                                           |
| 98.  | The straight lines $\frac{x-1}{1}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-1}{2}=\frac{y-2}{2}=\frac{z}{2}$                   | $\frac{3-3}{2}$ are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |
|      | (a) Parallel lines angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (b) Intersecting at 60°                                                                        | (c) Skew lines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (d) Intersecting at right                                   |
| 99.  | The angle between the li                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ines $\frac{x-2}{3} = \frac{y+1}{-2}$ , $z = 2$ and $\frac{x-1}{1}$                            | $\frac{1}{2} = \frac{2y+3}{3} = \frac{z+5}{2}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
|      | (a) $\pi/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (b) $\pi/3$                                                                                    | (c) π/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (d) None of these                                           |
| 100. | The lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$ are                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Kurukshetra CEE 2000]                                      |
|      | (a) Parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) Intersecting                                                                               | (c) Skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) Coincident                                              |
| 101. | The lines $\frac{x-1}{2} = \frac{y-2}{4} = \frac{x-2}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{z-3}{7}$ and $\frac{x-1}{4} = \frac{y-2}{5} = \frac{z-3}{7}$ are                        | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
|      | (a) Parallel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (b) Intersecting                                                                               | (c) Skew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) Perpendicular                                           |
| 102. | Lines $\mathbf{r} = \mathbf{a}_1 + t\mathbf{b}_1$ and $\mathbf{r} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $=$ $\mathbf{a}_2 + s\mathbf{b}_2$ are parallel iff                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [Kurukshetra CEE 1992]                                      |
|      | (a) $\mathbf{b}_1$ is parallel to $\mathbf{a}_2$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - <b>a</b> <sub>1</sub>                                                                        | (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{b}_2$ is parallel to $\mathbf{a}_2 - \mathbf{a}_1$ |
|      | (c) $\mathbf{b}_1 = \lambda \mathbf{b}_2$ for some re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eal $\lambda$                                                                                  | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
| 103. | The equation of the line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | passing through the points $a_1 \mathbf{i} + a_2 \mathbf{i} + a_3 \mathbf{i} + a_4 \mathbf{i}$ | $+a_2\mathbf{j}+a_3\mathbf{k}$ and $b_1\mathbf{i}+b_2\mathbf{j}+b_3\mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [Rajasthan PET 2002]                                        |
|      | (a) $(a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) + t(b_1 \mathbf{i} + a_3 \mathbf{i} + a_3 \mathbf{k}) + t(b_1 \mathbf{i} + a_3 $ | $+b_2\mathbf{j}+b_3\mathbf{k}$                                                                 | (b) $(a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) - t(b_1 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_1 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) - t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_2 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf{k}) = t(b_2 \mathbf{i} + b_3 \mathbf{j} + a_3 \mathbf$ | $(\mathbf{p}_2\mathbf{j}+b_3\mathbf{k})$                    |
|      | (c) $a_1(1-t)\mathbf{i} + a_2(1-t)\mathbf{j} + a_3(1-t)\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $_3(1-t)\mathbf{k} + (b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}) t$                        | (d) None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |
| 104. | The vector equation of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | he line joining the points $\mathbf{i} - 2\mathbf{j} + \mathbf{j}$                             | $+\mathbf{k}$ and $-2\mathbf{j}+3\mathbf{k}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [MP PET 2003]                                               |
|      | (a) $\mathbf{r} = t(\mathbf{i} + \mathbf{j} + \mathbf{k})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (b) $\mathbf{r} = t_1(\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + t_2(3\mathbf{k} - 2\mathbf{j})$ | (c) $r = (i - 2j + k) + t(2k - i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (d) $r = t(2\mathbf{k} - \mathbf{i})$                       |
| 105. | The acute angle between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | en the line joining the points                                                                 | (2, 1, -3), (-3, 1, 7) and a line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e parallel to $\frac{x-1}{2} = \frac{y}{4} = \frac{z+3}{5}$ |
|      | through the point (-1, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [MP PET 1998]                                               |
|      | (a) $\cos^{-1}\left(\frac{7}{5\sqrt{10}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) $\cos^{-1} \left( \frac{1}{\sqrt{10}} \right)$                                             | (c) $\cos^{-1}\left(\frac{3}{5\sqrt{10}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) $\cos^{-1} \left( \frac{1}{5\sqrt{10}} \right)$         |
| 106. | The shortest distance be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | etween the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z}{2}$                                | $\frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | is [MP PET 2002]                                            |
|      | (a) $\sqrt{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (b) $2\sqrt{30}$                                                                               | (c) $5\sqrt{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) $3\sqrt{30}$                                            |
| 107. | Shortest distance between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | en lines $\frac{x-6}{1} = \frac{y-2}{-2} = \frac{z-2}{2}$ and                                  | $\frac{x+4}{3} = \frac{y}{-2} = \frac{z+1}{-2} \text{ is}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |
|      | (a) 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (b) 9                                                                                          | (c) 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (d) None of these                                           |
| 108. | The lines $l_1$ and $l_2$ inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sect. The shortest distance bety                                                               | ween them is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |

## Three Dimensional Co-ordinate Geometry

(a) Positive

(b) Zero

(c) Negative

109. The shortest distance between two straight lines given by  $\frac{x-4}{1} = \frac{y+1}{2} = \frac{z-0}{-3}$  and  $\frac{x-1}{1} = \frac{y+1}{4} = \frac{z-2}{-5}$  is [Pb. CET 2001]

(a)  $\frac{2}{\sqrt{5}}$ 

(d) None of these

110. The shortest distance between the lines  $\mathbf{r} = (3\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}) + \mathbf{i} t$  and  $\mathbf{r} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} + \mathbf{j} s$  (t and s being parameters) is [AMU 199]

(a)  $\sqrt{21}$ 

(b)  $\sqrt{102}$ 

(c) 4

(d) 3

#### Advance Level

The equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines  $\frac{x-8}{2} = \frac{y+19}{-16} = \frac{z-10}{7}$  and  $\frac{x-15}{-2} = \frac{y-29}{8} = \frac{z-5}{-5}$ , will be [AI CBSE 1983]

(a)  $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+4}{6}$  (b)  $\frac{x-1}{-2} = \frac{y-2}{3} = \frac{z+4}{8}$  (c)  $\frac{x-1}{3} = \frac{y-2}{2} = \frac{z+4}{8}$ 

(d) None of these

112. The equation of straight line 3x + 2y - z - 4 = 0; 4x + y - 2z + 3 = 0 in the symmetrical form is

(a)  $\frac{x-2}{3} = \frac{y-5}{2} = \frac{z}{5}$  (b)  $\frac{x+2}{3} = \frac{y-5}{-2} = \frac{z}{5}$  (c)  $\frac{x+2}{3} = \frac{y-5}{2} = \frac{z}{5}$ 

(d) None of these

113. The point of intersection of lines  $\frac{x-4}{5} = \frac{y-1}{2} = \frac{z}{1}$  and  $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$  is

[AISSE 1986]

(a) (-1, -1, -1)

(b) (-1, -1, 1)

114. The length and foot of the perpendicular from the point (2, -1, 5) to the line  $\frac{x-11}{10} = \frac{y+2}{-4} = \frac{z+8}{-11}$  are [DSSE 1987]

(a)  $\sqrt{14}$ , (1, 2, -3) (b)  $\sqrt{14}$ , (1, -2, 3)

(c)  $\sqrt{14}$ , (1, 2, 3)

[Pb. CET 1988]

|      | (a) 3                                                                                 | (b) 5                                                                 | (c) 7                                                                         | (d) 9                                                                        |  |  |
|------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| 116. | Distance of the point (                                                               | $(x_1, y_1, z_1)$ from the line $\frac{x-z_1}{l}$                     | $\frac{x_2}{m} = \frac{y - y_2}{m} = \frac{z - z_2}{n}$ , where $l$ , $m$ and | d n are the direction cosines of                                             |  |  |
|      | line is                                                                               |                                                                       |                                                                               |                                                                              |  |  |
|      | (a) $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2+(z_1-z_2)^2-[l(x_1-x_2)+m(y_1-y_2)+n(z_1-z_2)]^2}$ |                                                                       |                                                                               |                                                                              |  |  |
|      | (b) $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$                                                  | $+(z_2-z_1)^2$                                                        |                                                                               |                                                                              |  |  |
|      | (c) $\sqrt{(x_2-x_1)l+(y_2-y_1)n}$                                                    | $n + (z_2 - z_1) n$                                                   |                                                                               |                                                                              |  |  |
|      | (d) None of these                                                                     |                                                                       |                                                                               |                                                                              |  |  |
| 117. | The length of the perpe                                                               | endicular from point (1, 2,                                           | 3) to the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$               | is [MP PET 1997]                                                             |  |  |
|      | (a) 5                                                                                 | (b) 6                                                                 | (c) 7                                                                         | (d) 8                                                                        |  |  |
| 118. | The foot of the perpend                                                               | dicular from (0, 2, 3) to the                                         | e line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$ is                     |                                                                              |  |  |
|      | (a) (-2, 3, 4)                                                                        | (b) (2, -1, 3)                                                        | (c) (2, 3, -1)                                                                | (d) (3, 2, -1)                                                               |  |  |
| 119. | The foot of the perpend                                                               | dicular from (1, 2, 3) to the                                         | e line joining the points (6, 7, 7)                                           | and (9, 9, 5) is                                                             |  |  |
|      | (a) (5, 3, 9)                                                                         | (b) (3, 5, 9)                                                         | (c) (3, 9, 5)                                                                 | (d) (3, 9, 9)                                                                |  |  |
| 120. | If the equation of a lin<br>perpendicular distance                                    |                                                                       | arallel to vector $\mathbf{b}$ is $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ , v | where $t$ is a parameter, then its [MP PET 1998]                             |  |  |
|      | (a) $ (c-b)\times a  \div  a $                                                        | (b) $ (\mathbf{c} - \mathbf{a}) \times \mathbf{b}  \div  \mathbf{b} $ | (c) $ (\mathbf{a} - \mathbf{b}) \times \mathbf{c}  \div  \mathbf{c} $         | (d) $ (\mathbf{a}-\mathbf{b})\times\mathbf{c}  \div  \mathbf{a}+\mathbf{c} $ |  |  |
| 121. | The distance of the p                                                                 | point $B(\mathbf{i}+2\mathbf{j}+3\mathbf{k})$ from the                | ne line which is passing throu                                                | gh $A(4\mathbf{i} + 2\mathbf{j} + 2\mathbf{k})$ and which is                 |  |  |
|      | parallel to the vector of                                                             | $\vec{C} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$ is                |                                                                               | [Roorkee 1993]                                                               |  |  |
|      | (a) 10                                                                                | (b) $\sqrt{10}$                                                       | (c) 100                                                                       | (d) None of these                                                            |  |  |
|      |                                                                                       |                                                                       |                                                                               | Plane                                                                        |  |  |
|      |                                                                                       | Ва                                                                    | asic Level                                                                    |                                                                              |  |  |
|      |                                                                                       |                                                                       |                                                                               |                                                                              |  |  |
| 122. |                                                                                       |                                                                       |                                                                               | by the xy-plane is [MP PET 1994; Him.                                        |  |  |
|      | (a) a:b                                                                               | (b) b:c                                                               | (c) c:a                                                                       | (d) c:b                                                                      |  |  |
| 123. |                                                                                       |                                                                       |                                                                               | [MP PET 2002; Rajasthan PET 2002]                                            |  |  |
|      | (a) 2:3                                                                               | (b) 3:2                                                               | (c) -2:3                                                                      | (d) 4:-3                                                                     |  |  |
| 124. |                                                                                       |                                                                       | 5) and (-4, 3, -2) in the ratio                                               | [MP PET 1988]                                                                |  |  |
| 40-  | (a) 3:5                                                                               | (b) 5:2                                                               | (c) 1:3                                                                       | (d) 3:4                                                                      |  |  |
| 125. |                                                                                       |                                                                       |                                                                               | sses the <i>xy</i> -plane are [MP PET 1997]                                  |  |  |
|      | (a) $\frac{3}{5}, \frac{13}{5}, \frac{23}{5}$                                         | (b) $\frac{13}{5}, \frac{23}{5}, \frac{3}{5}$                         | (c) $\frac{13}{5}, \frac{23}{5}, 0$                                           | (d) $\frac{13}{5}$ , 0, 0                                                    |  |  |

**126.** The plane *XOZ* divides the join of (1, -1, 5) and (2, 3, 4) in the ratio  $\lambda:1$ , then  $\lambda$  is

115. The perpendicular distance of the point (2, 4, -1) from the line  $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$  is [Kurukshetra CEE 1996]

| 30   | 4 Three Difficultional C                                 | .0-01 dinate                                                                     |                                                          |                                                                                            |
|------|----------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------|
|      | (a) -3                                                   | (p) 3                                                                            | (c) $-\frac{1}{3}$                                       | (d) $\frac{1}{3}$                                                                          |
| 127. | XOZ plane divides the jo                                 | oin of (2, 3, 1) and (6, 7, 1) in th                                             | e ratio                                                  | [EAMCET 2003]                                                                              |
|      | (a) 3:7                                                  | (b) 2:7                                                                          | (c) -3:7                                                 | (d) -2:7                                                                                   |
| 128. | The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$  | meets the coordinate axes in $A$ ,                                               | B, C. The centroid of the tria                           | angle <i>ABC</i> is                                                                        |
|      | (a) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$ | (b) $\left(\frac{3}{a}, \frac{3}{b}, \frac{3}{c}\right)$                         | (c) $\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$ | (d) (a, b, c)                                                                              |
| 129. | The ratio in which the p                                 | plane $\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = 17$ divides t | the line joining the points $-2$                         | $2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$ and $3\mathbf{i} - 5\mathbf{j} + 8\mathbf{k}$ is |
|      |                                                          |                                                                                  | [Ku                                                      | rukshetra CEE 1996; DCE 1999]                                                              |
|      | (a) 1:5                                                  | (b) 1:10                                                                         | (c) 3:5                                                  | (d) 3:10                                                                                   |
| 130. | If a plane cuts off inter                                | cepts $OA = a$ , $OB = b$ , $OC = c$ from                                        | om the coordinate axes, ther                             | n the area of the triangle ABC                                                             |
|      | (a) $\frac{1}{2}\sqrt{b^2c^2+c^2a^2+a^2b^2}$             |                                                                                  | (b) $\frac{1}{2}(bc + ca + ab)$                          |                                                                                            |
|      | (c) $\frac{1}{2}abc$                                     |                                                                                  | (d) $\frac{1}{2}\sqrt{(b-c)^2+(c-a)^2+(a-c)^2}$          | $\overline{b)^2}$                                                                          |
| 131. | The plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$  | cuts the axes in A, B, C, then the                                               | e area of the $\triangle ABC$ is                         | [MP PET 2000]                                                                              |
|      | (a) $\sqrt{29}$                                          | (b) $\sqrt{41}$                                                                  | (c) $\sqrt{61}$                                          | (d) None of these                                                                          |
| 132. | The volume of the tetra                                  | hedron included between the p                                                    | lane $2x - 3y + 4z - 12 = 0$ and t                       |                                                                                            |
|      |                                                          |                                                                                  |                                                          |                                                                                            |
|      | (a) $3\sqrt{(29)}$                                       | (b) $6\sqrt{(29)}$                                                               | (c) 12                                                   | (d) None of these                                                                          |
| 133. | A point located in space from zx plane, the locus        | e moves in such a way that sum s of the point is                                 | of its distances from <i>xy</i> -and                     | $1\ yz$ plane is equal to distance                                                         |
|      | (a) $x - y + z = 2$                                      | (b) $x + y - z = 0$                                                              | (c) $x + y - z = 2$                                      | (d) $x - y + z = 0$                                                                        |
| 134. | The equation of a plane                                  | parallel to x- axis is                                                           |                                                          | [DCE 2001]                                                                                 |
|      | (a) $ax + by + cz + d = 0$                               | (b) $ax + by + d = 0$                                                            | (c) $by + cz + d = 0$                                    | (d) $ax + cz + d = 0$                                                                      |
| 135. | In the space the equation                                | on $by + cz + d = 0$ represents a pla                                            | ane perpendicular to the plan                            | ne [EAMCET 2002]                                                                           |
|      | (a) YOZ                                                  | (b) $Z=k$                                                                        | (c) ZOX                                                  | (d) XOY                                                                                    |
| 136. | The intercepts of the pl                                 | ane $5x - 3y + 6z = 60$ on the coor                                              | dinate axes are                                          | [MP PET 2001]                                                                              |
|      | (a) (10, 20, -10)                                        | (b) (10, -20, 12)                                                                | (c) (12, -20, 10)                                        | (d) (12, 20, -10)                                                                          |
| 137. |                                                          | points $A$ and $B$ are (2, 3, 4) as constant, then the locus of $P$ i            |                                                          | . If a point <i>P</i> moves, so that                                                       |
|      | (a) A line                                               | (b) A plane                                                                      | (c) A sphere                                             | (d) None of these                                                                          |
| 138. | In a three dimensional :                                 | $xyz$ space the equation $x^2 - 5x +$                                            | 6 = 0 represents                                         | [Orissa JEE 2002]                                                                          |
|      | (a) Points                                               | (b) Plane                                                                        | (c) Curves                                               | (d) Pair of straight line                                                                  |
| 139. | The equation of yz-plan                                  | e is                                                                             |                                                          | [MP PET 1988]                                                                              |
|      | (a) $x = 0$                                              | (b) $y = 0$                                                                      | (c) $z = 0$                                              | (d) $x + y + z = 0$                                                                        |
| 140. | The intercepts of the pl                                 | ane $2x - 3y + 4z = 12$ on the coor                                              | dinate axes are given by                                 |                                                                                            |

(b) A plane parallel to yz plane at a distance k from it

(d) A line parallel to z-axis at a distance k from it

(d) 3, -2, 1.5

(d) z and x

|      | (a) Straight line                                                          |                                                                     | (b) Plane                                                            |                                                                      |
|------|----------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|
|      | (c) Plane passing through                                                  | gh the origin                                                       | (d) Sphere                                                           |                                                                      |
| 144. | The direction cosines of                                                   | the normal to the plane $3x + 4y$                                   | +12z = 52 will be                                                    | [MP PET 1997]                                                        |
|      | (a) 3, 4, 12                                                               | (b) -3, -4, -12                                                     | (c) $\frac{3}{13}, \frac{4}{13}, \frac{12}{13}$                      | (d) $\frac{3}{\sqrt{13}}, \frac{4}{\sqrt{13}}, \frac{12}{\sqrt{13}}$ |
| 145. | The direction cosines of                                                   | the normal to the plane $x + 2y -$                                  | 3z + 4 = 0 are                                                       | [MP PET 1996]                                                        |
|      | (a) $\frac{1}{\sqrt{14}}$ , $-\frac{2}{\sqrt{14}}$ , $\frac{3}{\sqrt{14}}$ | (b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ | (c) $-\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$ | (d) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}$ |
| 146. | Normal form of the plan                                                    | e $2x + 6y + 3z = 1$ is                                             |                                                                      |                                                                      |
|      | (a) $\frac{2}{7}x + \frac{6}{7}y + \frac{3}{7}z = 1$                       | (b) $\frac{2}{7}x + \frac{6}{7}y + \frac{3}{7}z = \frac{1}{7}$      | (c) $\frac{2}{7}x + \frac{6}{7}y + \frac{3}{7}z = 0$                 | (d) None of these                                                    |
| 147. | The equation of a plane                                                    | which cuts equal intercepts of u                                    | nit length on the axes, is                                           | [MP PET 1996]                                                        |
|      | (a) $x + y + z = 0$                                                        | <b>(b)</b> $x + y + z = 1$                                          | (c) $x + y - z = 1$                                                  | (d) $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$                    |
| 148. | The equation of the plan axis is                                           | e which is parallel to $y$ - axis an                                | d cuts off intercepts of leng                                        | th 2 and 3 from $x$ -axis and $z$ -                                  |
|      | (a) $3x + 2z = 1$                                                          | (b) $3x + 2z = 6$                                                   | (c) $2x + 3z = 6$                                                    | (d) $3x + 2z = 0$                                                    |
| 149. | A planes $\pi$ makes interequation is                                      | cepts 3 and 4 respectively on                                       | $z$ -axis and $x$ -axis. If $\pi$ is                                 | parallel to <i>y</i> - axis, then its <b>[EAMCET 2003]</b>           |
|      | (a) $3x + 4z = 12$                                                         | (b) $3z + 4x = 12$                                                  | (c) $3y + 4z = 12$                                                   | (d) $3z + 4y = 12$                                                   |
| 150. | The equation of the plan                                                   | e through the three points (1,1,                                    | 1), (1, -1, 1), and (-7, -3, -5                                      | 5), is [AISSE 1984]                                                  |
|      | (a) $3x-4z+1=0$                                                            | (b) $3x - 4y + 1 = 0$                                               | (c) $3x + 4y + 1 = 0$                                                | (d) None of these                                                    |
| 151. | The equation of the plan                                                   | e through (1, 2, 3) and parallel                                    | to the plane $2x + 3y - 4z = 0$                                      | is [MP PET 1990]                                                     |
|      | (a) $2x + 3y + 4z = 4$                                                     | (b) $2x + 3y + 4z + 4 = 0$                                          | (c) $2x-3y+4z+4=0$                                                   | (d) $2x + 3y - 4z + 4 = 0$                                           |
| 152. | The equation of the plan                                                   | e through (2, 3, 4) and parallel                                    | to the plane $x + 2y + 4z = 5$ is                                    | S[Kurukshetra CEE 1999; MP PET 199                                   |
|      | (a) $x + 2y + 4z = 10$                                                     | (b) $x + 2y + 4z = 3$                                               | (c) $x + y + 2z = 2$                                                 | (d) $x + 2y + 4z = 24$                                               |
| 153. |                                                                            | ne passing through the points (                                     | 1, -3, -2) and perpendicular                                         | to planes $x + 2y + 2z = 5$ and                                      |
|      | 3x + 3y + 2z = 8, is                                                       |                                                                     |                                                                      |                                                                      |
|      |                                                                            |                                                                     |                                                                      | [AISSE 1987]                                                         |

154. The line drawn from (4, -1, 2) to the point (-3, 2, 3) meets a plane at right angles at the point (-10, 5, 4), then

(c) 2x + 4y + 3z + 8 = 0

(d) None of theses

(c) 6, -4, 3

(c) y and z

143. If a, b, c are three non-coplanar vectors, then the vector equation  $\mathbf{r} = (1 - p - q)\mathbf{a} + p\mathbf{b} + q\mathbf{c}$  represents a [EAMCET 2003]

(a) 2, -3, 4

(a) x

(b) 6, -4, -3

(b) x and y

**142.** A point (x, y, z) moves parallel to x- axis. Which of the three variables x, y, z remains fixed

(a) A plane parallel to *xy* plane at a distance *k* from it

(c) A plane parallel to zx plane at a distance k from it

(a) 2x-4y+3z-8=0 (b) 2x-4y-3z+8=0

the equation of plane is

**141.** The locus of the point  $(x, y, z_n)$  for which z = k, is

| DSSE | 1085 |
|------|------|
| DOOL | 1905 |

(a) 7x - 3y - z + 89 = 0

**(b)** 7x + 3y + z + 89 = 0

(c) 7x - 3y + z + 89 = 0

(d) None of these

**155.** x+y+z+2=0 together with x+y+z+3=0 represents in space

[MP PET 1989]

(b) A point

(c) A plane

(d) None of these

**156.** The equation of the plane which contains the line of intersection of the planes x + 2y + 3z - 4 = 0 and 2x+y-z+5=0 and which is perpendicular to the plane 5x+3y-6z+8=0, is [DSSE 1987]

(a) 33x + 50y + 45z - 41 = 0 (b) 33x + 45y + 50z + 41 = 0

(c) 45x + 45y + 50z - 41 = 0 (d) 33x + 45y + 50z - 41 = 0

**157.** The equation of the planes passing through the line of intersection of the planes 3x - y - 4z = 0 and x + 3y + 6 = 0, whose distance from the origin is 1, are

(a) x-2y-2z-3=0, 2x+y-2z+3=0

(b) x-2y+2z-3=0, 2x+y+2z+3=0

(c) x+2y-2z-3=0, 2x-y-2z+3=0

(d) None of these

**158.** The equation of the plane which passes through the point (2, 1, 4) and parallel to the plane 2x + 3y + 5z + 6 = 0 is

(a) 2x + 3y + 5z + 27 = 0

**(b)** 2x + 3y + 5z - 27 = 0

(c) 2x + y + 4z - 27 = 0

(d) 2x + y + 4z + 27 = 0

159. The equation of a plane which passes through (2, -3, 1) and is normal to the line joining the points (3, 4, -1)and (2, -1, 5) is given by

(a) x + 5y - 6z + 19 = 0

(b) x-5y+6z-19=0

(c) x + 5y + 6z + 19 = 0

(d) x-5y-6z-19=0

160. The coordinates of the point in which the line joining the points (3, 5, -7) and (-2, 1, 8) is intersected by the plane yz are given by

[MP PET 1993]

(a)  $\left(0, \frac{13}{5}, 2\right)$  (b)  $\left(0, -\frac{13}{5}, -2\right)$  (c)  $\left(0, -\frac{13}{5}, \frac{2}{5}\right)$ 

161. If P be the point (2, 6, 3), then the equation of the plane through P at right angle to OP, O being the origin, is [MP PET

(a) 2x + 6y + 3z = 7

(b) 2x - 6y + 3z = 7

(c) 2x + 6y - 3z = 49

(d) 2x + 6y + 3z = 49

**162.** The equation of the plane containing the line of intersection of the planes 2x - y = 0 and y - 3z = 0 the perpendicular to the plane 4x + 5y - 3z - 8 = 0 is

(a) 28x - 17y + 9z = 0

**(b)** 28x + 17y + 9z = 0

(c) 28x - 17y - 9z = 0

(d) 7x - 3y + z = 0

**163.** The equation of the plane passing through (1, 1, 1) and (1, -1, -1) and perpendicular to 2x - y + z + 5 = 0 is [EAMCET 2003]

(a) 2x + 5y + z - 8 = 0

(b) x+y-z-1=0

(c) 2x + 5y + z + 4 = 0

(d) x-y+z-1=0

**164.** The equation of the plane through the intersection of the planes x+y+z=1 and 2x+3y-z+4=0 and parallel to x-axis is

[Orissa JEE 2003]

(a) y - 3z + 6 = 0

(b) 3y - z + 6 = 0

(c) y + 3z + 6 = 0

(d) 3y - 2z + 6 = 0

**165.** If O is the origin and A is the point (a, b, c), then the equation of the plane through A and at right angles to OA

(a) a(x-a)-b(y-b)-c(z-c)=0

(b) a(x+a)+b(y+b)+c(z+c)=0

(c) a(x-a)+b(y-b)+c(z-c)=0

(d) None of these

**166.** The equation of the plane through the point (1, 2, 3) and parallel to the plane x + 2y + 5z = 0 is [DCE 2002]

(a) (x-1)+2(y-2)+5(z-3)=0

**(b)** x + 2y + 5z = 14

(c) x + 2y + 5z = 6

| 167. | •                                                                                                                                                                     | lane passing through the inte                                                                                                    | rsection of the planes $x + y +$ | z = 6 and $2x + 3y + 4z + 5 = 0$ and  |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------|--|--|
|      | the point (1, 1, 1), is                                                                                                                                               |                                                                                                                                  |                                  |                                       |  |  |
|      | (a) $20x + 23y + 26z - 69$                                                                                                                                            | = 0                                                                                                                              | (b) $20x + 23y + 26z + 69 =$     | 0                                     |  |  |
|      | (c) $23x + 20y + 26z + 69$                                                                                                                                            | = 0                                                                                                                              | (d) None of these                |                                       |  |  |
| 168. | The equation of the p and the origin is                                                                                                                               | lane passing through the inter                                                                                                   | section of the planes $x + 2y +$ | 3z + 4 = 0 and $4x + 3y + 2z + 1 = 0$ |  |  |
|      |                                                                                                                                                                       |                                                                                                                                  |                                  | [Kerala (Engg.) 2002]                 |  |  |
|      | (a) $3x + 2y + z + 1 = 0$                                                                                                                                             | <b>(b)</b> $3x + 2y + z = 0$                                                                                                     | (c) $2x + 3y + z = 0$            | (d) $x + y + z = 0$                   |  |  |
| 169. | =                                                                                                                                                                     | 3z = 0 is rotated through a reference in its number of plane in its number $3z = 0$                                              | -                                | f intersection with the plane         |  |  |
|      | (a) $28x - 17y + 9z = 0$                                                                                                                                              | (b) $22x + 5y - 4z - 35 = 0$                                                                                                     | (c) $25x + 17y - 52z - 25 = 0$   | 0 	 (d) 	 x + 35y - 10z - 70 = 0      |  |  |
| 170. | The equation of the p 1) and (1, -1, 2) is                                                                                                                            | lane passing through the point                                                                                                   | t (-2, -2, 2) and containing t   | he line joining the points (1, 1,     |  |  |
|      | (a) $x + 2y - 3z + 4 = 0$                                                                                                                                             | (b) $3x - 4y + 1 = 0$                                                                                                            | (c) $5x + 2y - 3z - 17 = 0$      | (d) $x-3y-6z+8=0$                     |  |  |
| 171. | The equation of the plane containing the line $2x+z-4=0$ , $2y+z=0$ and passing through the point (2, 1, -1) is [AMU 19]                                              |                                                                                                                                  |                                  |                                       |  |  |
|      | (a) $x + y + z + 2 = 0$                                                                                                                                               | (b) $x+y-z-4=0$                                                                                                                  | (c) $x-y-z-2=0$                  | (d) $x + y + z - 2 = 0$               |  |  |
| 172. | In three dimensional                                                                                                                                                  | space, the equation $3y + 4z = 0$                                                                                                | represents                       | [Kurukshetra CEE 1994]                |  |  |
|      | (a) A plane containing                                                                                                                                                | g <i>x</i> -axis                                                                                                                 | (b)                              | A plane containing <i>y</i> -axis     |  |  |
|      | (c) A plane containing numbers 0, 3, 4                                                                                                                                | g z-axis                                                                                                                         | (d)                              | A line with direction                 |  |  |
| 173. | Direction ratios of the normal to the plane passing through the point (2, 1, 3) and the point of intersection of the planes $x + 2y + z = 3$ and $2x - y - z = 5$ are |                                                                                                                                  |                                  |                                       |  |  |
|      | (a) 13, 6, 1                                                                                                                                                          | (b) 5, 7, 3                                                                                                                      | (c) 4, 3, 2                      | (d) None of these                     |  |  |
| 174. | The plane of intersection of $x^2 + y^2 + z^2 + 2x + 2y + 2z + 2 = 0$ and $4x^2 + 4y^2 + 4z^2 + 4x + 4y + 4z - 1 = 0$ is [Pb. CET 1996]                               |                                                                                                                                  |                                  |                                       |  |  |
|      | (a) $4x + 4y + 4z + 9 = 0$                                                                                                                                            | <b>(b)</b> $x + y + z + 9 = 0$                                                                                                   | (c) $4x + 4y + 4z + 1 = 0$       | (d) They do not intersect             |  |  |
| 175. | If the planes $x + 2y + kx$                                                                                                                                           | z = 0 and $2x + y - 2z = 0$ are at r                                                                                             | ight angles, then the value of   | k is [MP PET 1999]                    |  |  |
|      | (a) $-\frac{1}{2}$                                                                                                                                                    | (b) $\frac{1}{2}$                                                                                                                | (c) -2                           | (d) 2                                 |  |  |
| 176. | The value of $k$ for whi                                                                                                                                              | The value of $k$ for which the planes $3x - 6y - 2z = 7$ and $2x + y - kz = 5$ are perpendicular to each other, is [MP PET 1992] |                                  |                                       |  |  |
|      | (a) 0                                                                                                                                                                 | (b) 1                                                                                                                            | (c) 2                            | (d) 3                                 |  |  |
| 177. |                                                                                                                                                                       | +by + cz + d = 0 and $a'x + b'y + c'$                                                                                            | z + d' = 0 be mutually perpend   |                                       |  |  |
|      | (a) $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$                                                                                                                      |                                                                                                                                  |                                  | (d) $aa'+bb'+cc'=0$                   |  |  |
| 178. | The angle between tw                                                                                                                                                  | o planes is equal to                                                                                                             |                                  |                                       |  |  |
|      | (a) The angle between                                                                                                                                                 | n the tangents to them from an                                                                                                   | ny point                         |                                       |  |  |
|      | (b) The angle between                                                                                                                                                 | n the normals to them from an                                                                                                    | y point                          |                                       |  |  |
|      | (c) The angle between the lines parallel to the planes from any point                                                                                                 |                                                                                                                                  |                                  |                                       |  |  |

**179.** If the planes 3x - 2y + 2z + 17 = 0 and 4x + 3y - kz = 25 are mutually perpendicular, then k = [MP PET 1995]

(c) 9

(d) -6

(d) None of these

(a) 3

(b) -3

| 180. | The angle between the p                              | planes $2x - y + z = 6$ and $x + y + 2z$            | = 7 is [MP PET 1991,98,20                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000,01,03; Rajasthan PET 2001]       |
|------|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|      | (a) 30°                                              | (b) 45°                                             | (c) 0°                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) 60°                              |
| 181. | The angle between the p                              | planes $3x - 4y + 5z = 0$ and $2x - y$              | -2z = 5 is [MP PET                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1988; Kurukshetra CEE 2000]          |
|      | (a) $\frac{\pi}{3}$                                  | (b) $\frac{\pi}{2}$                                 | (c) $\frac{\pi}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) None of these                    |
| 182. | If $\theta$ is the angle between                     | en the planes $2x - y + 2z = 3$ , $6x - y + 2z = 3$ | $2y + 3z = 5$ , then $\cos \theta$ is equ                                                                                                                                                                                                                                                                                                                                                                                                                    | al to [Kerala (Engg.) 2001]          |
|      | (a) $\frac{21}{20}$                                  | (b) $\frac{11}{20}$                                 | (c) $\frac{20}{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                          | (d) $\frac{12}{25}$                  |
| 183. |                                                      | being negative, the origin will l                   | ie in the acute angle betwee                                                                                                                                                                                                                                                                                                                                                                                                                                 | on the planes $ax + by + cz + d = 0$ |
|      | and $a'x + b'y + c'z + d' = 0$ ,                     |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [MP PET 2003]                        |
|      | (a) $a = a' = 0$                                     | (b) d and d' are of same sign                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| 184. | The equation of the plan which contains the original | ne which bisects the angle betw                     | veen the planes $3x - 6y + 2z + 6y + 6y + 2z + 6y + 6$ | +5 = 0 and $4x - 12y + 3z - 3 = 0$   |
|      | (a) $33x - 13y + 32z + 45 = 0$                       |                                                     | (c) $33x + 13y + 32z + 45 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                               | (d) None of these                    |
| 185  |                                                      | ector of the obtuse angle betwee                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| 105. | (a) $11x + 4y - 3z = 0$                              | (b) $14x - 8y + 13 = 0$                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (d) $13x - 7z + 18 = 0$              |
| 196  |                                                      | and $(-3, 0, 1)$ with respect to the                |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |
| 100. | -                                                    |                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      |
| 197  | (a) Opposite side                                    | (b) Same side                                       | (c) On the plane $4x + 2z + 5 = 0$ is                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) None of these                    |
| 167. | 2                                                    | lel planes $2x - 2y + z + 3 = 0$ and $4$            |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [MP PET 1994, 95]                    |
|      | (a) $\frac{2}{3}$                                    | (b) $\frac{1}{3}$                                   | (c) $\frac{1}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                            | (d) 2                                |
| 188. | The distance between th                              | ne planes $x + 2y + 3z + 7 = 0$ and 2               | 2x + 4y + 6z + 7 = 0  is                                                                                                                                                                                                                                                                                                                                                                                                                                     | [MP PET 1991]                        |
|      | $\sqrt{7}$                                           | a > 7                                               | (c) $\frac{\sqrt{7}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                    |
|      | (a) $\frac{\sqrt{7}}{2\sqrt{2}}$                     | (b) $\frac{7}{2}$                                   | (c) ${2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (d) $\frac{7}{2\sqrt{2}}$            |
| 189. | Distance of the point (2,                            | , 3, 4) from the plane $3x - 6y + 2z$               | z + 11 = 0 is                                                                                                                                                                                                                                                                                                                                                                                                                                                | [MP PET 1990,96]                     |
|      | (a) 1                                                | (b) 2                                               | (c) 3                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) o                                |
| 190. | The distance of the plan                             | the $6x - 3y + 2z - 14 = 0$ from the or             | rigin is                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [MP PET 2003]                        |
|      | (a) 2                                                | (b) 1                                               | (c) 14                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (d) 8                                |
| 191. | The distance of the poin                             | It (2, 3, -5) from the plane $x + 2$                | y - 2z = 9  is                                                                                                                                                                                                                                                                                                                                                                                                                                               | [MP PET 2001]                        |
|      | (a) 4                                                | (p) 3                                               | (c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) 1                                |
| 192. | If the points $(1, 1, k)$ and                        | d(-3, 0, 1) be equidistant from $d$                 | the plane $3x + 4y - 12z + 13 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                           | ), then $k =$                        |
|      | (a) o                                                | (b) 1                                               | (c) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) None of these                    |
| 193. | If the product of distance                           | ces of the point (1, 1, 1) from the                 | origin and the plane $x - y +$                                                                                                                                                                                                                                                                                                                                                                                                                               | z + k = 0 be 5, then $k =$           |
|      | (a) -2                                               | (b) -3                                              | (c) 4                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) 7                                |
| 194. | If two planes intersect,                             | then the shortest distance between                  | een the planes is                                                                                                                                                                                                                                                                                                                                                                                                                                            | [Kurukshetra CEE 1998]               |
|      | (a) $\cos 0^{\circ}$                                 | (b) cos 90°                                         | (c) sin 90°                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (d) 1                                |
| 195. | The length of the perper                             | ndicular from the origin to the p                   | plane $3x + 4y + 12z = 52$ is                                                                                                                                                                                                                                                                                                                                                                                                                                | [MP PET 2000]                        |
|      | (a) 3                                                | (b) -4                                              | (c) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (d) None of these                    |

[MP PET 1998]

the

(d) -3x + 2y - 6z - 49 = 0

| 199. If the position vectors of three points A, B and C are respectively $\mathbf{i} + \mathbf{j} + \mathbf{k}$ , $2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and $7\mathbf{i} + 4\mathbf{j} + 4$ |                                                                      |                                                                     |                                                                       |                                                        |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $31i - 18j - 9k$                                                 | (b) $\frac{31\mathbf{i} - 38\mathbf{j} - 9\mathbf{k}}{\sqrt{2486}}$ | (c) $\frac{31\mathbf{i} + 18\mathbf{j} + 9\mathbf{k}}{\sqrt{2486}}$   | (d) None of these                                      |  |  |  |  |  |  |  |
| 200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The projection of point                                              | (a, b, c) in yz plane are                                           |                                                                       |                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) (o, b, c)                                                        | (b) (a, o, c)                                                       | (c) (a, b, 0)                                                         | (d) (a, o, o)                                          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                      | Advance                                                             | Level                                                                 |                                                        |  |  |  |  |  |  |  |
| 201.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                    | nstant distance $p$ from origin mel to coordinate planes. Then lo   |                                                                       | -                                                      |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$  | <b>(b)</b> $x^2 + y^2 + z^2 = p^2$                                  | (c)  x+y+z=p                                                          | (d) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = p$      |  |  |  |  |  |  |  |
| 202.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | the centroid of the trian                                            | _                                                                   |                                                                       |                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $x^{-2} + y^{-2} + z^{-2} = p^{-2}$                              | <b>(b)</b> $x^{-2} + y^{-2} + z^{-2} = 9p^{-2}$                     | (c) $x^{-2} + y^{-2} + z^{-2} = p^2$                                  | (d) None of these                                      |  |  |  |  |  |  |  |
| 203.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      | ne which bisects line joining (2,                                   |                                                                       | [CET 1991, 93]                                         |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $x + y + z - 15 = 0$                                             | •                                                                   | • • •                                                                 |                                                        |  |  |  |  |  |  |  |
| 204.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The equation of the plant (a) $4x-7y-3z=8$                           | ne which bisects the line joining<br>(b) $4x-7y-3z=28$              |                                                                       | , -5, 6) at right angle, is<br>(d) $4x + 2y - 3z = 28$ |  |  |  |  |  |  |  |
| 205.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                    | a) on a line through the originals as intercepts on the axes, the   |                                                                       |                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) <i>a</i>                                                         | (b) $\frac{3}{2a}$                                                  | (c) $\frac{3a}{2}$                                                    | (d) None of these                                      |  |  |  |  |  |  |  |
| 206.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If from a point <i>P</i> ( <i>a</i> , <i>b</i> , plane <i>OAB</i> is | c) perpendiculars PA and PB a                                       | re drawn to $yz$ and $zx$ plan                                        | nes, then the equation of the                          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $bcx + cay + abz = 0$                                            | (b) $bcx + cay - abz = 0$                                           | (c) bcx - cay + abz = 0                                               | (d) -bcx + cay + abz = 0                               |  |  |  |  |  |  |  |
| 207.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If $l_1, m_1, n_1$ and $l_2, m_2, n_2$                               | are the direction ratios of tw                                      | o intersecting lines, then t                                          | he direction ratios of lines                           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | through them and copla                                               | nar with them are given by                                          |                                                                       |                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $l_1 + km_1, l_2 + km_2, l_3 + km_4$                             | $n_3$                                                               | (b) $kl_1l_2, km_1m_2, kn_1n_2$                                       |                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (c) $l_1 + kl_2, m_1 + km_2, n_1 + km_2$                             | $\eta_2$                                                            | (d) $\frac{kl_1}{l_2}, \frac{km_1}{m_2}, \frac{kn_1}{n_2}, k$ being a | number whatsoever                                      |  |  |  |  |  |  |  |
| 208.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The four points (0, 4, 3)                                            | , (-1, -5, -3), (-2, -2, 1) and (1,                                 | 1, -1) lie in the plane                                               |                                                        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (a) $4x + 3y + 2z - 9 = 0$                                           |                                                                     | (c) $3x + 4y + 7z - 5 = 0$                                            | (d) None of these                                      |  |  |  |  |  |  |  |

**196.** If the length of perpendicular drawn from origin on a plane is 7 units and its direction ratios are −3, 2, 6, then

197. If a plane cuts off intercepts -6, 3, 4 from the coordinate axes, then the length of the perpendicular from origin

**198.** If A(-1, 2, 3), B(1, 1, 1) and C(2, -1, 3) are points on a plane. A unit normal vector to the plane ABC is [BIT Ranchi 1988]

(a)  $\pm \left(\frac{2\mathbf{i} + 2\mathbf{j} + \mathbf{k}}{3}\right)$  (b)  $\pm \left(\frac{2\mathbf{i} - 2\mathbf{j} + \mathbf{k}}{3}\right)$  (c)  $\pm \left(\frac{2\mathbf{i} - 2\mathbf{j} - \mathbf{k}}{3}\right)$ 

(c) 3x - 2y + 6z + 7 = 0

(c)  $\frac{12}{\sqrt{29}}$  (d)  $\frac{5}{\sqrt{41}}$ 

(b) -3x + 2y + 6z - 49 = 0

that plane is

to the plane is

(a) -3x + 2y + 6z - 7 = 0

(a)  $\frac{1}{\sqrt{61}}$  (b)  $\frac{13}{\sqrt{61}}$ 

(c) Both (a) and (b)

| 209. | A plane meets the coord plane is                                                                      | linate axes at A, B, C such that t                                                   | the centre of the triangle is                                                                                                  | (3, 3, 3). The equation of the                                                        |
|------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|      | (a) $x + y + z = 3$                                                                                   | <b>(b)</b> $x + y + z = 9$                                                           | (c) $3x + 3y + 3z = 1$                                                                                                         | (d) $9x + 9y + 9z = 1$                                                                |
| 210. | -                                                                                                     | lar axes have the same origin.                                                       | If a plane cuts them at dist                                                                                                   | ance $a$ , $b$ , $c$ and $a'$ , $b'$ , $c'$ from                                      |
|      | the origin, then                                                                                      |                                                                                      |                                                                                                                                | [AIEEE 2003]                                                                          |
|      | (a) $\frac{1}{a^2} + \frac{1}{h^2} + \frac{1}{c^2} + \frac{1}{a^{\prime 2}} + \frac{1}{h^{\prime 2}}$ | $\frac{1}{1} = 0$                                                                    | (b) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a^{\prime 2}} + \frac{1}{b^{\prime 2}} - \frac{1}{a^{\prime 2}}$ |                                                                                       |
|      | u v c u v                                                                                             | c                                                                                    | u v c u v                                                                                                                      | · ·                                                                                   |
|      | (c) $\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a^{\prime 2}} - \frac{1}{b^{\prime 2}}$ | $-\frac{1}{c'^2} = 0$                                                                | (d) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{b'^2}$                         | $\frac{1}{c'^2} = 0$                                                                  |
| 211. |                                                                                                       | ring is the best condition for the                                                   | e plane $ax + by + cz + d = 0$ to                                                                                              | intersect the $x$ and $y$ axes at                                                     |
|      | equal angle                                                                                           |                                                                                      |                                                                                                                                | (4) 2 12 1                                                                            |
|      |                                                                                                       | (b) $a = -b$                                                                         | (c) $a=b$                                                                                                                      | (d) $a^2 + b^2 = 1$                                                                   |
| 212. |                                                                                                       | $4z^2 + 6xz + 2yz + 3xy = 0 $ represe                                                | ents a pair of planes, then t                                                                                                  | he angle between the pair of                                                          |
|      | planes is (a) $\cos^{-1}(4/9)$                                                                        | (b) $\cos^{-1}(4/21)$                                                                | (c) $\cos^{-1}(4/17)$                                                                                                          | (d) $\cos^{-1}(2/3)$                                                                  |
| 213. |                                                                                                       | C(2, 2, 1) and $C(1, 1, 3)$ determine                                                | , ,                                                                                                                            |                                                                                       |
|      | D(5,7,8)is                                                                                            |                                                                                      | •                                                                                                                              | •                                                                                     |
|      |                                                                                                       |                                                                                      |                                                                                                                                | [AMU 2001]                                                                            |
|      | (a) $\sqrt{66}$                                                                                       | (b) $\sqrt{71}$                                                                      | (c) $\sqrt{73}$                                                                                                                | (d) $\sqrt{76}$                                                                       |
| 214. | The length and foot of the                                                                            | ne perpendicular from the point                                                      | (7, 14, 5) to the plane $2x + 4$                                                                                               | 4y - z = 2, are [AISSE 1987]                                                          |
|      | (a) $\sqrt{21}$ , (1, 2, 8)                                                                           | (b) $3\sqrt{21}$ , $(3, 2, 8)$                                                       | (c) $21\sqrt{3}$ , $(1, 2, 8)$                                                                                                 | (d) $3\sqrt{21}$ ,(1, 2, 8)                                                           |
| 215. | The distance of the poin                                                                              | t $(1, 1, 1)$ from the plane passing                                                 | g through the points (2, 1, 1)                                                                                                 | ), (1, 2, 1) and (1, 1, 2) is [AISSE 198                                              |
|      | (a) $\frac{1}{\sqrt{3}}$                                                                              | (b) 1                                                                                | (c) $\sqrt{3}$                                                                                                                 | (d) None of these                                                                     |
| 216. | Perpendicular is drawn perpendicular are                                                              | from the point (0, 3, 4) to the                                                      | plane $2x - 2y + z = 10$ . The c                                                                                               | coordinates of the foot of the                                                        |
|      | (a) $(-8/3, 1/3, 16/3)$                                                                               | (b) (8/3, 1/3, 16/3)                                                                 | (c) $(8/3, -1/3, 16/3)$                                                                                                        | (d) $(8/3, 1/3, -16/3)$                                                               |
| 217. | The equation of the plan                                                                              | the containing the lines $\mathbf{r} - \mathbf{a} = t \mathbf{b}$                    | and $\mathbf{r} - \mathbf{b} = s \mathbf{a}$ is                                                                                |                                                                                       |
|      | (a) $r \cdot a = a \cdot b$                                                                           | (b) $[{\bf r} {\bf a} {\bf b}] = 0$                                                  | (c) $\mathbf{r} \cdot \mathbf{a} = \mathbf{r} \cdot \mathbf{b}$                                                                | (d) $\mathbf{r} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b}$                       |
| 218. |                                                                                                       | R have position vectors $\mathbf{r}_{i} = 3$ f <i>P</i> from the plane <i>OQR</i> is | $\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ ; $\mathbf{r}_2 = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ and                          | $\mathbf{r}_3 = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ relative to an [Roorkee 1990] |
|      | (a) 2                                                                                                 | (p) 3                                                                                | (c) 1                                                                                                                          | (d) 5                                                                                 |
| 219. | The projection of the po                                                                              | int $(1, 3, 4)$ on the plane $\mathbf{r}.(2\mathbf{i} -$                             | $\mathbf{j} + \mathbf{k}) + 3 = 0 \text{ is}$                                                                                  |                                                                                       |
|      | (a) (1, 3, 4)                                                                                         | (b) (-3, 5, 2)                                                                       | (c) (-1, 4, 3)                                                                                                                 | (d) None of these                                                                     |
| 220. | If $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \frac{3}{2} = 0$ is the                | he equation of plane and $i-2j+$                                                     | $3\mathbf{k}$ is a point, then a point $\epsilon$                                                                              | equidistant from the plane on                                                         |
|      | the opposite side is                                                                                  |                                                                                      |                                                                                                                                | [AMU 1998]                                                                            |
|      | (a) $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$                                                          | (b) $3i + j + k$                                                                     | (c) $3i + 2j + 3k$                                                                                                             | (d) $3(\mathbf{i} + \mathbf{j} + \mathbf{k})$                                         |
| 221. | If $(p_1, q_1, r_1)$ be the image                                                                     | e of $(p, q, r)$ in the plane $ax + by +$                                            | cz + d = 0, then                                                                                                               |                                                                                       |
|      | (a) $\frac{p_1 - p}{q} = \frac{q_1 - q}{p} = \frac{r_1 - r}{q}$                                       |                                                                                      | (b) $a(p+p_1)+b(q+q_1)+c(r_1)$                                                                                                 | $+r_1)+2d=0$                                                                          |

#### Line and Plane

#### **Basic Level**

| <b>222.</b> The equation of the straight line passing through (1, 2, 3) and perpendicular to the plane $x + 2y - 5z + 9 = 0$ is [MP] | 222. | 2. The equation of the straight lir | ne passing through ( | (1, 2, 3) and perpendicular | to the plane | x + 2y - 5z + 9 = 0 | is [MP PE |
|--------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------|----------------------|-----------------------------|--------------|---------------------|-----------|
|--------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------|----------------------|-----------------------------|--------------|---------------------|-----------|

(b) 
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+5}{3}$$

(c) 
$$\frac{x+1}{1} = \frac{y+2}{2} = \frac{z+3}{-5}$$

(a) 
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{-5}$$
 (b)  $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+5}{3}$  (c)  $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z+3}{-5}$  (d)  $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-5}{3}$ 

**223.** The equation of the perpendicular from the point  $(\alpha, \beta, \gamma)$  to the plane ax + by + cz + d = 0 is

[MP PET 2003]

(a) 
$$a(x-\alpha)+b(y-\beta)+c(z-\gamma)=0$$

(b) 
$$\frac{x-\alpha}{a} = \frac{y-\beta}{b} = \frac{z-\gamma}{c}$$

(c) 
$$a(x-\alpha)+b(y-\beta)+c(z-\gamma)=abc$$

224. The equation of the plane passing through the points (3, 2, 2) and (1, 0, -1) and parallel to the line  $\frac{x-1}{2} = \frac{y-1}{2} = \frac{z-2}{3}$  is

(a) 
$$4x-y-2z+6=0$$
 (b)  $4x-y+2z+6=0$ 

(b) 
$$4x - y + 2z + 6 = 0$$

(c) 
$$4x-y-2z-6=0$$

- (d) None of these
- **225.** The equation of the plane containing the line  $\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$  and the point (0, 7, -7) is
- **(b)** x + y + z = 2
- (c) x + y + z = 0
- (d) None of these
- **226.** The equation of plane through the line of intersection of planes ax + by + cz + d = 0, a'x + b'y + c'z + d' = 0 and parallel to the line y = 0, z = 0 is [Kurukshetra CEE 1998]

(a) 
$$(ab'-a'b)x + (bc'-b'c)y + (ad'-a'd) = 0$$

(b) 
$$(ab'-a'b)x + (bc'-b'c)y + (ad'-a'd)z = 0$$

(c) 
$$(ab'-a'b)y + (ac'-a'c)z + (ad'-a'd) = 0$$

- (d) None of these
- **227.** The equation of the plane passing through the line  $\frac{x-1}{5} = \frac{y+2}{6} = \frac{z-3}{4}$  and the point (4, 3, 7) is **[MP PET 2001]**

(a) 
$$4x + 8y + 7z = 41$$

**(b)** 
$$4x - 8y + 7z = 41$$

(c) 
$$4x - 8y - 7z = 41$$

(d) 
$$4x - 8y + 7z = 39$$

**228.** The equation of the plane containing the line 2x - 5y + 2z = 6, 2x + 3y - z = 5 and parallel to the line  $\frac{x}{1} = \frac{y}{-6} = \frac{z}{7}$  is

(a) 
$$6x + y - 10 = 0$$

(b) 
$$6x + y - 16 = 0$$

(c) 
$$12x + 2y - 1 = 0$$

(d) 
$$6x + y + 16 = 0$$

**229.** The equation of the plane which is parallel to the line  $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$  and passes through the points (0, 0, 0) and (3, -1, 2), is

[DSSE 1984]

(a) 
$$x + 19y + 11z = 0$$

(b) 
$$x-19y-11z=0$$

(c) 
$$x-19y+11z=0$$

**230.** Equation of a line passing through (1, -2, 3) and parallel to the plane 2x + 3y + z + 5 = 0 is

(a) 
$$\frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-1}$$

(a) 
$$\frac{x-1}{-1} = \frac{y+2}{1} = \frac{z-3}{-1}$$
 (b)  $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{1}$  (c)  $\frac{x+1}{-1} = \frac{y-2}{1} = \frac{z-3}{-1}$ 

(c) 
$$\frac{x+1}{-1} = \frac{y-2}{1} = \frac{z-3}{-1}$$

**231.** The equation of the plane through the line 3x-4y+5z=10, 2x+2y-3z=4 and parallel to the line x=2y=3z is

(a) 
$$x - 20y + 27z = 14$$
 (b)  $x + 4y + 27z = 14$ 

**(b)** 
$$x + 4y + 27z = 14$$

(c) 
$$x - 20y + 3z = 14$$

| 233. | The equation of the plan                                                                          | e in which the lines $\frac{x-5}{4} = \frac{y-7}{4}$                            | $-=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z}{1}$ | $\frac{1-5}{3}$ lie, is [MP PET 2000]                              |  |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|      | (a) $17x - 47y - 24z + 172 =$                                                                     | 0                                                                               | <b>(b)</b> $17x + 47y - 24z + 172 = 0$                           |                                                                    |  |  |  |  |  |  |  |  |
|      | (c) $17x + 47y + 24z + 172 =$                                                                     | : 0                                                                             | (d) $17x - 47y + 24z + 172 = 0$                                  |                                                                    |  |  |  |  |  |  |  |  |
| 234. | The equation of the line                                                                          | passing through (1, 2, 3) and pa                                                | arallel to the planes $x - y + 2x$                               | z = 5 and $3x + y + z = 6$ , is <b>[DSSE 1986</b> ]                |  |  |  |  |  |  |  |  |
|      | (a) $\frac{x-1}{-3} = \frac{y-2}{5} = \frac{z-3}{4}$                                              | (b) $\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{4}$                           | (c) $\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{-4}$           | (d) None of these                                                  |  |  |  |  |  |  |  |  |
| 235. | The plane $x - 2y + z - 6 = 0$                                                                    | 0 and the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are rel                | ated as                                                          | [Kurukshetra CEE 2001]                                             |  |  |  |  |  |  |  |  |
|      | (a) Parallel to the plane                                                                         | (b) Normal to the plane                                                         | (c) Lies in the plane                                            | (d) None of these                                                  |  |  |  |  |  |  |  |  |
| 236. | The condition that the li                                                                         | ne $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$ lies in                | the plane $ax + by + cz + d = 0$                                 | is                                                                 |  |  |  |  |  |  |  |  |
|      | (a) $ax_1 + by_1 + cz_1 + d = 0$ a                                                                | and $al + bm + cn \neq 0$                                                       | (b) $al + bm + cn = 0$ and $ax_1$                                | $+by_1 + cz_1 + d \neq 0$                                          |  |  |  |  |  |  |  |  |
|      | (c) $ax_1 + by_1 + cz_1 + d = 0$ a                                                                | and $al + bm + cn = 0$                                                          | (d) $ax_1 + by_1 + cz_1 = 0$ and $ax_1 + by_1 + cz_1 = 0$        | l + bm + cn = 0                                                    |  |  |  |  |  |  |  |  |
| 237. | $\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ and      | $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = 3$ are the equation | ion of line and plane resp                                       | ectively, then which of the                                        |  |  |  |  |  |  |  |  |
|      | following is true                                                                                 |                                                                                 |                                                                  |                                                                    |  |  |  |  |  |  |  |  |
|      | (a) The line is perpendic                                                                         | cular to plane                                                                  | (b) The line lies in the pla                                     | ne                                                                 |  |  |  |  |  |  |  |  |
|      | (c) The line is parallel to plane but does not lie in plane (d) The line cuts the plane obliquely |                                                                                 |                                                                  |                                                                    |  |  |  |  |  |  |  |  |
| 238. | The line joining the poin                                                                         | its (3, 5, -7) and (-2, 1, 8) meet                                              | s the <i>yz</i> -plane at point [Raja                            | the yz-plane at point [Rajasthan PET 2003; MP PET 1993]            |  |  |  |  |  |  |  |  |
|      | (a) $\left(0, \frac{13}{5}, 2\right)$                                                             | (b) $\left(2,0,\frac{13}{5}\right)$                                             | (c) $\left(0, 2, \frac{13}{5}\right)$                            | (d) (2, 2, 0)                                                      |  |  |  |  |  |  |  |  |
| 239. | Two lines which do not l                                                                          | lie in the same plane are called                                                |                                                                  |                                                                    |  |  |  |  |  |  |  |  |
|      | (a) Parallel                                                                                      | (b) Coincident                                                                  | (c) Intersecting                                                 | (d) Skew                                                           |  |  |  |  |  |  |  |  |
| 240. | The planes $x = cy + bz$ , $y =$                                                                  | = az + cx, $z = bx + ay$ pass through                                           | one line, if                                                     |                                                                    |  |  |  |  |  |  |  |  |
|      | (a) $a+b+c=0$                                                                                     | (b) $a+b+c=1$                                                                   | (c) $a^2 + b^2 + c^2 = 1$                                        | (d) $a^2 + b^2 + c^2 + 2abc = 1$                                   |  |  |  |  |  |  |  |  |
| 241. | The line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{z-4}{3}$                                          | $\frac{-5}{4}$ lies in the plane $4x + 4y - kz$                                 | -d = 0 . The values of $k$ and                                   | d are                                                              |  |  |  |  |  |  |  |  |
|      | (a) 4, 8                                                                                          | (b) -5, -3                                                                      | (c) 5, 3                                                         | (d) -4, -8                                                         |  |  |  |  |  |  |  |  |
| 242. | If $4x + 4y - kz = 0$ is the e                                                                    | quation of the plane through th                                                 | e origin that contains the li                                    | ne $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$ , then $k = [MP]$ |  |  |  |  |  |  |  |  |
|      | (a) 1                                                                                             | (p) 3                                                                           | (c) 5                                                            | (d) 7                                                              |  |  |  |  |  |  |  |  |
| 243. | If $\frac{x-1}{l} = \frac{y-2}{m} = \frac{z+1}{n}$ is the                                         | he equation of the line through                                                 | (1, 2, -1) and (-1, 0, 1); ther                                  | n (l, m, n) is [MP PET 1992]                                       |  |  |  |  |  |  |  |  |
|      | (a) (-1, 0, 1)                                                                                    | (b) (1, 1, -1)                                                                  | (c) (1, 2, -1)                                                   | (d) (o, 1, o)                                                      |  |  |  |  |  |  |  |  |
| 244. | Given the line $L: \frac{x-1}{3} =$                                                               | $\frac{y+1}{2} = \frac{z-3}{-1}$ and plane $P: x-2y$                            | y-z=0. Then of the follow                                        | ring assertions, the only one                                      |  |  |  |  |  |  |  |  |
|      | that is always true is                                                                            |                                                                                 |                                                                  |                                                                    |  |  |  |  |  |  |  |  |
|      | (a) $L$ is parallel to plane                                                                      | e P (b)                                                                         | L is perpendicular to plane                                      | e P (c) L lies in the plane P                                      |  |  |  |  |  |  |  |  |

**232.** The equation of the plane passing through the line  $\frac{x-4}{1} = \frac{y-3}{1} = \frac{z-2}{2}$  and  $\frac{x-3}{1} = \frac{y-2}{-4} = \frac{z}{5}$  is

(a) 11x - y - 3z = 35 (b) 11x + y - 3z = 35 (c) 11x - y + 3z = 35

(d) (1, 3, 1)

(d) None of these

[DSSE 1981]

|      | (a) (2, 1, 0)                                                                                                                                                              | (b) (7, -1, -7)                                                                  | (c) (1, 2, -6)                            | (d) (5, -1, 1)                                                 |  |  |  |  |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|--|
| 248. | The point of intersection                                                                                                                                                  | n of the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z+2}{3}$ and                  | the plane $2x + 3y + z = 0$ is            | [MP PET 1989]                                                  |  |  |  |  |  |  |
|      | (a) (0, 1, -2)                                                                                                                                                             | (b) (1, 2, 3)                                                                    | (c) (-1, 9, -25)                          | (d) $\left(\frac{-1}{11}, \frac{9}{11}, \frac{-25}{11}\right)$ |  |  |  |  |  |  |
| 249. |                                                                                                                                                                            | wo non-parallel planes, then the of intersection of the planes $p_1$             |                                           |                                                                |  |  |  |  |  |  |
|      | (a) $p_1 = 0$                                                                                                                                                              | (b) $p_2 = 0$                                                                    | (c) $p_1 + p_2 = 0$                       | (d) $p_1 - p_2 = 0$                                            |  |  |  |  |  |  |
| 250. | <b>o.</b> The direction ratios of the normal to the plane passing through the points (1, -2, 3), (-1, 2, -1) and parallel $\frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{4}$ is |                                                                                  |                                           |                                                                |  |  |  |  |  |  |
|      |                                                                                                                                                                            |                                                                                  |                                           |                                                                |  |  |  |  |  |  |
|      |                                                                                                                                                                            |                                                                                  |                                           | [Tamilnadu (Engg.) 2002]                                       |  |  |  |  |  |  |
|      | (a) (2, 3, 4)                                                                                                                                                              | (b) (4, 0, 7)                                                                    | (c) (-2, 0, -1)                           |                                                                |  |  |  |  |  |  |
| 251. | ,                                                                                                                                                                          | (b) (4, 0, 7)<br>e line $\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z-1}{2}$ and the |                                           |                                                                |  |  |  |  |  |  |
| 251. | ,                                                                                                                                                                          |                                                                                  |                                           |                                                                |  |  |  |  |  |  |
|      | The distance between the                                                                                                                                                   | e line $\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z-1}{2}$ and the                  | e plane $2x + 2y - z = 6$ is  (c) 2 units | (d) (2, 0, -1) (d) 3 units                                     |  |  |  |  |  |  |
|      | The distance between the                                                                                                                                                   | e line $\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z-1}{2}$ and the (b) 1 unit       | e plane $2x + 2y - z = 6$ is  (c) 2 units | (d) (2, 0, -1) (d) 3 units                                     |  |  |  |  |  |  |
|      | The distance between the  (a) 9 units  The distance of the point                                                                                                           | e line $\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z-1}{2}$ and the (b) 1 unit       | e plane $2x + 2y - z = 6$ is  (c) 2 units | (d) (2, 0, -1) (d) 3 units                                     |  |  |  |  |  |  |

**245.** The coordinates of the point where the line joining the points (2, -3, 1), (3, -4, -5) cuts the plane 2x + y + z = 7

**247.** The coordinates of the point where the line  $\frac{x-6}{-1} = \frac{y+1}{0} = \frac{z+3}{4}$  meets the plane x+y-z=3 are **[MP PET 1998]** 

(b) (3, 2, 5)

**246.** The point where the line  $\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$  meets the plane 2x + 4y - z = 1 is

(c) (1, -2, 7)

(c) (1, 1, 3)

are

(a) (2, 1, 0)

(a) (3, -1, 1)

- The distance of the point (1, -2, 3) from the plane x y + z = 5 measured parallel to the line  $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ , is [AI CBSE 1984]

(d) None of these

**254.** If line  $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$  is parallel to the plane ax + by + cz + d = 0, then

[MNR 1995; MP PET 1995]

- (a)  $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$  (b) al + bm + cn = 0
- (c)  $\frac{a}{1} + \frac{b}{m} + \frac{c}{n} = 0$
- (d) None of these
- The angle between the line  $\frac{x-2}{a} = \frac{y-2}{b} = \frac{z-2}{c}$  and the plane ax + by + cz + 6 = 0 is
  - (a)  $\sin^{-1}\left(\frac{1}{\sqrt{a^2+b^2+a^2}}\right)$  (b)  $45^{\circ}$

(d) 90°

The angle between the line  $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$  and the plane 3x + 2y - 3z = 4 is

[MP PET 2003]

- (a) 45°

- (c)  $\cos^{-1}\left(\frac{24}{\sqrt{29}\sqrt{22}}\right)$
- (d) 90°

The angle between the line  $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{-2}$  and the plane x+y+4=0, is

[MP PET 1999]

- (d) 90°
- The angle between the line  $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z-2}{4}$  and the plane 2x + y 3z + 4 = 0, is

[AI CBSE 1981; Pb. CET 1997]

- (a)  $\sin^{-1}\left(\frac{4}{\sqrt{406}}\right)$  (b)  $\sin^{-1}\left(\frac{-4}{\sqrt{406}}\right)$  (c)  $\sin^{-1}\left(\frac{4}{14\sqrt{29}}\right)$
- (d) None of these

### Advance Level

- 259. A straight line passes through the point (2, -1, -1). It is parallel to the plane 4x + y + z + 2 = 0 and is perpendicular to the line x / 1 = y / (-2) = (z - 5) / 1. The equation of the straight line are
  - (a) (x-2)/4 = (y+1)/1 = (z+1)/1

(b) (x+2)/4 = (y-1)/1 = (z-1)/3

(c) (x-2)/(-1) = (y+1)/1 = (z+1)/3

- (d) (x+2)/(-1) = (y-1)/1 = (z-1)/3
- The equations of the projection of the line  $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{3}$  on the plane x+y+z-1=0 are
  - (a) x+y+z-1=0=2x-y-z+3

(b) x+y-z-1=0=x+2y-z-3

(c) 2x - y + 3z - 1 = 0 = x + y + z + 1

- (d) x + 2y 3z = 0 = x + y + z + 1
- If a plane passes through the point (1, 1, 1) and is perpendicular to the line  $\frac{x-1}{3} = \frac{y-1}{0} = \frac{z-1}{4}$ , then its perpendicular distance from the [MP PET 1998] origin is
  - (a)  $\frac{3}{4}$

(c)  $\frac{7}{5}$ 

(d) 1

# 374 Three Dimensional Co-ordinate Geometry

(a) a = b = c

(c) v = u = w

The centre of the sphere which passes through (a, 0, 0), (0, b, 0), (0, 0, 0) is

274.

**262.** The line  $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-1}{-1}$  intersects the curve  $xy = c^2$ , z = 0 if  $c = \frac{z-1}{2}$ 

|      | (a) ±1                                          | (b) $\pm 1/3$                                                                                              | (c) $\pm \sqrt{5}$                                                        | (d) None of these                                 |
|------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|
| 263. | The points on the line $\frac{x+1}{1}$          | $= \frac{y+3}{3} = \frac{z-2}{-2} $ distant $\sqrt{(14)}$ fr                                               | rom the point in which the line meet                                      | is the plane $3x + 4y + 5z - 5 = 0$ are           |
|      | (a) (0, 0, 0), (2, -4, 6)                       | (b) $(0, 0, 0), (3, -4, -5)$                                                                               | (c) $(0, 0, 0), (2, 6, -4)$                                               | (d) (2, 6, -4), (3, -4, -5)                       |
| 264. | The angle between the line r                    | $\mathbf{r} = (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) + \lambda(\mathbf{i} - \mathbf{j} + \mathbf{k})$ and | the normal to the plane $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + 1)$ | k) = 4 is [MP PET 1997]                           |
|      | (a) $\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)$ | (b) $\cos^{-1}\left(\frac{2\sqrt{2}}{3}\right)$                                                            | (c) $\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)$                           | (d) $\cot^{-1}\left(\frac{2\sqrt{2}}{3}\right)$   |
| 265. | Angle between the line $\mathbf{r} = 0$         | $2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \lambda(-\mathbf{i} + \mathbf{j} + \mathbf{k})$ and the          | plane <b>r</b> . $(3i + 2j - k) = 4$ is                                   | [AMU 1993]                                        |
|      | (a) $\cos^{-1}\left(\frac{2}{\sqrt{42}}\right)$ | (b) $\cos^{-1}\left(-\frac{2}{\sqrt{42}}\right)$                                                           | (c) $\sin^{-1}\left(\frac{2}{\sqrt{42}}\right)$                           | $(d)  \sin^{-1}\left(-\frac{2}{\sqrt{42}}\right)$ |
|      |                                                 |                                                                                                            |                                                                           | Sphere                                            |
|      |                                                 |                                                                                                            | Basic Level                                                               | V                                                 |
|      |                                                 |                                                                                                            |                                                                           |                                                   |
| 266. | The ratio in which the sphere                   | $x^2 + y^2 + z^2 = 504$ divides the                                                                        | line segment AB joining the points                                        | A(12, -4, 8) and $(27, -9, 18)$ is given by       |
|      | (a) 2:3 externally                              | (b) 2:3 internally                                                                                         | (c) 1:2 externally                                                        | (d) None of these                                 |
| 267. | The graph of the equation $y^2$                 | $z^2 + z^2 = 0$ in three dimensional sp                                                                    | pace is                                                                   |                                                   |
|      | (a) x-axis                                      | (b) z-axis                                                                                                 | (c) y-axis                                                                | (d) yz-plane                                      |
| 268. | A point moves so that the sur                   | m of the squares of its distances fr                                                                       | rom two given points remains const                                        | ant. The locus of the point is                    |
|      | (a) A line                                      | (b) A plane                                                                                                | (c) A sphere                                                              | (d) None of these                                 |
| 269. | The locus of the equation $x^2$                 | $y^2 + y^2 + z^2 + 1 = 0$ is                                                                               |                                                                           |                                                   |
|      | (a) An empty set                                | (b) A sphere                                                                                               | (c) A degenerate set                                                      | (d) A pair of planes                              |
| 270. | Let (3, 4, -1) and (-1, 2, 3) a                 | re the end points of a diameter of                                                                         | sphere. Then the radius of the sphere                                     | re is equal to [Orissa JEE 2003]                  |
|      | (a) 1                                           | (b) 2                                                                                                      | (c) 3                                                                     | (d) 9                                             |
| 271. | The number of spheres of ra-                    | dius 'a' touching all the coordinat                                                                        | te planes is                                                              |                                                   |
|      | (a) 4                                           | (b) 8                                                                                                      | (c) 1                                                                     | (d) None of these                                 |
| 272. | The equation of the sphere to                   | ouching the three coordinate plane                                                                         | s is                                                                      | [AMU 2002]                                        |
|      | (a) $x^2 + y^2 + z^2 + 2a(x + y)$               | $+z)+2a^2=0$                                                                                               | (b) $x^2 + y^2 + z^2 - 2a(x)$                                             | $+y+z)+2a^2=0$                                    |
|      | (c) $x^2 + y^2 + z^2 \pm 2a(x + y)$             | $+z)+2a^2=0$                                                                                               | (d) $x^2 + y^2 + z^2 \pm 2ax = 0$                                         | $\pm 2ay \pm 2az + 2a^2 = 0$                      |
| 273. | Equation $ax^2 + by^2 + cz^2 + 2$               | 2fyz + 2gzx + 2hxy + 2ux + 2vy +                                                                           | -2wz + d = 0 represent, a sphere, if                                      | [MP PET 1990]                                     |

(b) f = g = h = 0

(d) a = b = c and f = g = h = 0

[AMU 1990]

(a) 
$$\left(\frac{a}{2},0,0\right)$$
 (b)  $\left(0,\frac{b}{2},0\right)$  (c)  $\left(0,0,\frac{c}{2}\right)$  (d)  $\left(\frac{a}{2},\frac{b}{2},\frac{c}{2}\right)$ 

275. The equation  $ax^2 + ay^2 + az^2 + 2ux + 2vy + 2wz + d = 0$ ,  $a \neq 0$ , represents a sphere if

(a)  $u^2 + v^2 + w^2 + ad \leq 0$  (b)  $u^2 + v^2 + w^2 + ad \geq 0$  (c)  $u^2 + v^2 + w^2 - ad \leq 0$  (d)  $u^2 + v^2 + w^2 - ad \geq 0$ 

276. The radius of the sphere  $x^2 + y^2 + z^2 - 6x + 8y - 10z + 1 = 0$  is

[Kurukshetra CEE 1994]

(a) 7 (b) 5 (c) 2 (d) 15

277. Centre of the sphere  $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) + (z - z_1)(z - z_2) = 0$  is

(a)  $(x_2, y_2, z_2)$  (b)  $\left(\frac{x_1 - x_2}{2}, \frac{y_1 - y_2}{2}, \frac{z_1 - z_2}{2}\right)$  (c)  $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$  (d)  $(x_1, y_1, z_1)$ 

278. The equation of the tangent plane at a point  $(x_1, y_1, z_1)$  on the sphere  $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$  is

(a)  $xx_1 + yy_1 + zz_1 + ux + vy + wz + d = 0$  (b)  $xx_1 + yy_1 + zz_1 + ux_1 + vy_1 + wz_1 + d = 0$ 

279. If two spheres of radii  $r_1$  and  $r_2$  cut orthogonally, then the radius of the common circle is

(c)  $xx_1 + yy_1 + zz_1 + u(x + x_1) + v(y + y_1) + w(z + z_1) + d = 0$ 

(b) 1

(a)  $x^2 + y^2 + z^2 - 4x - 6y - 8z + 1 = 0$ 

(a) 
$$r_1 r_2$$
 (b)  $\sqrt{(r_1^2 + r_2^2)}$  (c)  $r_1 r_2 \sqrt{(r_1^2 + r_2^2)}$  (d)  $\frac{r_1 r_2}{\sqrt{(r_1^2 + r_2^2)}}$ 

The equation of the sphere, concentric with the sphere  $x^2 + y^2 + z^2 - 4x - 6y - 8z - 5 = 0$  and which passes through (0, 1, 0), is 280.

[Pb. CET 1994]

(c) 
$$x^2 + y^2 + z^2 - 4x - 6y - 5z + 2 = 0$$
 (d)  $x^2 + y^2 + z^2 - 4x - 6y - 5z + 3 = 0$   
1. The radius of the sphere which passes through the points  $(0, 0, 0)$ ,  $(1, 0, 0)$ ,  $(0, 1, 0)$  and  $(0, 0, 1)$  is [AMU]

(c)  $\sqrt{3}$ 

(d) None of these

(b)  $x^2 + y^2 + z^2 - 4x - 6y - 8z + 5 = 0$ 

281.

[AMU 1991]

282. The coordinates of the centre of the sphere 
$$(x+1)(x+3)+(y-2)(y-4)+(z+1)(z+3)=0$$
 are [AMU 1987]

(b) (-1, 1, -1)

Equation of the sphere with centre (1, -1, 1) and radius equal to that of sphere  $2x^2 + 2y^2 + 2z^2 - 2x + 4y - 6z = 1$  is 283.

[DCE 1994]

(d)  $\sqrt{3}/2$ 

(a) 
$$x^2 + y^2 + z^2 + 2x - 2y + 2z + 1 = 0$$
   
(b)  $x^2 + y^2 + z^2 - 2x + 2y - 2z - 1 = 0$    
(c)  $x^2 + y^2 + z^2 - 2x + 2y - 2z + 1 = 0$    
(d) None of these

The equation of the sphere concentric with the sphere  $x^2 + y^2 + z^2 - 2x - 6y - 8z - 5 = 0$  and which passes through the origin is 284.

[Pb. CET 1990]

(a) 
$$x^2 + y^2 + z^2 - 2x - 6y - 8z = 0$$
  
(b)  $x^2 + y^2 + z^2 - 6y - 8z = 0$   
(c)  $x^2 + y^2 + z^2 = 0$   
(d) None of these

The equation of the sphere with centre at (2, 3, -4) and touching the plane 2x + 6y - 3z + 15 = 0 is 285.

(a) 
$$x^2 + y^2 + z^2 - 4x - 6y + 8z - 20 = 0$$
  
(b)  $x^2 + y^2 + z^2 + 4x - 6y - 8z - 20 = 0$   
(c)  $x^2 + y^2 + z^2 - 4x - 6y + 8z + 20 = 0$   
(d) None of these

Spheres  $x^2 + y^2 + z^2 + x + y + z - 1 = 0$  and  $x^2 + y^2 + z^2 + x + y + z - 5 = 0$ 286. [AMU 1991]

#### **376** Three Dimensional Co-ordinate Geometry

| (a)  | Intersect in a plane  |
|------|-----------------------|
| If r | he position vector of |

(b) Intersect in five points

(c) Do not intersect

(d) None of these

287. If  $\mathbf{r}$  be position vector of any point on a sphere and  $\mathbf{a}$  and  $\mathbf{b}$  are respectively position vectors of the extremities of a diameter, then

[AMU 1999]

(a) 
$$\mathbf{r} \cdot (\mathbf{a} - \mathbf{b}) = 0$$

(b) 
$$\mathbf{r} \cdot (\mathbf{r} - \mathbf{a}) = 0$$

(c) 
$$(\mathbf{r} + \mathbf{a}) \cdot (\mathbf{r} + \mathbf{b}) = 0$$

(d) 
$$(\mathbf{r} - \mathbf{a}) \cdot (\mathbf{r} - \mathbf{b}) = 0$$

288. The centre of the sphere  $\alpha \mathbf{r} - 2\mathbf{u} \cdot \mathbf{r} = \beta$ ,  $(\alpha \neq 0)$  is [AMU 1999]

(a) 
$$-\mathbf{u}/\alpha$$

(b) 
$$\mathbf{u}/\alpha$$

(c) 
$$\alpha \mathbf{u} / \beta$$

(d) 
$$\frac{\alpha + \beta}{\alpha} \mathbf{u}$$

The spheres  $\mathbf{r}^2 + 2\mathbf{u}_1$ .  $\mathbf{r} + 2\mathbf{d}_1 = 0$  and  $\mathbf{r}^2 + 2\mathbf{u}_2$ .  $\mathbf{r} + 2\mathbf{d}_2 = 0$  cut orthogonally, if 289.

[AMU 1999]

(a) 
$$\mathbf{u_1} \cdot \mathbf{u_2} = \mathbf{0}$$

(b) 
$$u_1 + u_2 = 0$$

$$(c) \quad \mathbf{u_1} \cdot \mathbf{u_2} = \mathbf{d_1} + \mathbf{d_2}$$

(d) 
$$(\mathbf{u}_1 - \mathbf{u}_2) \cdot (\mathbf{u}_1 + \mathbf{u}_2) = \mathbf{d}_1^2 + \mathbf{d}_2^2$$

#### Advance level

290. If a sphere of constant radius k passes through the origin and meets the axis in A, B, C then the centroid of the triangle ABC lies on

(a) 
$$x^2 + y^2 + z^2 = k^2$$

(a) 
$$x^2 + y^2 + z^2 = k^2$$
 (b)  $x^2 + y^2 + z^2 = 4k^2$ 

(c) 
$$9(x^2 + y^2 + z^2) = 4k^2$$
 (d)  $9(x^2 + y^2 + z^2) = k^2$ 

(d) 
$$9(x^2 + y^2 + z^2) = k^2$$

The smallest radius of the sphere passing through (1, 0, 0), (0, 1, 0) and (0, 0, 1) is 291.

[Pb. CET 1997,99; Kurukshetra CEE 1996]

(a) 
$$\sqrt{\frac{3}{5}}$$

(b) 
$$\sqrt{\frac{3}{8}}$$

(c) 
$$\sqrt{\frac{2}{3}}$$

(d) 
$$\sqrt{\frac{5}{12}}$$

In order that bigger sphere (centre  $C_1$ , radius R) may fully contain a smaller sphere (center  $C_2$ , radius r), the correct relationship is

[AMU 1991]

(a) 
$$C_1 C_2 < r + R$$
 (b)  $C_1 C_2 < R - r$ 

(b) 
$$C_1 C_2 < R - R_1$$

(c) 
$$C_1C_2 < 2(R-r)$$

(d) 
$$C_1 C_2 < \frac{1}{2} (R + r)$$

**293.** A sphere  $x^2 + y^2 + z^2 = 9$  is cut by the plane x + y + z = 3. The radius of the circle so formed is

(a) 
$$\sqrt{6}$$

(b) 
$$\sqrt{3}$$

The radius of the circle  $x^2 + y^2 + z^2 - 2y - 4z = 11$ , x + 2y + 2z = 15 is

[AMU 1990,92]

(b) 
$$\sqrt{7}$$

The line  $\frac{x+1}{z-1} = \frac{y-12}{z-1} = \frac{z-7}{2}$  cuts the surface  $11x^2 - 5y^2 + z^2 = 0$  in the point

(a) 
$$(1, 1, 1)$$
 and  $(1, 2, 3)$ 

(b) 
$$(1, -1, 2)$$
 and  $(1, 2, 4)$ 

(c) 
$$(1, 2, 3)$$
 and  $(2, -3, 1)$ 

296. The equation of the sphere circumscribing the tetrahedron whose faces are x = 0, y = 0, z = 0 and x/a + y/b + z/c = 1 is

(a) 
$$x^2 + y^2 + z^2 = a^2 + b^2 + c^2$$

(b) 
$$x^2 + y^2 + z^2 - ax - by - cz = 0$$

(c) 
$$x^2 + y^2 + z^2 - 2ax - 2by - 2cz = 0$$

297. A plane passes through a fixed point (a, b, c). The locus of the foot of the perpendicular drawn to it from the origin is

(a) 
$$x^2 + y^2 + z^2 + ax + by + cz = 0$$

(b) 
$$x^2 + y^2 + z^2 - ax - by - cz = 0$$

(c) 
$$x^2 + y^2 + z^2 + 2ax + 2by + 2cz = 0$$

(d) 
$$x^2 + y^2 + z^2 + 2ax - 2by - 2cz = 0$$

**298.** The equation of the sphere passing through the point (1, 3, -2) and the circle  $y^2 + z^2 = 25$  and x = 0 is

[DCE 1998]

(a) 
$$x^2 + y^2 + z^2 + 11x + 25 = 0$$

(b) 
$$x^2 + y^2 + z^2 - 11x + 25 = 0$$

(c) 
$$x^2 + y^2 + z^2 + 11x - 25 = 0$$

(d) 
$$x^2 + y^2 + z^2 - 11x - 25 = 0$$

**299.** Radius of the circle 
$$\mathbf{r}^2 + \mathbf{r} \cdot (2\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) - 19 = 0$$
,  $\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + 8 = 0$  is

[Kurukshetra CEE 1996, DCE 1997]

**300.** The shortest distance from the point (1, 2, -1) to the surface of the sphere  $x^2 + y^2 + z^2 = 24$  is

[Pb. CET 1996]

(a) 
$$3\sqrt{6}$$

(b) 
$$2\sqrt{6}$$

(c) 
$$\sqrt{6}$$

\*\*\*



# **Three Dimensional Co-ordinate Geometry**

Assignment (Basic and Advance

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| С   | С   | a   | С   | b   | b   | d   | b   | a   | b   | d   | a   | С   | d   | С   | b   | С   | b   | d   | a   |
| 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| b   | С   | a   | b   | d   | С   | b   | a   | b   | b   | a   | d   | С   | a   | a   | d   | a   | b   | d   | d   |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| a   | b   | d   | a   | b   | a   | b   | С   | b   | a   | d   | a   | a   | d   | С   | a   | a   | b   | d   | d   |
| 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| d   | b   | b   | С   | С   | a   | b   | b   | d   | a   | a   | b   | b   | a   | b   | a   | b   | d   | d   | С   |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 |
| b   | b   | a   | С   | a   | d   | a   | a   | d   | С   | a   | b   | d   | d   | a   | d   | d   | d   | a   | a   |
| 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| b   | С   | С   | С   | a   | d   | b   | b   | С   | С   | a   | b   | a   | С   | С   | a   | С   | С   | b   | b   |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 |
| b   | d   | С   | b   | С   | d   | С   | d   | d   | a   | С   | С   | d   | С   | a   | С   | b   | b   | a   | С   |
| 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 |
| a   | С   | b   | С   | d   | b   | b   | b   | a   | a   | d   | d   | a   | a   | d   | d   | a   | b   | a   | a   |
| 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| d   | a   | b   | a   | С   | a   | a   | b   | b   | d   | d   | a   | a   | a   | d   | a   | d   | b   | a   | d   |
| 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 |
| b   | С   | b   | d   | b   | a   | С   | a   | a   | a   | b   | b   | С   | b   | d   | b   | С   | a   | b   | a   |
| 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 |
| a   | b   | a   | С   | d   | b   | С   | b   | b   | d   | a   | a   | a   | d   | a   | b   | b   | b   | С   | b   |
| 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 |
| С   | a   | b   | d   | С   | С   | b   | b   | b   | a   | a   | d   | a   | a   | a   | С   | b   | a   | d   | d   |
| 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 |
| С   | С   | b   | С   | С   | a   | d   | d   | b   | d   | d   | a   | a   | b   | d   | b   | С   | b   | С   | a   |
| 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 |
| С   | С   | С   | a   | d   | a   | a   | С   | a   | С   | b   | d   | d   | d   | d   | a   | С   | С   | d   | b   |
| 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 |

|   |   |   |   |   |   |   |   |   |   |   |   |   | C | ircle a | and S | ystem | of Ci | rcles | 379 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---------|-------|-------|-------|-------|-----|
| d | d | b | a | a | С | d | d | С | С | С | b | a | b | С       | b     | b     | С     | С     | С   |