# Class X Session 2024-25 Subject - Mathematics (Basic) Sample Question Paper - 2

#### **Time Allowed: 3 hours**

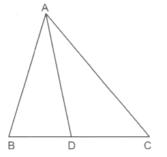
#### **General Instructions:**

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 MCQs carrying 1 mark each
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case-based integrated units of assessment carrying 04 marks each.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E
- 8. Draw neat figures wherever required. Take  $\pi = \frac{22}{7}$  wherever required if not stated.

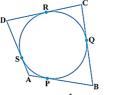
#### Section A

| If a is rational and $\sqrt{b}$ is irrational, then $a+\sqrt{b}$ is: |                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a) an irrational number                                              | b) an integer                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) a natural number                                                  | d) a rational number                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 120 can be expressed as a product of its prime factors               | as                                                                                                                                                                                                                                                                                                                                                                                                                                     | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) $_{15 \times 2^3}$                                                | b) $5 \times 2^3 \times 3$                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) 5 × 8 × 3                                                         | d) $_{10} \times 2^2 \times 3$                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| If the equation $9x^2 + 6kx + 4 = 0$ has equal roots then            | k = ?                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) -2 or 0                                                           | b) 0 only                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) 2 or 0                                                            | d) 2 or -2                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The value of k for which the system of linear equation               | ns $x + 2y = 3$ , $5x + ky + 7 = 0$ is inconsistent is:                                                                                                                                                                                                                                                                                                                                                                                | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) $-\frac{14}{3}$                                                   | b) 5                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) $\frac{2}{5}$                                                     | d) 10                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A quadratic equation whose one root is 3 is                          |                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) $x^2 - 5x + 6 = 0$                                                | b) $x^2 - 6x - 6 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) $x^2 - 5x - 6 = 0$                                                | d) $x^2 + 6x - 5 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                      | a) an irrational number<br>c) a natural number<br>120 can be expressed as a product of its prime factors<br>a) $15 \times 2^3$<br>c) $5 \times 8 \times 3$<br>If the equation $9x^2 + 6kx + 4 = 0$ has equal roots then<br>a) $-2$ or $0$<br>c) $2$ or $0$<br>The value of k for which the system of linear equation<br>a) $-\frac{14}{3}$<br>c) $\frac{2}{5}$<br>A quadratic equation whose one root is 3 is<br>a) $x^2 - 5x + 6 = 0$ | a) an irrational numberb) an integerc) a natural numberd) a rational number10 a rational numbera) $15 \times 2^3$ a) $15 \times 2^3$ b) $5 \times 2^3 \times 3$ c) $5 \times 8 \times 3$ b) $10 \times 2^2 \times 3$ If the equation $9x^2 + 6kx + 4 = 0$ has equal roots then $t = ?$ a) $-2$ or $0$ b) $2 \text{ or } -2$ The value of k for which the system of linear equation:<br>$x + 2y = 3$ , $5x + ky + 7 = 0$ is inconsistent is:a) $-\frac{14}{3}$ b) $5$ c) $\frac{2}{5}$ d) $10$ A quadratic equation whose one root is $3$ is:a) $x^2 - 5x + 6 = 0$ |

6. If (a, 0), (0, b) and (x, y) are collinear, then


Page 1 of 18

Maximum Marks: 80


[1]

|     | a) ay - bx = 1                                                                                                                                                                                                                                                                                                                  | b) $ax + by = 1$                                          |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----|
|     | c) $ay + bx = ab$                                                                                                                                                                                                                                                                                                               | d) ax - by = ab                                           |     |
| 7.  | $\triangle$ ABC is such that AB = 3 cm, BC = 2 cm and CA = perimeter of $\triangle$ DEF is                                                                                                                                                                                                                                      |                                                           | [1] |
|     | a) 30 cm                                                                                                                                                                                                                                                                                                                        | b) 15 cm                                                  |     |
|     | c) 22.5 cm                                                                                                                                                                                                                                                                                                                      | d) 7.5 cm                                                 |     |
| 8.  | In the given figure, DE    BC and all measurements are $A$                                                                                                                                                                                                                                                                      | e given in centimetres. The length of AE is:              | [1] |
|     | a) 2.75 cm                                                                                                                                                                                                                                                                                                                      | b) 2.5 cm                                                 |     |
|     | c) 2 cm                                                                                                                                                                                                                                                                                                                         | d) 2.25 cm                                                |     |
| 9.  | A tangent PQ at point of contact P to a circle of radius that OQ = 20 cm, length of tangent PQ is:<br>$12m \frac{P}{0}$                                                                                                                                                                                                         | s 12 cm meets the line through centre O to a point Q such | [1] |
|     | a) 15 cm                                                                                                                                                                                                                                                                                                                        | b) 12 cm                                                  |     |
|     | c) 13 cm                                                                                                                                                                                                                                                                                                                        | d) 16 cm                                                  |     |
| 10. | If $\sqrt{3} \tan 2\theta - 3 = 0$ then $\theta$ = ?                                                                                                                                                                                                                                                                            |                                                           | [1] |
|     | a) 30°                                                                                                                                                                                                                                                                                                                          | b) 60°                                                    |     |
|     | c) <sub>15</sub> °                                                                                                                                                                                                                                                                                                              | d) <sub>45</sub> °                                        |     |
| 11. | 1. There is a small island in the middle of a 50 m wide river. A tall tree stands on the island. P and Q are points directly opposite to each other on the two banks, and in line with the tree. If the angles of elevation of the top of the tree from P and Q are respectively 60° and 30°, then find the height of the tree. |                                                           | [1] |
|     | a) 22.65 m                                                                                                                                                                                                                                                                                                                      | b) 23.56 m                                                |     |
|     | c) 24.69 m                                                                                                                                                                                                                                                                                                                      | d) 21.65 m                                                |     |
| 12. | If $\cos \theta = \frac{2}{3}$ , then $2 \sec^2 \theta + 2 \tan^2 \theta - 7$ is equal to                                                                                                                                                                                                                                       | u) 21.05 m                                                | [1] |
|     | a) 1                                                                                                                                                                                                                                                                                                                            | b) 4                                                      |     |
|     | c) 0                                                                                                                                                                                                                                                                                                                            | d) 3                                                      |     |
| 13. | The area of a quadrant of a circle whose circumference                                                                                                                                                                                                                                                                          |                                                           | [1] |
|     | a) 7546 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                         | b) 7500 cm <sup>2</sup>                                   |     |
|     | c) 7564 cm <sup>2</sup>                                                                                                                                                                                                                                                                                                         | d) 7456 cm <sup>2</sup>                                   |     |
| 14. | Find the area of the sector if the radius is 5 cm and wi                                                                                                                                                                                                                                                                        | th an angle of 50°.                                       | [1] |

| c) 13.90 cm                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a) 10.90 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                              | c) 13.90 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) 11.90 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| One card is drawn at random from a well-shuffled deck of 52 cards. What is the probability of getting a black face card?                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a) $\frac{3}{13}$<br>c) $\frac{3}{26}$                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) $\frac{3}{14}$<br>d) $\frac{1}{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| In a data, if $l = 60$ , $h = 1$                                                                                                                                             | 5, f <sub>1</sub> = 16, f <sub>0</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6, f <sub>2</sub> = 6, then t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he mode is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) 67.5                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) 60                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r radii being equal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | to 1cm and the height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) $\pi  cm^3$                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) $4\pi \ cm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) $2\picm^3$                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) $3\pi \ cm^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The median class for the                                                                                                                                                     | e data given belo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ow is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Class                                                                                                                                                                        | 20 - 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 - 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60 - 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80 - 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Frequency                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a) 80 - 100                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | b) 60 - 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| c) 20 - 40                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) 40 - 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\overline{0)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| a) Both A and R are explanation of A.                                                                                                                                        | true and R is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ot the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) A is true but R is a                                                                                                                                                      | false.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) A is false but R is true.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Assertion (A):</b> L.C.M. and H.C.F. of a and 20 are 100 and 10 respectively, then a = 50. <b>Reason (R):</b> L.C.M $\times$ H.C.F. = First number $\times$ Second number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| a) Both A and R are true and R is the correct explanation of A.                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e correct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | b) Both A and R are true but R is not the correct explanation of A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| c) A is true but R is a                                                                                                                                                      | false.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) A is false but l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R is true.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                              | arallol or coinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | intersect at a point, are parallel or coincide: $6x - 3y + 10 = 0$ ; $2x - y + 9 = 0$ .<br>In $\triangle ABC$ , D and E are the points on the sides AB and AC respectively such that DE  BC. If AD = $6x - 7$ , DB = [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ntersect at a point, are p                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f AD = 6x - 7. DB =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ntersect at a point, are p                                                                                                                                                   | the points on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e sides AB and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AC respectively s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f AD = 6x - 7, DB =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                              | c) $\frac{3}{26}$<br>in a data, if 1 = 60, h = 1<br>a) 67.5<br>c) 60<br>A solid is in the shape of<br>of the cone is equal to it<br>a) $\pi$ cm <sup>3</sup><br>c) $2\pi$ cm <sup>3</sup><br>The median class for the<br>Class<br>Frequency<br>a) 80 - 100<br>c) 20 - 40<br>Assertion (A): Distance<br>Reason (R): Distance of<br>a) Both A and R are<br>explanation of A.<br>c) A is true but R is in<br>Assertion (A): L.C.M. A<br>Reason (R): L.C.M × D<br>a) Both A and R are<br>explanation of A. | c) $\frac{3}{26}$<br>in a data, if l = 60, h = 15, f <sub>1</sub> = 16, f <sub>0</sub> =<br>a) 67.5<br>c) 60<br>A solid is in the shape of a cone standin<br>of the cone is equal to its radius. The vol-<br>a) $\pi \ cm^3$<br>c) $2\pi \ cm^3$<br>The median class for the data given below<br>Class 20 - 40<br>Frequency 10<br>a) 80 - 100<br>c) 20 - 40<br>Assertion (A): Distance of point (a, b) =<br>Reason (R): Distance of point (x, y) from<br>a) Both A and R are true and R is the<br>explanation of A.<br>c) A is true but R is false.<br>Assertion (A): L.C.M. and H.C.F. of a a<br>Reason (R): L.C.M × H.C.F. = First nu<br>a) Both A and R are true and R is the | c) $\frac{3}{26}$<br>in a data, if $l = 60$ , $h = 15$ , $f_1 = 16$ , $f_0 = 6$ , $f_2 = 6$ , then t<br>a) 67.5<br>c) 60<br>A solid is in the shape of a cone standing on a hemisph<br>of the cone is equal to its radius. The volume of the sol<br>a) $\pi \ cm^3$<br>c) $2\pi \ cm^3$<br>The median class for the data given below is:<br>Class 20 - 40 40 - 60<br>Frequency 10 12<br>a) 80 - 100<br>c) 20 - 40<br>Assertion (A): Distance of point (a, b) from origin is $\sqrt{10}$<br>a) Both A and R are true and R is the correct<br>explanation of A.<br>c) A is true but R is false.<br>Assertion (A): L.C.M. and H.C.F. of a and 20 are 100<br>Reason (R): L.C.M × H.C.F. = First number × Secon<br>a) Both A and R are true and R is the correct<br>explanation of A. | c) $\frac{3}{26}$ d) $\frac{1}{26}$<br>in a data, if $l = 60$ , $h = 15$ , $f_1 = 16$ , $f_0 = 6$ , $f_2 = 6$ , then the mode is<br>a) 67.5 b) 72<br>c) 60 d) 62<br>A solid is in the shape of a cone standing on a hemisphere with both their<br>of the cone is equal to its radius. The volume of the solid is<br>a) $\pi \ cm^3$ b) $4\pi \ cm^3$<br>c) $2\pi \ cm^3$ d) $3\pi \ cm^3$<br>The median class for the data given below is:<br>Class 20 - 40 40 - 60 60 - 80<br>Frequency 10 12 14<br>a) 80 - 100 b) 60 - 80<br>c) $20 - 40$ d) $40 - 60$<br>Assertion (A): Distance of point (a, b) from origin is $\sqrt{b^2 - a^2}$<br>Reason (R): Distance of point (a, b) from origin is $\sqrt{(x - 0)^2 + (y - 0)^2}$<br>a) Both A and R are true and R is the correct b) Both A and R<br>explanation of A. correct explan<br>c) A is true but R is false. d) A is false but I<br>Assertion (A): L.C.M. and H.C.F. of a and 20 are 100 and 10 respective<br>Reason (R): L.C.M × H.C.F. = First number × Second number<br>a) Both A and R are true and R is the correct b) Both A and R<br>explanation of A. correct explan<br>c) A is true but R is false. b) Both A and R<br>explanation of A. correct explan<br>c) A is true but R is false. correct b) Both A and R<br>explanation of A. correct explan<br>c) A is true but R is false. b) A is false but I<br>Assertion (A): L.C.M × H.C.F. = First number × Second number<br>a) Both A and R are true and R is the correct b) Both A and R | c) $\frac{3}{26}$ d) $\frac{1}{26}$<br>in a data, if $l = 60$ , $h = 15$ , $f_1 = 16$ , $f_0 = 6$ , $f_2 = 6$ , then the mode is<br>a) $67.5$ b) $72$<br>c) $60$ d) $62$<br>A solid is in the shape of a cone standing on a hemisphere with both their radii being equal<br>of the cone is equal to its radius. The volume of the solid is<br>a) $\pi \ cm^3$ b) $4\pi \ cm^3$<br>c) $2\pi \ cm^3$ d) $3\pi \ cm^3$<br>The median class for the data given below is:<br>Class 20 - 40 40 - 60 60 - 80 80 - 100<br>Frequency 10 12 14 13<br>a) $80 - 100$ b) $60 - 80$<br>c) $20 - 40$ d) $40 - 60$<br>Assertion (A): Distance of point (a, b) from origin is $\sqrt{b^2 - a^2}$<br>Reason (R): Distance of point (a, b) from origin is $\sqrt{(x - 0)^2 + (y - 0)^2}$<br>a) Both A and R are true and R is the correct b) Both A and R are true but R is no<br>explanation of A. correct explanation of A.<br>c) A is true but R is false. d) A is false but R is true.<br>Assertion (A): L.C.M. and H.C.F. of a and 20 are 100 and 10 respectively, then $a = 50$ .<br>Reason (R): L.C.M × H.C.F. = First number × Second number<br>a) Both A and R are true and R is the correct b) Both A and R are true but R is no<br>explanation of A. correct explanation of A. | c) $\frac{3}{26}$ d) $\frac{1}{26}$<br>in a data, if $1 = 60$ , $h = 15$ , $f_1 = 16$ , $f_0 = 6$ , $f_2 = 6$ , then the mode is<br>a) $67.5$ b) $72$<br>c) $60$ d) $62$<br>A solid is in the shape of a cone standing on a hemisphere with both their radii being equal to 1cm and the height<br>of the cone is equal to its radius. The volume of the solid is<br>a) $\pi cm^3$ b) $4\pi cm^3$<br>c) $2\pi cm^3$ d) $3\pi cm^3$<br>The median class for the data given below is:<br>Class 20 - 40 40 - 60 60 - 80 80 - 100 100 - 120<br>Frequency 10 12 14 13 17<br>a) $80 - 100$ b) $60 - 80$<br>c) $20 - 40$ d) $40 - 60$<br>Assertion (A): Distance of point (a, b) from origin is $\sqrt{b^2 - a^2}$<br>Reason (R): Distance of point (a, b) from origin is $\sqrt{(x - 0)^2 + (y - 0)^2}$<br>a) Both A and R are true and R is the correct b) Both A and R are true but R is not the<br>explanation of A. correct explanation of A.<br>c) A is true but R is false. d) A is false but R is true.<br>Assertion (A): L.C.M. and H.C.F. of a and 20 are 100 and 10 respectively, then $a = 50$ .<br>Reason (R): L.C.M × H.C.F. = First number × Second number<br>a) Both A and R are true and R is the correct b) Both A and R are true but R is not the<br>explanation of A. correct explanation of A.<br>c) A is true but R is false. b) Both A and R are true but R is not the<br>explanation of A. correct explanation of A.<br>c) A is true but R is false. c) A is false but R is true. |



23. A quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = AD + BC



- 24. If  $\sin \alpha = \frac{1}{\sqrt{2}}$  and  $\cot \beta = \sqrt{3}$ , then find the value of  $\csc \alpha + \csc \beta$ .
- 25. An umbrella has 8 ribs which are equally spaced (see figure). Assuming umbrella to be a flat circle of radius 45 [2] cm, Find the area between the two consecutive ribs of the umbrella.

[2]

[2]



OR

Find the area of the segment of a circle of radius 14 cm, if the length of the corresponding arc APB is 22 cm.

#### Section C

| 26. | Explain why 7 $\times$ 11 $\times$ 13 + 13 and 7 $\times$ 6 $\times$ 5 $\times$ 4 $\times$ 3 $\times$ 2 $\times$ 1 + 5 are composite numbers. | [3] |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 27. | Find the zeroes of the given quadratic polynomials and verify the relationship between the zeroes and the                                     | [3] |
|     | coefficients. $6x^2 - 3 - 7x$                                                                                                                 |     |

28. The sum of the digits of a two-digit number is 9. Also, nine times this number is twice the number obtained by [3] reversing the order of the number. Find the number. Solve the pair of the linear equation obtained by the elimination method.

OR

The sum of a two-digit number and the number obtained by reversing the order of its digits is 165. If the digits differ by 3, find the number.

29. ABCD is a quadrilateral such that  $\angle D = 90^{\circ}$ . A circle C (O, r) touches the sides AB, BC, CD and DA at P, Q, R [3] and S respectively. If BC = 38 cm, CD = 25 cm and BP = 27 cm, Find r.

30. Prove that 
$$\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \frac{1}{\sec\theta - \tan\theta}$$
, using identity  $\sec^2\theta = 1 + \tan^2\theta$ . [3]

Prove:  $\frac{1}{(\cot A)(\sec A) - \cot A} - \csc A = \csc A - \frac{1}{(\cot A)(\sec A) + \cot A}$ 

31. Two different dice are rolled together. Find the probability of getting (i) the sum of numbers on two dice to be 5, [3](ii) even number on both dice, (iii) a doublet.

#### Section D

32. A rectangular field is 20 m long and 14 m wide. There is a path of equal width all around it, having an area of [5]111 sq m. Find the width of the path.

OR

If the price of a book is reduced by  $\gtrless$ 5, a person can buy 5 more books for  $\gtrless$  300. Find the original list price of the book.

- 33. If BD and QM are medians of triangles ABC and PQR, respectively, where  $\triangle ABC \sim \triangle PQR$ , prove that [5]  $\frac{AB}{PQ} = \frac{BD}{QM}$ .
- 34. A solid is in the shape of a cone surmounted on a hemisphere with both their diameters being equal to 7 cm and [5] the height of the cone is equal to its radius. Find the volume of the solid.

### OR

A solid consisting of a right cone standing on a hemisphere is placed upright in a right circular cylinder full of water and touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is 60 cm and its height is 180 cm, the radius of the hemisphere is 60 cm and height of the cone is 120 cm, assuming that the hemisphere and the cone have common base.

35. The following table gives the distribution of the life time of 400 neon lamps:

| Lite time (in hours) | Number of lamps |
|----------------------|-----------------|
| 1500-2000            | 14              |
| 2000-2500            | 56              |
| 2500-3000            | 60              |
| 3000-3500            | 86              |
| 3500-4000            | 74              |
| 4000-4500            | 62              |
| 4500-5000            | 48              |

Find the median life time of a lamp.

### Section E

#### 36. **Read the following text carefully and answer the questions that follow:**

Saving money is a good habit and it should be inculcated in children right from the beginning. Rehan's mother brought a piggy bank for Rehan and puts one  $\gtrless$  5 coin of her savings in the piggy bank on the first day. She increases his savings by one  $\gtrless$  5 coin daily.



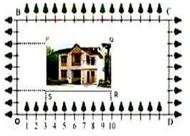
Based on the above information, answer the following questions:

- i. How many coins were added to the piggy bank on 8<sup>th</sup> day?
- ii. How much money will be there in the piggy bank after 8 days?
- iii. a. If the piggy bank can hold one hundred twenty ₹ 5 coins in all find the number of days she can contribute to put ₹ 5 coins into it.
  - OR

[4]

[5]

b. Find the total money saved, when the piggy bank is full.


#### 37. Read the following text carefully and answer the questions that follow:

Using Cartesian Coordinates we mark a point on a graph by how far along and how far up it is.

The left-right (horizontal) direction is commonly called X-axis.

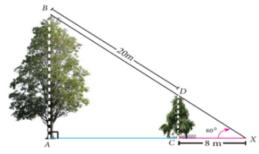
The up-down (vertical) direction is commonly called Y-axis.

In Green Park, New Delhi Suresh is having a rectangular plot ABCD as shown in the following figure. Sapling of Gulmohar is planted on the boundary at a distance of 1 m from each other. In the plot, Suresh builds his house in the rectangular area PQRS. In the remaining part of plot, Suresh wants to plant grass.



i. Find the coordinates of the midpoints of the diagonal QS. (1)

ii. Find the length and breadth of rectangle PQRS? (1)


iii. Find Area of rectangle PQRS. (2)

#### OR

Find the diagonal of rectangle. (2)

### 38. Read the following text carefully and answer the questions that follow:

Two trees are standing on flat ground. The angle of elevation of the top of Both the trees from a point X on the ground is  $60^{\circ}$ . If the horizontal distance between X and the smaller tree is 8 m and the distance of the top of the two trees is 20 m.



i. Calculate the distance between the point X and the top of the smaller tree. (1)

ii. Calculate the horizontal distance between the two trees. (1)

iii. Find the height of big tree. (2)

#### OR

Find the height of small tree. (2)

[4]

## Solution

#### Section A

1. **(a)** an irrational number

**Explanation:** Let a be rational and  $\sqrt{b}$  is irrational.

If possible let  $a + \sqrt{b}$  be rational.

Then  $a + \sqrt{b}$  is rational and a is rational.

 $\Rightarrow \left[ \left( a + \sqrt{b} \right) - a \right]$  is rational [Difference of two rationals is rational]

 $\Rightarrow \sqrt{b}$  is rational.

This contradicts the fact that  $\sqrt{b}$  is irrational.

The contradiction arises by assuming that  $a + \sqrt{b}$  is rational. Therefore,  $a + \sqrt{b}$  is irrational.

#### 2.

**(b)**  $5 \times 2^3 \times 3$ **Explanation:** We have,  $120 = 5 \times 2^3 \times 3$ 

#### 3.

(d) 2 or -2

**Explanation:** Since the roots are equal, we have D = 0.

 $\therefore 36k^2 - 4 \times 9 \times 4 = 0 \Rightarrow 36k^2 = 144 \Rightarrow k^2 = 4 \Rightarrow k = 2 \text{ or } -2.$ 

# 4. **(d)** 10

**Explanation:** For a system of equations  $a_1x + b_1y + c_1 = 0$ ;  $a_2x + b_2y + c_2 = 0$  to have no solution, the condition to be satisfied

 $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$  $\Rightarrow \frac{1}{5} = \frac{2}{k} \neq \frac{-3}{7}$ 

 $\therefore$  For k = 10, the given system of equation is inconsistent.

5. **(a)**  $x^2 - 5x + 6 = 0$ 

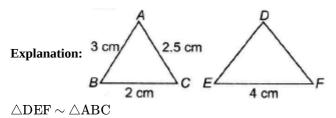
**Explanation:** since 3 is the root of the equation, x = 3 must satisfy the equation.

Applying x = 3 in the equation  $x^2 - 5x + 6 = 0$ gives,  $(3)^2 - 5(3) + 6 = 0$  $\Rightarrow 9 - 15 + 6 = 0$  $\Rightarrow 15 - 15 = 0$  $\Rightarrow 0 = 0$  $\Rightarrow L.H.S. = R.H.S.$ 

Hence,  $x^2 - 5x + 6 = 0$  is a required equation which has 3 as root.

#### 6.

**(c)** ay + bx = ab


 $\Rightarrow$  ay + bx = ab

Explanation: If given points are collinear, then the area of the triangle formed by these three points is 0.

 $\therefore \text{Area} = \frac{1}{2}|a(b - y) + 0(y - 0) + x(0 - b)| = 0$   $\Rightarrow \frac{1}{2}|ab - ay - bx| = 0$  $\Rightarrow ab - ay - bx = 0$ 

7.

(b) 15 cm



AB = 3CM, BC = 2 CM, CA = 2.5 CM, EF = 4CM Since  $\triangle$ 's are similar, we have  $\frac{DE}{AB} = \frac{EF}{BC} = \frac{FD}{CA}$   $\Rightarrow \frac{DE}{3} = \frac{4}{2} = \frac{FD}{2.5}$ Now  $\frac{DE}{3} = \frac{4}{2}$   $\Rightarrow DE = \frac{3 \times 4}{2} = 6 \text{cm}$ and  $FD = \frac{4}{2} \Rightarrow FD = \frac{4 \times 2.5}{2} = 5 \text{cm}$ perimeter of  $\triangle DEF$ 

$$= 6 + 4 + 5 = 15$$
cm

8.

(d) 2.25 cm Explanation: By BPT  $\frac{AD}{DB} = \frac{AE}{EC}$   $\frac{3}{4} = \frac{AE}{3}$   $AE = \frac{9}{4}$ AE = 2.25 cm

#### 9.

(d) 16 cm

**Explanation:** 0

Since op is perpendicular to PQ, the  $\angle OPQ = 90^{\circ}$ Now, in right angled triangle OPQ,  $OQ^2 = OP^2 + PQ^2$  $\Rightarrow (20)^2 = (12)^2 + PQ^2$  $\Rightarrow PQ^2 = 400 - 144$  $\Rightarrow PQ^2 = 256$  $\Rightarrow PQ = 16 \text{ cm}$ 

10. **(a)** 30<sup>o</sup>

Explanation:  $\sqrt{3} \tan 2\theta - 3 = 0$   $\Rightarrow \sqrt{3} \tan 2\theta = 3$   $\Rightarrow \tan 2\theta = \frac{3}{\sqrt{3}}$   $\Rightarrow \tan 2\theta = \sqrt{3}$   $\Rightarrow \tan 2\theta = \tan 60^{\circ}$   $\Rightarrow 2\theta = 60^{\circ}$  $\Rightarrow \theta = 30^{\circ}$ 

11.

(d) 21.65 m **Explanation:** Let the height of the tree be h. In  $\triangle$ PAT, tan  $60^{\circ} = \frac{h}{x} \Rightarrow \sqrt{3} = \frac{h}{x} \Rightarrow h = \sqrt{3} x$ In  $\triangle$ QAT, tan  $30^{\circ} = \frac{h}{50-x} \Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{50-x}$ 

$$P \xrightarrow{60^{\circ}} x \xrightarrow{A} 50 - x \xrightarrow{30^{\circ}} Q$$
  

$$\Rightarrow \sqrt{3}h = 50 - \frac{h}{\sqrt{3}} \Rightarrow h = \frac{50\sqrt{3}}{4} = 21.65 \text{ m} [\because x = \frac{h}{\sqrt{3}}]$$
  

$$\Rightarrow \text{ The height of the tree is } 21.65 \text{ m}$$

12.

(c) 0 Explanation: Given,  $\cos \theta = \frac{2}{3} = \frac{b}{h} = k$   $2\sec^2 \theta + 2\tan^2 \theta - 7$ b = 2k, h = 3k

In 
$$\triangle ABC$$
,  
 $h^2 = p^2 + b^2$   
 $\Rightarrow (3k)^2 = p^2 + (2k)^2$   
 $\Rightarrow 9k^2 = p^2 + 4k^2$   
 $\Rightarrow p^2 = 9k^2 - 4k^2$   
 $\Rightarrow p^2 = 5k^2$   
 $\Rightarrow p = \sqrt{5k}$   
Then,  
 $\sec \theta = \frac{3k}{2k} = \frac{3}{2}$  and  $\tan \theta = \frac{\sqrt{5k}}{2k} = \frac{\sqrt{5}}{2}$   
 $\Rightarrow 2 \sec^2 \theta + 2 \tan^2 \theta - 7$   
 $\Rightarrow 2\left(\frac{3}{2}\right)^2 + 2\left(\frac{\sqrt{5}}{2}\right)^2 - 7$   
 $\Rightarrow 2 \times \frac{9}{4} + 2 \times \frac{5}{4} - 7$   
 $\Rightarrow \frac{9}{2} + \frac{5}{2} - 7$   
 $\Rightarrow \frac{9+5-14}{2} = 0$ 

13. **(a)** 7546 cm<sup>2</sup> **Explanation:**  $2\pi R = 616$   $R = \frac{(616 \times 7)}{(2 \times 22)}$  R = 98 cm Area of quadrant  $= \frac{\pi r^2}{4}$   $= \frac{(22 \times 98 \times 98)}{(7 \times 4)}$ = 7546 cm<sup>2</sup>

14. **(a)** 10.90 cm

**Explanation:** The area of the sector  $=\frac{x^{\circ}}{360^{\circ}} \times \pi r^2$  $=\frac{50^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 5^2$ = 10.90 cm

15.

(c)  $\frac{3}{26}$ 

**Explanation:** Total number of cards = 52. Number of black face cards = 6 (2 kings + 2 queens + 2 jacks).  $\therefore$  P (getting a face card) =  $\frac{6}{52} = \frac{3}{26}$ 

#### 16. **(a)** 67.5

Explanation: Mode =  $l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$ =  $60 + \frac{16 - 6}{2 \times 16 - 6 - 6} \times 15$ =  $60 + \frac{10}{32 - 12} \times 15$ =  $60 + \frac{10}{20} \times 15$ = 60 + 7.5= 67.5

17. **(a)**  $\pi cm^3$ 

Radii of cone = r = 1 cm

Radius of hemisphere = r = 1 cm (h) = 1 cm Height of cone (h) = 1 h = 1 cm Volume of solid = Volume of cone + Volume of a hemisphere =  $\frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3 = \frac{1}{3}\pi r^2 (h + 2r)$ =  $\frac{1}{3} \times \pi \times (1)^2 (1 + 2 \times 1)$ =  $\frac{1}{3} \times \pi \times 3 = \pi$  cm<sup>3</sup>

18.

#### **(b)** 60 - 80

**Explanation:** Total frequencies (N) = 10 + 12 + 14 + 13 + 17= 66 So,  $\frac{N}{2} = \frac{66}{2} = 33$ c.f. Just greater than 33 is 36 and the corresponding class is 60 - 80 hence, median class = 60 - 80

19.

(b) Both A and R are true but R is not the correct explanation of A. **Explanation:** It will be  $\sqrt{(a-0)^2 + (b-0)^2} = \sqrt{a^2 + b^2}$ 

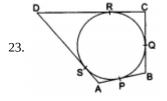
20. (a) Both A and R are true and R is the correct explanation of A.Explanation: It is a result.

#### Section B

21. Given equations are

 $\begin{aligned} & 6x - 3y + 10 = 0 \\ & 2x - y + 9 = 0 \\ & \text{Comparing equation } 6x - 3y + 10 = 0 \text{ with } a_1x + b_1y + c_1 = 0 \\ & \text{and } 2x - y + 9 = 0 \text{ with} \\ & a_2x + b_2y + c_2 = 0 \text{,} \\ & \text{We get, } a_1 = 6, b_1 = -3, c_1 = 10, a_2 = 2, b_2 = -1, c_2 = 9 \\ & \text{We have } \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \text{ because } \frac{6}{2} = \frac{-3}{-1} \neq \frac{10}{9} \Rightarrow \frac{3}{1} = \frac{3}{1} \neq \frac{10}{9} \\ & \text{Hence, lines are parallel to each other.} \end{aligned}$ 

22. D D C Given: In  $\triangle$ ABC, DE || BC. Also AD = 6x - 7, DB = 4x - 3, AE = 3x - 3 and EC = 2x - 1 By basic proportionality theorem,  $\frac{AD}{DB} = \frac{AE}{EC}$   $\Rightarrow \frac{6x-7}{4x-3} = \frac{3x-3}{2x-1}$   $\Rightarrow (6x - 7)(2x - 1) = (3x - 3)(4x - 3)$   $\Rightarrow 12x^2 - 6x - 14x + 7 = 12x^2 - 9x - 12x + 9$   $\Rightarrow -20x + 7 = -21x + 9$   $\Rightarrow -20x + 21x = 9 - 7$ 


 $\Rightarrow x = 2$ 

OR

It is given that, AB = 6 cm, AC = 8 cm, BD = 1.5 cm and CD = 2 cm We have to check whether AD is bisector of  $\angle A$ First we will check proportional ratio between sides

So, 
$$\frac{AB}{AC} = \frac{BD}{DC}$$
  
 $\Rightarrow \frac{6}{8} = \frac{1.5}{2}$   
 $\Rightarrow \frac{3}{4} = \frac{3}{4}$ 

Therefore, the sides are proportional. Hence, AD is bisector of  $\angle A$ 



We know that the lengths of tangents drawn from an exterior point to a circle are equal.

AP = AS, ... (i) [tangents from A] BP = BQ, ... (ii) [tangents from B] CR = CQ, ... (iii) [tangents from C] DR = DS. ... (iv) [tangents from D] AB + CD = (AP + BP) + (CR + DR) = (AS + BQ) + (CQ + DS) [using (i), (ii), (iii), (iv)] = (AS + DS) + (BQ + CQ) = AD + BC. Hence, AB + CD = AD + BC. 24. cosec  $\alpha = \frac{1}{\sin \alpha} = \sqrt{2}$ cosec  $\beta = \sqrt{1 + \cot^2 \beta} = \sqrt{1 + 3} = 2$   $\therefore$  cosec  $\alpha + \text{cosec } \beta = \sqrt{2} + 2 \text{ or } \sqrt{2}(\sqrt{2} + 1)$ 25. Here, r = 45 cm and  $\theta = \frac{360^{\circ}}{8} = 45^{\circ}$ Area between two consecutive ribs of the umbrella =  $\frac{\theta}{360^{\circ}} \times \pi r^2$  $= \frac{45^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 45 \times 45 = \frac{22275}{28} \text{ cm}^2$ 

OR

14 cm l = APB = 22 cm $rac{ heta}{180^\circ} imesrac{22}{7} imes14=22 ext{cm}$  $\Rightarrow \quad \theta = 90^{\circ}$ Area of the sector =  $\frac{lr}{2} = \frac{22 \times 14}{2} = 154 \text{ cm}^2$ Area of triangle AOB=  $\frac{1}{2} \times \text{OA} \times \text{OB} = \frac{1}{2} \times 14 \times 14 = 98 \text{ cm}^2$ Area of the segment = (154 - 98) cm<sup>2</sup> = 56 cm<sup>2</sup> Section C 26. Numbers are of two types - prime and composite. Prime numbers can be divided by 1 and only itself, whereas composite numbers have factors other than 1 and itself. It can be observed that  $7 \times 11 \times 13 + 13 = 13 \times (7 \times 11 + 1)$ = 13 × (77 + 1)= 13 × 78= 13 × 13 × 6 The given expression has 6 and 13 as its factors. Therefore, it is a composite number.  $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 + 5$  $= 5 \times (7 \times 6 \times 4 \times 3 \times 2 \times 1 + 1)$  $= 5 \times (1008 + 1) = 5 \times 1009$ 1009 cannot be factorized further Therefore, the given expression has 5 and 1009 as its factors. Hence, it is a composite number. 27. Let  $p(x) = 6x^2 - 3 - 7x$ For zeroes of p(x), p(x) = 0 $\Rightarrow 6x^2 - 3 - 7x = 0$  $\Rightarrow 6x^2 - 7x - 3 = 0$  $\Rightarrow 6x^2 - 9x + 2x - 3 = 0$  $\Rightarrow 3x(2x - 3) + (2x - 3) = 0$  $\Rightarrow$  (2x - 3) (3x + 1) = 0  $\Rightarrow$  2x - 3 = 0 or 3x + 1 = 0  $\Rightarrow x = \frac{3}{2} \text{ or } x = -\frac{1}{3} \Rightarrow x = \frac{3}{2}, -\frac{1}{3}$ So, the zeroes of p(x) are  $\frac{3}{2}$  and  $-\frac{1}{3}$ We observe that Sum of its zeroes  $=\frac{3}{2}+\left(-\frac{1}{3}\right)=\frac{3}{2}-\frac{1}{3}$  $= \frac{9-2}{6} = \frac{7}{6} = \frac{-(-7)}{6} = -\frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$ Product of its zeroes =  $\left(\frac{3}{2}\right) \times \left(-\frac{1}{3}\right)$  $=-\frac{1}{2}=-\frac{3}{6}=\frac{\text{Constant term}}{\text{Coefficient of }\mathbf{x}^2}$ 28. Let the unit's digit and the ten's digit in the two-digit number be x and y respectively. Then the number = 10y + xAlso, the number obtained by reversing the order of the digits = 10x + yAccording to the question, x + y = 9....(1) 9(10y + x) = 2(10x + y) $\Rightarrow$  90y + 9x = 20x + 2y  $\Rightarrow$  11x - 88y = 0

 $\Rightarrow x - 8y = 0$  .....(2) Subtracting equation(2) from equation(1), we get 9y = 9  $\Rightarrow \quad y = \frac{9}{9} = 1$ Substituting this value of y in equation (1), we get x + 1 = 9  $\Rightarrow x = 9 - 1 = 8$ Hence, the required number is 18. **Verification:** substituting x = 8 and y = 1, we find that both the equations (1) and (2) are satisfied as shown below: x + y = 8 + 1 = 9 x - 8y = 8 - 8(1) = 0Hence, the solution is correct.

OR

Let the digits at units and tens place of the given number be x and y respectively.

Then, Number =10y + x .....(i)

Number obtained by reversing the order of the digits = 10x + y

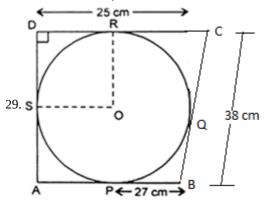
According to the question,

(10y + x) + (10x + y) = 165 $\Rightarrow x + y = 15$ 

and, x - y = 3

Thus, we obtain the following systems of linear equations.

i. x + y = 15x - y = 3ii. x + y = 15y - x = 3


Solving first system of equations, we get

x = 9, y = 6

Solving second system of equation, we. get

x = 6, y = 9

Substituting the values of x and y in equation (i), we have Number = 69 or, 96.



Given that ABCD is a quadrilateral such that  $\angle D = 90^{\circ}$ .

BC = 38 cm,CD = 25cm and BP = 27 cm

 $\therefore$  From the figure,

BP = BQ = 27 cm [Tangents from an external point are equal ] Now, BC = 38

 $\Rightarrow$  BQ + QC = 38

 $\Rightarrow 27 + QC = 38$ 

- ⇒ QC = 38 27
- $\Rightarrow$  QC = 11 cm

 $\therefore$  QC = 11 cm = CR [Tangents from an external point are equal] CD = 25 cm CR + RD=25 ⇒ 11+ RD = 25 ⇒ RD = 25-11 ⇒ RD = 14 cm Also, RD = DS = 14 cm [Tangents from an external point are equal] OR and OS are radii of the circle. From tangents R and S,  $\angle ORD = \angle OSD = 90^{\circ}$ Thus, ORDS is a square. OR = DS = 14 cmHence, the radius of the circle, r = OR = 14 cm 30. We have to prove that,  $\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \frac{1}{\sec\theta - \tan\theta}$  using identity  $\sec^2\theta = 1 + \tan^2\theta$  **LHS** =  $\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \frac{\tan\theta - 1 + \sec\theta}{\tan\theta + 1 - \sec\theta}$  [ dividing the numerator and denominator by  $\cos\theta$ .] =  $\frac{(\tan\theta + \sec\theta) - 1}{(\tan\theta - \sec\theta) + 1} = \frac{\{(\tan\theta + \sec\theta) - 1\}(\tan\theta - \sec\theta)}{\{(\tan\theta - \sec\theta) + 1\}(\tan\theta - \sec\theta)}$  [ Multiplying and dividing by  $(\tan\theta - \sec\theta)$ ]  $\frac{(\tan^2\theta - \sec^2\theta) - (\tan\theta - \sec\theta)}{\{(\tan\theta - \sec\theta) + 1\}(\tan\theta - \sec\theta)} [\because (a-b)(a+b) = a^2 - b^2]$  $\frac{1}{(\tan\theta - \sec\theta + 1)(\tan\theta - \sec\theta)} [\because \tan^2\theta - \sec^2\theta = -1]$  $-(\tan\theta - \sec\theta + 1)$  $\frac{1}{(\tan\theta - \sec\theta + 1)(\tan\theta - \sec\theta)} = \frac{-1}{\tan\theta - \sec\theta}$  $\frac{1}{\sec\theta - \tan\theta} = \mathbf{RHS}$ = Hence Proved.

```
OR
```

To prove-

 $-\operatorname{cosec} A = \operatorname{cosec} A - \frac{1}{(\cot A)(\sec A) + \cot A}$  $(\cot A)(\sec A) - \cot A$ Taking LHS  $-\operatorname{cosec} A$  $(\cot A)(\sec A) - \cot A$  $\left(\frac{\cos A}{\sin A}\right)\left(\frac{1}{\cos A}\right) - \left(\frac{\cos A}{\sin A}\right)$  $\sin A$  $\frac{1}{\sin A} = \frac{\sin A}{1 - \cos A} - \frac{1}{\sin A} = \frac{\sin^2 A - 1 + \cos A}{(1 - \cos A) \sin A}$ 1 =  $\frac{1}{1-\cos A}$  $\big(\frac{1}{\sin A}\big) \!-\! \left(\frac{\cos A}{\sin A}\right)$  $\sin A$  $\sin A$  $\frac{-\cos^2 A + \cos A}{(1 - \cos A)\sin A} = \frac{\cos A(1 - \cos A)}{(1 - \cos A)\sin A}$  $\{\because \sin^2 A + \cos^2 A = 1\}$  $=\frac{\cos A}{\sin A}=cotA$ Now, taking RHS  $= \operatorname{cosec} A \frac{1}{(\cot A)(\sec A) + \cot A}$  $\left(\frac{\cos A}{\sin A}\right)\left(\frac{1}{\cos A}\right)$  $\cos A$  $\sin A$  $\sin A$  $\sin A$ =  $\frac{1}{\sin A}$  $-)+\frac{\overline{\cos A}}{\overline{\cos A}}$  $\sin A$  $(1+\cos A)$  $\left(\frac{1}{\sin A}\right)$  $\sin A$  $= \frac{\cos^2 A + \cos A}{1}$  $1 + \cos A - \sin^2 A$  $(1+\cos A)\sin A$  $(1+\cos A)\sin A$  $\cos A(\cos A+1)$  $= \frac{\cos A}{2}$  $(1+\cos A)\sin A$  $\sin A$  $= \cot A = LHS$ 

31. When two dice are thrown simultaneously, all possible outcomes are

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
(2,1), (2,2), (2,3), (2,4), (2,5), (2,6),
(3,1), (3,2), (3,3), (3,4), (3,5), (3,6),
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6),
(5,1), (5,2), (5,3), (5,4), (5,5), (5,6),
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6).
Number of all possible outcomes = 36.

i. Let E<sub>1</sub> be the event of getting two numbers whose sum is 5.

Then, the favourable outcomes are (1,4) (2,3), (3,2), (4,1). Number of favourable outcomes = 4.

 $\therefore$  P(getting two numbers whose sum is 5)=  $P(E_2) = \frac{4}{36} = \frac{1}{9}$ 

ii. Let E<sub>2</sub> be the event of getting even numbers on both dice.

Then, the favourable outcomes are

(2,2), (2,4), (2,6), (4,2), (4,4), (4,6), (6,2), (6,4), (6,6). Number of favourable outcomes = 9.

 $\therefore$  P(getting even number on both dice) =  $P(E_2) = \frac{9}{36} = \frac{1}{4}$ 

iii. Let E<sub>3</sub> be the event of getting a doublet.

Then, the favourable outcomes are

(1,1), (2,2), (3,3), (4,4), (5,5), (6,6).

Number of favourable outcomes = 6.

 $\therefore$  P(getting a doublet) = P) =  $P(E_3) = \frac{6}{36} = \frac{1}{6}$ .

#### Section D

OR

32. Let the width of the path be x m

Length of the field including the path = (20 + 2x) m Breadth of the field including the path = (14 + 2x) m. Area of rectangle =  $L \times B$ 

Area of the field including the path =  $(20 + 2x)(14 + 2x)m^2$ . Area of the field excluding the path =  $(20 \times 14)$  m<sup>2</sup> = 280 m<sup>2</sup>

$$\therefore$$
 Area of the path =  $(20 + 2x)(14 + 2x) - 280$ 

(20 + 2x)(14 + 2x) - 280 = 111

 $\Rightarrow$ 4 $x^2$  + 68x - 111 = 0

Factorise the equation,

 $\Rightarrow 4x^2 + 74x - 6x - 111 = 0$ 

 $\Rightarrow 2x(2x + 37) - 3(2x + 37) = 0$ 

 $\Rightarrow (2x+37)(2x-3)=0$ 

 $\Rightarrow$  x =  $-\frac{37}{2}$  or x =  $\frac{3}{2}$ 

As width can't be negative.  $\Rightarrow$  x =  $\frac{3}{2}$  = 1.5

Therefore, the width of the path is 1.5 m.

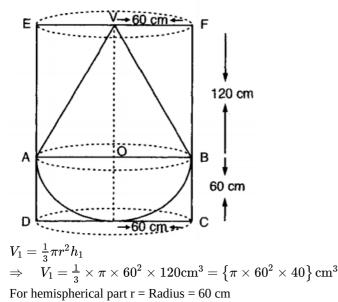
Let the original list price be Rs x

 $\therefore$  No. of books bought for Rs 300 =  $\frac{300}{r}$ Reduced list price of the book = Rs(x - 5)No. of books bought for Rs 300 =  $\frac{300}{r-5}$ 

According to question,

 $\frac{\frac{300}{x-5} - \frac{300}{x} = 5}{\Rightarrow \frac{300x - 300x + 1500}{x^2 - 5x} = 5}$  $\Rightarrow x^2 - 5x = 300 \Rightarrow x^2 - 5x - 300 = 0$  $\Rightarrow x^2 - 20x + 15x - 300 = 0$  $\Rightarrow (x-20)(x+15)=0$  $\Rightarrow x = 20$  or x = -15 $\Rightarrow x = 20$ The negative sign is rejected. Therefore x = 20

Therefore the original price list is Rs. 20


33. **Given:**  $\triangle ABC \sim \triangle PQR$  and BD, QM are medians To prove:  $\frac{AB}{PQ} = \frac{BD}{QM}$ **Proof:**  $\triangle ABC \sim \triangle PQR$  (given)  $\therefore \frac{AB}{PQ} = \frac{AC}{PR}$  $\Rightarrow \frac{AB}{PQ} = \frac{2AD}{2PM}$  (BD and QM are medians)  $\Rightarrow \frac{AB}{PQ} = \frac{AD}{PM}$ In riangle ABD and riangle PQM $\frac{AB}{PQ} = \frac{AD}{PM}$  (proved above)  $\angle \mathbf{A} = \angle \mathbf{P} \ (\triangle \mathbf{ABC} \sim \triangle \mathbf{PQR})$  $\therefore \triangle ABD \sim \triangle PQM$  (SAS criteria)  $\therefore \frac{AB}{PQ} = \frac{BD}{QM}$  (C.P.S.T) 34. Radius of hemisphere = radius of cone =  $\frac{7}{2}cm$ Height of cone =  $\frac{7}{2}cm$ Volume of the solid = Volume of hemisphere + Volume of cone  $= \frac{2}{3}\pi r^3 + \frac{1}{3}\pi r^2 h$  $=rac{1}{3} imesrac{22}{7} imesrac{7}{2} imesrac{7}{2}\Big(2 imesrac{7}{2}+rac{7}{2}\Big)$  $=\frac{539}{4}$  cm<sup>3</sup> or 134.75 cm<sup>3</sup>

OR

We have radius of cylinder = radius of cone = radius of hemisphere = 60 cm Height of cone = 120 cm

: Height of cylindrical vessel = 120 + 60 =180 cm

 $\therefore$  V = Volume of water that the cylinder contains =  $\pi r^2 h = \{\pi \times (60)^2 \times 180\}$  cm<sup>3</sup> Let V<sub>1</sub> be the volume of the conical part. Then,



Let  $V_2$  be the volume of the hemisphere. Then,

$$\begin{split} V_2 &= \left\{ \frac{2}{3}\pi \times 60^3 \right\} \mathrm{cm}^3 \\ \Rightarrow \quad V_2 &= \left\{ 2\pi \times 20 \times 60^2 \right\} \mathrm{cm}^3 = \left\{ 40\pi \cdot 60^2 \right\} \mathrm{cm}^3 \\ \mathrm{Let} \ \mathrm{V}_3 \ \mathrm{the} \ \mathrm{the} \ \mathrm{volume} \ \mathrm{of} \ \mathrm{the} \ \mathrm{water} \ \mathrm{left-out} \ \mathrm{in} \ \mathrm{the} \ \mathrm{cylinder}. \ \mathrm{Then}, \end{split}$$

 $egin{aligned} & \mathrm{V_3}=\mathrm{V} \cdot \mathrm{V_1} \cdot \mathrm{V_2} \ & V_3=\left\{ \pi imes 60^2 imes 180 - \pi imes 60^2 imes 40 - 40\pi imes 60^2 
ight\} \mathrm{cm}^3 \end{aligned}$ 

 $egin{aligned} &V_3 = \pi imes 60^2 imes \{180 - 40 - 40\} ext{cm}^3 \ &V_3 = rac{22}{7} imes 3600 imes 100 ext{cm}^3 \ &\Rightarrow V_3 = rac{22 imes 360000}{7} ext{cm}^3 = rac{22 imes 360000}{7 imes (100)^3} ext{m}^3 = rac{22 imes 36}{700} ext{m}^3 = 1.1314 ext{m}^3. \end{aligned}$ 

35.

| Life time | Number of lamps (f <sub>i</sub> ) | Cumulative frequency |
|-----------|-----------------------------------|----------------------|
| 1500-2000 | 14                                | 14                   |
| 2000-2500 | 56                                | 14 + 56 = 70         |
| 2500-300  | 60                                | 70 + 60 = 130        |
| 3000-3500 | 86                                | 130 + 86 = 216       |
| 3500-4000 | 74                                | 216 + 74 = 290       |
| 4000-4500 | 62                                | 290 + 62 = 352       |
| 4500-5000 | 48                                | 352 + 48 = 400       |
|           | 400                               |                      |

N = 400

Now we may observe that cumulative frequency just greater than  $\frac{n}{2}$  (ie.,  $\frac{400}{2}$  = 200) is 216

Median class = 3000 - 3500

Median = 
$$l + \left(\frac{\overline{2} - cJ}{f}\right) \times h$$

Here,

l = Lower limit of median class

F = Cumulative frequency of class prior to median class.

f = Frequency of median class.

h = Class size.

Lower limit (l) of median class = 3000

Frequency (f) of median class 86

Cumulative frequency (cf) of class preceding median class = 130

Class size (h) = 500

Median = 
$$3000 + \left(\frac{200 - 130}{86}\right) \times 500$$
  
=  $3000 + \frac{70 \times 500}{86}$   
=  $3406.98$ 

#### Section E

36. i. 8 coins

- ii. Money in the piggy bank day wise 5, 10, 15, 20 ...Money after 8 days = ₹ 180
- iii. a. We can have at most 120 coins.

$$\frac{n}{2}[2(1) + (n - 1)1] = 120$$
  
n<sup>2</sup> + n - 240 = 0  
Solving for n, we get, n = 15 as n ≠ -16  
∴ Number of days = 15

b. Total money saved =  $120 \times 5 = \gtrless 600$ 

37. i. **G** (10,6) **S** (3,2)  
Middle point of QS = 
$$\left(\frac{10+3}{2}, \frac{6+2}{2}\right)$$
  
= (6.5, 4)  
ii. Length = RS =  $\sqrt{(10-3)^2 + (2-2)^2}$   
RS =  $\sqrt{7^2 + 0}$   
RS = 7 m  
Breadth = RQ =  $\sqrt{(10-10)^2 + (2-6)^2}$ 

 $=\sqrt{0+16}$ = 4 m iii. Area of rectangle =  $l \times b$ = 7 × 4  $= 28 m^2$ OR Diagonal =  $\sqrt{l^2 + b^2}$  $=\sqrt[]{7^2+4^2}$  $=\sqrt{49+16}$  $=\sqrt{65}$ 38. i. In  $\triangle$ DCX  $\tan 60^{\circ} = \frac{DC}{CX}$  $\sqrt{3} = \frac{DC}{8}$ DC =  $8\sqrt{3}$  m  $DX = \sqrt{DC^2 + CX^2}$  $=\sqrt{(8\sqrt{3})^2+8^2}$  $=\sqrt{192+64}$  $=\sqrt{256}$ = 16 m Hence, distance between X and top of smaller tree is 16 m. ii. In  $\triangle BAX$  $\cos 60^{\circ} = \frac{AX}{BX}$  $\frac{1}{2} = \frac{AC+8}{36}$ 36 = 2AC + 1620 = 2AC  $\frac{20}{2} = 10 \text{ AC}$ AC = 10 : horizontal distance between both trees is 10 m. iii. Height of big tree = AB  $\therefore$  In  $\triangle$ BAX  $\tan 60^{0} = \frac{AB}{AX} = \frac{AB}{18}$ AB =  $18\sqrt{3}$  m OR Height of small tree = CD  $In \bigtriangleup CDX$  $\tan 60^{\circ} = \frac{CD}{CX}$  $\sqrt{3} = \frac{CD}{8}$  $CD = 8\sqrt{3} m$