14. Construction: (Construction of a triangle equal in area of a quadrilateral)

Draw and See 14

1. Question

Pritam drew a quadrilateral ABCD of which AB = 5 cm, BC = 6 cm, CD = 4 cm, DA = 3 cm and $\angle ABC = 60^{\circ}$, I draw a triangle with equal area of that quadrilateral.

Answer

A. Draw the given quadrilateral ABCD.

B. Draw the diagonal DB of quadrilateral ABCD.

C. Draw a parallel line through point A to diagonal DB of quadrilateral ABCD which intersects at F produced BC.

D. Join FD, AF||BD

 Δ DFC is the required triangle.

Proof:

 $\Delta ABD = \Delta BFD$ (on same base DB and between same parallels DB and AF)

 $\therefore \Delta ABD = \Delta BFD$

 $\Delta DBC + \Delta ABD = \Delta BFD + \Delta DBC$ (adding area of ΔDBC on both sides)

 \therefore quadrilateral ABCD = Δ DFC

2. Question

Sahana drew a quadrilateral ABCD of which AB = 4 cm, BC = 5 cm, CD = 4.8 cm, DA = 4.2 cm and diagonal AC = 6 cm. I draw a triangle with equal area of that quadrilateral.

Answer

- A. Draw the given quadrilateral ABCD.
- B. Draw the diagonal AC of quadrilateral ABCD.

C. Draw a parallel line through point D to diagonal AC of quadrilateral ABCD which intersects at F produced BC.

D. DF||AC, ABF is the required triangle.

Proof:

 Δ ADC = Δ ACF (on same base AC and between same parallels AC and DF)

 $\therefore \Delta ADC = \Delta ACF$

 $\triangle ABC + \triangle ADC = \triangle ACF + \triangle ABC$ (adding area of $\triangle ABC$ on both sides)

 \therefore quadrilateral ABCD = Δ ABF

3. Question

Sahana drew a rectangle ABCD of which AB = 4 cm and BC = 6 cm. I draw a triangle with equal area of that rectangle.

Answer

A. Draw the given rectangle ABCD.

B. Draw the diagonal AC of rectangle ABCD.

C. Draw a parallel line through point D to diagonal AC of rectangle ABCD which intersects at F produced BC.

D. DF||AC, \triangle ABE is the required triangle.

Proof:

 $\Delta ACE = \Delta ADC$ (on same base AC and between same parallels AC and DE)

$$\therefore \Delta ACE = \Delta ADC$$

 $\triangle ABC + \triangle ADC = \triangle ACE + \triangle ABC$ (adding area of $\triangle ABC$ on both sides)

 \therefore rectangle ABCD = \triangle ABE

4. Question

I draw a quadrilateral ABCD of which BC = 6 cm, AB = 4 cm, CD = 3 cm, \angle ABC = 60°, \angle BCD = 55°, I draw a triangle with equal area of that quadrilateral of which one side is along side AB and other side is along side BC.

Answer

A. Draw the given quadrilateral ABCD.

B. Draw the diagonal AC of quadrilateral ABCD.

C. Draw a parallel line through point D to diagonal AC of quadrilateral ABCD which intersects at E produced BC.

D. DE ||AC, \triangle ABE is the required triangle.

Proof:

 $\therefore \Delta ACE = \Delta ADC$

 $\triangle ABC + \triangle ADC = \triangle ACE + \triangle ABC$ (adding area of $\triangle ABC$ on both sides)

 \therefore quadrilateral ABCD = \triangle ABE

5. Question

I draw a square with side 5 cm. I draw a parallelogram with equal area of square of which one angle is 60°.

Answer

A. Draw the given square ABCD.

B. Draw the diagonal DB of square ABCD.

C. Draw a parallel line through point C to diagonal DB of square ABCD which intersects at E produced AB.

D. CE||DB.

Proof:

Since sides of square are equal and parallel, AB||DC and thus, DC||AE.

 \therefore square ABCD = \triangle ABE (on same base DC and between same parallels DC and AE)

6. Question

I draw a square with side 6 cm. and I draw a triangle with equal area of that square.

Answer

A. Draw the given square ABCD.

B. Draw the diagonal DB of square ABCD.

C. Draw a parallel line through point C to diagonal DB of square ABCD which intersects at E produced AB.

D. CE||DB. \triangle ADE is the required triangle.

Proof:

 $\therefore \Delta \text{DCB} = \Delta \text{DBE}$

 $\triangle ABD + \triangle DCB = \triangle DBE + \triangle ABD$ (adding area of $\triangle ABD$ on both sides)

 \therefore square ABCD = \triangle ADE

7. Question

I draw a quadrilateral ABCD of which AD and BC are perpendicular on side AB and AB = 5 cm, AD = 7 cm and BC = 4 cm. I draw a triangle with equal area of that quadrilateral of which one angle is 30° .

Answer

A. Draw the given quadrilateral ABCD.

B. Draw the diagonal DB of quadrilateral ABCD.

C. Draw a parallel line through point C to diagonal DB of quadrilateral ABCD which intersects at Q produced AD.

D. CQ||DB, \triangle ABQ is the required triangle.

Proof:

 $\Delta DCB = \Delta DBQ$ (on same base DB and between same parallels DB and CQ)

 $\therefore \Delta DCB = \Delta DBQ$

 $\Delta ABD + \Delta DCB = \Delta DBQ + \Delta ABD$ (adding area of ΔABD on both sides)

 \therefore quadrilateral ABCD = \triangle ABQ

Taking BQ as a base, we draw another Δ BCE with one angle 30⁰ and between the parallels DQ and BC.

 $\therefore \Delta BCE = quadrilateral ABCD$

8. Question

I draw any pentagon ABCDE and draw a triangle with equal area of it of which one vertex is C.

Answer

A. Draw the given pentagon ABCDE.

B. Draw the diagonal AC of pentagon ABCDE.

C. Draw a parallel line through point E to diagonal AC of pentagon ABCDE which intersects at F produced AB.

D. AC||FD, \triangle ABC is the required triangle.

<u>Proof:</u>

 Δ ACF = quadrilateral ACED (on same base AC and between same parallels AC and FD)

```
\therefore \Delta ACF = quadrilateral ACED
```

 $\Delta ABC + \Delta ACF =$ quadrilateral ACED + ΔABC (adding area of ΔABC on both sides)

 $\therefore \Delta ABC = pentagon ABCDE$