

\mathcal{A} ssignment

				Atomic structure
	mis polyle and is a forte			
1.	The Bonr's model of ato	oms	[C.	BSE PMT 1993, 2004; MP PMT 2004]
	(a) Assumes that the al		lis is qualitized	
	(c) Predicts continuous	emission spectra for atoms		
	(d) Predicts the same of	mission spectra for all types	ofatome	
2	(d) Predicts the same emission spectra for all types of atIn an orbital motion, the angular		momentum vector is	
2.	(a) Along the radius ver	ctor	(b) Parallel to the lin	ear momentum
	(c) In the orbital plane		(d) Perpendicular to	the orbital plane
2	The colour of the second	d line of Balmer series is	(u) respendicular to	
J .	(a) Blue	(b) Yellow	(c) Red	(d) Violet
4.	If the ionization energy to the next higher state	for the hydrogen atom is 13 is nearly	3.6 <i>eV</i> , the energy required	to excite it from the ground state
	(a) 3.4 <i>eV</i>	(b) 10.2 <i>eV</i>	(c) 12.1 <i>eV</i>	(d) 1.5 <i>eV</i>
5۰	If <i>r</i> is the radius of the 2	lowest orbit of Bohr's model	of hydrogen atom, the rad	ius of next higher energy orbit is[MP P
	(a) 4 <i>r</i>	(b) 9r	(c) 16r	(d) 2 <i>r</i>
6.	The kinetic energy of a	n electron revolving around a	a nucleus will be	
	(a) Four times of P.E.	(b) Double of P.E.	(c) Equal to P.E.	(d) Half of its P.E.
7.	Which state of triply i	ionised Beryllium (Be ⁺⁺⁺) h	as the same orbital radiu	is as that of the ground state of
	hydrogen	[KCET 2004]		C
	(a) $n = 1$	(b) <i>n</i> = 2	(c) $n = 3$	(d) $n = 4$
8.	An α -particle of energy approach is of the order	5 <i>MeV</i> is scattered through r of	180° by a fixed uranium n	ucleus. The distance of the closest [IIT-JEE 1981; AIEEE 2004]
	(a) 1 Å	(b) 10^{-10} cm	(c) 10^{-12} cm	(d) $10^{-15} cm$
9.	Dalton's atomic theory	was in accordance with		[AFMC 2001, 2004]
	(a) Conservation of ene	ergy (b) Conservation of mas	(c) Conservation of c	harge (d) None of these
10.	The energy of H_2 atom	in its ground state is – 13.6	eV. The energy correspond	ing to first excitation state is

			<i>.</i>	
	(a) - 3.4 eV	(b) 3.4 <i>eV</i>	(c) $-1.5 eV$	(d) 20.2 <i>eV</i>
11.	The time of revolution of	an electron around a nucle	eus of charge <i>Ze</i> in <i>n</i> ^m Bohr o	orbit is directly proportional to [MP PE
	(a) <i>n</i>	(b) $\frac{n^3}{Z^2}$	(c) $\frac{n^2}{Z}$	(d) $\frac{Z}{n}$
12.	An electron in the $n = 1$ or	bit of hydrogen atom is bo	ound by 13.6 <i>eV</i> energy is rec	uired to ionize, it is
	(a) 13.6 eV	(b) 6.53 <i>eV</i>	(c) 5.4 <i>eV</i>	(d) 1.51 <i>eV</i>
13.	In the lowest energy level	of hydrogen atom, the ele	ctron has the angular mome	ntum
			[Similar to (DCE	2001); MP PET 1997; BCECE 2003]
	(a) <i>π</i> / <i>h</i>	(b) <i>h</i> / <i>π</i>	(c) <i>h</i> /2 <i>π</i>	(d) $2\pi/h$
14.	According to Bohr's theory will be	y the moment of momentu	m of an electron revolving in	n second orbit of hydrogen atom
				[MP PET 1999; KCET 2003]
	(a) 2 <i>π</i> h	(b) <i>π</i> h	(c) $\frac{h}{\pi}$	(d) $\frac{2h}{\pi}$
15.	Which of the following tra	ansition will have highest o	emission wavelength	
	(a) $n = 2$ to $n = 1$	(b) $n = 1$ to $n = 2$	(c) $n = 2$ to $n = 5$	(d) $n = 5$ to $n = 2$
16.	When the wave of hydrog	en atom comes from infini	ty into the first orbit then th	ne value of wave number is [RPET 2003
	(a) 109700 cm ⁻¹	(b) 1097 cm ⁻¹	(c) $109 \ cm^{-1}$	(d) None of these
17.	In which of the following	systems will the radius of	the first orbit $(n = 1)$ be mir	nimum[Kerala PET 2002; CBSE PMT 200
	(a) Single ionized helium	(b) Deuterium atom	(c) Hydrogen atom	(d) Double ionized lithium
18.	Which of the following at	oms has the lowest ionizat	ion potential	
	(a) $\frac{16}{8}O$	(b) $\frac{14}{7}N$	(c) $\frac{133}{55}Cs$	(d) $\frac{40}{18} Ar$
19.	In the Bohr's model of hy	drogen atom, the ratio of	the kinetic energy to the to	tal energy of the electron in <i>n</i> th
	quantum state 15			[BHU 2002: RPMT 2002: 2003]
	(a) - 1	(b) + 1	(c) - 2	(d) 2
20.	In the Bohr's hydrogen at quantum number)	om model, the radius of th	he stationary orbit is directl	y proportional to $(n = principle$
		[MNR 1988; SCRA 19	94; CBSE 1996; AIIMS 1999; D	CE 2002; RPMT 2002; RPMT 2003]
	(a) n^{-1}	(b) <i>n</i>	(c) n^{-2}	(d) n^2
21.	With the increase in print levels	ncipal quantum number,	the energy difference betw	een the two successive energy
	<i>.</i>		a	[UPSEAT 2000; RPET 2003]
	(a) Increases		(b) Decreases	
	(c) Remains constant		(d) Sometimes increase	es and sometimes decreases
22.	According to classical the	ory of Rutherford model th	te path of electron will be	
	(a) Parabolic	(b) Hyperbolic	(c) Circular	(d) Elliptical
23.	(a) Butherford and Soddy	eu Dy	(a) Hund	[AFMC 2003]
24	Minimum excitation notes	UJ FIAILCK atial of Bobr's first orbit in	bydrogen atom is	(u) somernen
4 4•				
	(d) 13.0 V	(U) 3.4 V	(c) 10.2 V	(u) 3.0 V
25.	To explain his theory, Boh	nr used		
	(a) Conservation of linear	r momentum	(b) Conservation of an	gular momentum

(c) Conservation of quantum frequency (d) Conservation of energy A hydrogen atom and a Li^{++} ion are both in the second excited state. If l_H and l_{Li} are their respective electronic 26. angular momenta, and E_{H} and E_{Ii} their respective energies, then (a) $l_H > l_{Li}$ and $|E_H| > |E_{Li}|$ (b) $l_H = l_{Li}$ and $|E_H| < |E_{Li}|$ (c) $l_H = l_{Li}$ and $|E_H| > |E_{Li}|$ (d) $l_H < l_{Li}$ and $|E_H| < |E_{Li}|$ The radius of the first orbit of the hydrogen atom is a_0 . The radius of the second orbit will be 27. (a) $4a_0$ (b) 6*a*₀ (c) $8a_0$ (d) $10a_0$ Energy of an electron in an excited hydrogen atom is - 3.4 eV. Its angular momentum will be 28. $(h = 6.626 \times 10^{-34} J - s)$ [UPSEAT 1999; Kerala PET 2002] (a) $1.11 \times 10^{34} J$ sec (b) $1.51 \times 10^{-31} J$ sec (c) $2.11 \times 10^{-34} J$ sec (d) $3.72 \times 10^{-34} J \text{ sec}$ Consider the spectral line resulting from the transition from n = 2 to n = 1 in atoms and ions given below. The 29. shortest wavelength is produced by [Kerala PET 2002] (c) Singly ionized helium (d) Doubly ionized lithium (b) Deuterium atom (a) Hydrogen atom Find the correct statement about Bohr atom model [TNPCEE 2002] 30. (a) It could not explain about the spectral lines of hydrogen atoms (b) Electrostatic force of attraction between the nucleus and the electron is $\frac{-z^2me^4}{8c^2r^2h^2}$ (c) Bohr used the planck's constant to explain his two postulates (d) The centripetal force on the electron is $\frac{ze^2}{4\pi\epsilon_0 r_e^2}$ In a hydrogen atom what will be the radius of 5th orbit if the radius of the first orbit is 0.53Å 31. [TNPCEE 2002] (a) 2.65 Å(b) 5.3 Å(c) 0.106 Å (d) 13.25 Å The velocity of an electron in the inner-most orbit of an atom is 32. [AFMC 2002] (b) Highest (c) Lowest (d) Mean (a) Zero An electron in revolving round a proton in an orbit of radius 5.3×10^{-9} cm . The speed of electron will be [RPET 2002] 33. (a) $2.2 \times 10^6 m / s$ (b) $2.2 \times 10^8 m / s$ (c) $2.2 \times 10^5 m./s$ (d) $2.2 \times 10^4 m / s$ If elements corresponding to n > 5 do not exist, the number of possible elements will be 34. [RPMT 2002] (a) 60 (b) 5 (c) 75 (d) 110 The possible quantum number for 3*d* electron are 35. [MP PMT 2002] (b) $n = 3, l = 2, m_l = +2, m_s = -\frac{1}{2}$ (a) $n = 3, l = 1, m_l = +1, m_s = -\frac{1}{2}$ (d) $n = 3, l = 0, m_l = +1, m_s = -\frac{1}{2}$ (c) $n = 3, l = 1, m_l = -1, m_s = -\frac{1}{2}$ 36. The ratio of speed of an electron in ground state in Bohrs first orbit of hydrogen atom to velocity of light in air is [MP PMT 2000; MH CET 2002] (a) $\frac{e^2}{2\varepsilon_0 hc}$ (b) $\frac{2e^2\varepsilon_0}{hc}$ (c) $\frac{e^3}{2\varepsilon_0 hc}$ (d) $\frac{2\varepsilon_0 hc}{a^2}$

37. In hydrogen atom, when electron jumps from second to first orbit, then energy emitted is
(a) - 13.6 eV
(b) - 27.2 eV
(c) - 6.8 eV
(d) None of these

38. The wavelength of light emitted from second orbit to first orbits in a hydrogen atom is

U.				
	(a) $1.215 \times 10^{-7} m$	(b) $1.215 \times 10^{-5} m$	(c) $1.215 \times 10^{-4} m$	(d) $1.215 \times 10^{-3} m$
•	Whenever a hydrogen at	om emits a photon in the Balm	ner series	[KCET 2002]
	(a) It need not emit any	more photon	(b) It may emit anoth	er photon in the Paschen series
	(c) It must emit another	photon in the Lyman series	(d) It may emit anoth	er photon in the Balmer series
•	The frequency of 1 st line atom is	of Balmer series in H_2 atom :	is v_0 . The frequency of Σ	line emitted by singly ionised <i>He</i> [CPMT 2002]
	(a) $2v_0$	(b) $4v_0$	(c) $v_0 / 2$	(d) $v_0 / 4$
	When the electron in the λ . When the electrons ju	e hydrogen atom jumps from 2 ¹ ump from 3 rd orbit to 1 st orbit,	nd orbit to 1 st orbit, the w the wavelength of emitte	vavelength of radiation emitted is ed radiation would be [MP PMT :
	(a) $\frac{27}{32}\lambda$	(b) $\frac{32}{27}\lambda$	(c) $\frac{2}{3}\lambda$	(d) $\frac{3}{2}\lambda$
	The Lyman series of hyd	rogen spectrum lies in the reg	ion	
		[CPMT 1990;	MNR 1993; MP PET 1994;	MP PMT 1995, 2000; UPSEAT 2002]
	(a) Infrared	(b) Visible	(c) Ultraviolet	(d) Of X-rays
	The hydrogen atom can statements is correct	give spectral lines in the seri	ies, Lyman, Balmer and	Paschen. Which of the following
			[0	CBSE 1990; CPMT 1997; AFMC 2002]
	(a) Lyman series is in th	e infrared region	(b) Balmer series is in	n the visible region (partly)
	(c) Balmer series is sole	ly in the ultraviolet region	(d) Paschen series is i	in the visible region
	(c) Builler Series is sole	if in the unraviolet region	(u) raschen series is i	in the visible region
	Ionization potential of monochromatic radiatio Bohr's theory will be	hydrogen atom is 13.6 <i>eV</i> . n of photon energy 12.1 <i>eV</i> . Th	Hydrogen atoms in the spectral lines emitted	ne ground state are excited by by hydrogen atoms according to
	Ionization potential of monochromatic radiatio Bohr's theory will be	hydrogen atom is 13.6 <i>eV</i> . n of photon energy 12.1 <i>eV</i> . Th	(d) Taselien series is in Hydrogen atoms in th he spectral lines emitted [CPMT 1990; CBSE 1996	be ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002]
	Ionization potential of monochromatic radiatio Bohr's theory will be (a) One	hydrogen atom is 13.6 <i>eV</i> . n of photon energy 12.1 <i>eV</i> . Th (b) Two	(d) Paschen schres is i Hydrogen atoms in th ne spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three	ne ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four
	 (c) Daniel Series is sole Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy required JEE 2002] 	hydrogen atom is 13.6 <i>eV</i> . n of photon energy 12.1 <i>eV</i> . Th (b) Two ed to take out the only one elec	(d) Faschen schres is i Hydrogen atoms in th ne spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three ctron from ground state o	 a ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four (d) Four Of He⁺ is [Orissa]
	 (c) Daniel Series is sole Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy required JEE 2002] (a) 13.6 eV 	hydrogen atom is 13.6 <i>eV</i> . n of photon energy 12.1 <i>eV</i> . Th (b) Two ed to take out the only one elec (b) 54.4 <i>eV</i>	(d) Taschen series is in Hydrogen atoms in th ne spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three ctron from ground state of (c) 27.2 eV	 in the visible region in the visible region<
	 (c) Daniel Series is sole Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy required JEE 2002] (a) 13.6 eV The graph between wave 	 hydrogen atom is 13.6 <i>eV</i>. n of photon energy 12.1 <i>eV</i>. Th (b) Two ed to take out the only one elect (b) 54.4 <i>eV</i> number (<i>v</i>) and angular frequencies 	 Hydrogen atoms in the spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three ctron from ground state of (c) 27.2 eV lency (ω) is 	<pre>he ground state are excited by hy hydrogen atoms according to f; MP PMT 1999; AMU (Med.) 2002] (d) Four (d) Four (d) 6.8 eV [AIIMS 2002]</pre>
•	Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy require JEE 2002] (a) 13.6 eV The graph between wave (a) $\int_{I=1}^{100} \int_{V} \int$	hydrogen atom is 13.6 eV. n of photon energy 12.1 eV. Th (b) Two ed to take out the only one elect (b) 54.4 eV e number (v) and angular frequ (b) $f_{\text{H}} = \int_{-Wave}^{+} \int_{-Wave}^{+} \int_{-}^{+} \int_{$	Hydrogen atoms in the he spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three (c) Three ctron from ground state of (c) 27.2 eV hency (ω) is $\begin{pmatrix} e \\ p \\ b \\ g \\ e \\ b \\ g \\ e \\ g \\ g \\ e \\ g \\ g \\ e \\ g \\ g$	the the visible region the ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four (d) Four (d) 6.8 eV [AIIMS 2002] (d) ev [AIIMS 2002] (d) ev [AIIMS 2002] (d) ev [AIIMS 2002]
•	Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy require JEE 2002] (a) 13.6 eV The graph between wave (a) \downarrow_{UU}^{OU} (a) \downarrow_{UU}^{OU} (a) \downarrow_{UU}^{OU} (b) \downarrow_{UU}^{OU} (c) $\downarrow_{$	hydrogen atom is 13.6 eV. n of photon energy 12.1 eV. Th (b) Two ed to take out the only one elect (b) 54.4 eV e number (ν) and angular frequ (b) $\stackrel{\uparrow}{100}$ $\stackrel{\downarrow}{100}$ $\stackrel{\downarrow}{1$	Hydrogen atoms in the spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three (c) Three ctron from ground state of (c) 27.2 eV lency (ω) is (c) $\stackrel{\uparrow}{}_{\text{Indentify}}$ (c) $\stackrel{\downarrow}{}_{\text{Indentify}}$ (c) $\stackrel{\downarrow}{$	The version region the ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four (d) Four (d) 6.8 eV [AIIMS 2002] (d) $e^{\text{PMS 2002}}$ (d) $e^{\text{PMS 2002}}$ (d) $e^{\text{PMS 2002}}$ [RPET 1989; DCE 2002]
•	Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy require JEE 2002] (a) 13.6 <i>eV</i> The graph between wave $\begin{pmatrix} 1 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	hydrogen atom is 13.6 eV. n of photon energy 12.1 eV. Th (b) Two ed to take out the only one elect (b) 54.4 eV e number (v) and angular frequ (b) $\stackrel{\uparrow}{\text{H}}_{\text{U}} \stackrel{\downarrow}{\text{U}}_{\text{U}}$ (b) $\stackrel{\downarrow}{\text{H}}_{\text{U}} \stackrel{\downarrow}{\text{U}}_{\text{U}}$ n in the n th orbit of hydrogen i (b) $E_n = -\frac{n^2 h^2}{4\pi^2 m k e^2}$	Hydrogen atoms in the he spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three (c) Three ctron from ground state of (c) 27.2 eV lency (ω) is (c) $\stackrel{r}{\operatorname{rog}}_{\operatorname{hor}}_$	The version region the ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of He^+ is [Orissa (d) 6.8 eV [AIIMS 2002] (d) $\stackrel{\uparrow}{}_{\text{region}} \stackrel{\frown}{}_{\text{underse}} \stackrel{\frown}{}_{\text{wave}} \stackrel{\frown}{}_{\rightarrow}$ [RPET 1989; DCE 2002] (d) $E_n = -\frac{n^2 h^2}{2\pi^2 m k^2 e^2}$
	Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy require JEE 2002] (a) 13.6 <i>eV</i> The graph between wave $\begin{pmatrix} \\ e \\ m \\ m$	hydrogen atom is 13.6 eV. n of photon energy 12.1 eV. Th (b) Two ed to take out the only one elect (b) 54.4 eV e number (v) and angular frequ (b) $\stackrel{\uparrow}{V} \stackrel{\downarrow}{V} \stackrel{\downarrow}{U} \stackrel{\downarrow}{U} \stackrel{\downarrow}{U} \stackrel{\downarrow}{U} \stackrel{\downarrow}{U}$ n in the n th orbit of hydrogen i (b) $E_n = -\frac{n^2 h^2}{4\pi^2 m k e^2}$ Evelengths from ultraviolet to lines will be observed in	Hydrogen atoms in the he spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three (c) Three ctron from ground state of (c) 27.2 eV dency (ω) is (c) $\stackrel{\text{erngunb}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{und}}{\overset{\text{red}}{\underset{\text{red}}{\overset{\text{red}}{\underset{\text{red}}{\underset{\text{red}}{\overset{\text{red}}{\underset{\text{red}}}}}}}}}}}}}}}}}}}}}}$	The visible region the ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four of He^+ is [Orissa (d) 6.8 eV [AIIMS 2002] (d) $\stackrel{\uparrow}{}_{\text{Ensure}} \int_{$
	Ionization potential of monochromatic radiatio Bohr's theory will be (a) One Minimum energy require JEE 2002] (a) 13.6 <i>eV</i> The graph between wave $(a) \bigvee_{u=1}^{k} \bigvee_{u=1}$	hydrogen atom is 13.6 eV. n of photon energy 12.1 eV. Th (b) Two ed to take out the only one elect (b) 54.4 eV e number (v) and angular frequ (b) $\frac{1}{4} eV_{\text{B}} = \frac{1}{4\pi^2 e^2}$ n in the n th orbit of hydrogen i (b) $E_n = -\frac{n^2 h^2}{4\pi^2 m k e^2}$ welengths from ultraviolet to lines will be observed in Paschen series	Hydrogen atoms in the he spectral lines emitted [CPMT 1990; CBSE 1996 (c) Three (c) Three ctron from ground state of (c) 27.2 eV lency (ω) is $\begin{pmatrix} e & b \\ D \\ W \\ W$	The visible region the ground state are excited by by hydrogen atoms according to 6; MP PMT 1999; AMU (Med.) 2002] (d) Four (d) Four (d) 6.8 eV [AIIMS 2002] (d) $e_{R} = -\frac{n^2 h^2}{2\pi^2 m k^2 e^2}$ through hydrogen gas at room [KCET 2001] Four the visible region (d) Four the visible region (d) Four the visible region (equation of the visible region (f) Four the visible regi

Atomic structure 71 In any excited state of hydrogen atom if m = 5, then value of n, i, m, s will be [RPMT 2001] 49. (c) 6, 6, 5, -1/2(a) 5, 5, 5, -1/2(b) 7, 7, 5, +1/2 (d) 8, 7, 5, +1/2 Which of the following is true for number of spectral lines in going form Lyman series to Pfund series[RPET 2001] 50. (a) Increases (b) Decreases (c) Unchanged (d) May decreases or increases The first line in the Lyman series has wavelength λ . The wavelength of the first line in Balmer series is 51. [CPMT 1998; MH CET (Med.) 2001] (a) $\frac{2}{9}\lambda$ (b) $\frac{9}{2}\lambda$ (c) $\frac{5}{27}\lambda$ (d) $\frac{27}{5}\lambda$ Four lowest energy levels of *H*-atom are shown in the figure. The number of possible emission lines would be [MP PM 52. n = 3(a) 3 n = 2(b) 4 (c) 5 n = 1(d) 6 The energy of hydrogen atom in its ground state is - 13.6 eV. The energy of the level corresponding to the 53. quantum number *n* is equal 5 is (b) - 2.72 *eV* (c) $-0.85 \, eV$ (a) - 5.40 eV (d) $-0.54 \, eV$ The ionisation potential of hydrogen is 13.6 eV. Then the energy released when an electron jumps from n = 3 to 54. n = 2 orbit, is [KCET (Engg.) 2001] (a) 2.89 eV (b) 1.89 eV (c) 3.89 eV (d) 4.89 eV The transition from the state n = 4 to n = 3 in a hydrogen-like atom results in ultraviolet radiation. Infrared 55. radiation will be obtained in the transition (a) $2 \rightarrow 1$ (c) $4 \rightarrow 2$ (b) $3 \rightarrow 2$ (d) $5 \rightarrow 4$ Orbital acceleration of electron is 56. (a) $\frac{n^2 h^2}{4\pi^2 m^2 r^3}$ (b) $\frac{n^2h^2}{2n^2r^3}$ (c) $\frac{4n^2h^2}{\pi^2m^2r^3}$ (d) $\frac{4n^2h^2}{4\pi^2m^2r^3}$ 57. Which of the following transitions in a hydrogen atom emits photon of the highest frequency[MP PET 1996; CBSE 2000; D (c) n = 2 to n = 6(a) n = 1 to n = 2(b) n = 2 to n = 1(d) n = 6 to n = 2Radius of the first orbit of the electron in a hydrogen atom is 0.53 Å. So, the radius of the third orbit will be [Kerala (I 58. (a) 2.12 Å (b) 4.77 Å (c) 1.06 Å (d) 1.59 Å The diagram shows the path of four α -particles of the same energy being scattered by the nucleus of an atom 59. simultaneously. Which of these are/is not physically possible (a) 3 and 4 (b) 2 and 3 (c) 1 and 4 (d) 4 only An electron jumps from 5th orbit to 4th orbit of hydrogen atom. Taking the Rydberg constant as 10⁷ per metre. 60. What will be the frequency of radiation emitted

(a) $6.75 \times 10^{12} Hz$ (b) $6.75 \times 10^{14} Hz$

(c) $6.75 \times 10^{13} Hz$

(d) None of these

- 61. The electron in a hydrogen atom makes a transition $n_1 \rightarrow n_2$ where n_1 and n_2 are the principal quantum numbers of the two states. Assume the Bohr model to be valid. The time period of the electron in the initial state is eight times that in the final state. The possible values of n_1 and n_2 are [IIT 1998; KCET 2001]
 - (a) $n_1 = 4, n_2 = 2$ (b) $n_1 = 8, n_2 = 2$ (c) $n_1 = 8, n_2 = 1$ (d) $n_1 = 6, n_2 = 3$

For principal quantum number n = 3, the possible values of orbital quantum number 'l' are [MP PET/PMT 2001] 62. (a) 1, 2, 3 (b) 0, 1, 2, 3 (c) 0, 1, 2 (d) - 1, 0, + 1

- An electron moves towards a nucleus at the focus of a an elliptical orbit with velocity V. Its angular momentum 63. with respect to nucleus is [RPMT 2001]
 - (a) Always zero
 - (b) Always remains constant
 - (c) Changes with time
 - (d) Can not determined
- 64. The total energy of the electron in the hydrogen atom in the ground state is -13.6 eV. The kinetic energy of this electron is

(a) = 13.6 eV	$(\mathbf{h}) 0$	(c) 6.8 eV	(d) 12 6 eV
(u) 13.0 ev			(4) 13.0 07

- What change in energy per mole of atoms will be associated with an atomic transition giving rise to radiation 65. at 1 Hz
 - (a) $0.399 \times 10^{-10} J mol^{-1}$ (b) $9.390 \times 10^{-10} J mol^{-1}$ (c) $3.990 \times 10^{-10} J mol^{-1}$ (d) None of these

 7^{2}

66. According to Bohr's theory the radius of electron orbit is proportional to 7^{2}

 67. According to Bohr's postulate which of the following take discrete values (a) Kinetic energy (b) Potential energy (c) Angular momentum (d) Linear 68. Who indirectly determined of the mass of the electron by measuring the charge of the electron (a) Rutherford (b) Einstein (c) Thomson (d) Millik 69. Who discovered spin quantum number 	[J & K CET 2000] momentum
 (a) Kinetic energy (b) Potential energy (c) Angular momentum (d) Linear 68. Who indirectly determined of the mass of the electron by measuring the charge of the electron (a) Rutherford (b) Einstein (c) Thomson (d) Millik 69. Who discovered spin quantum number 	momentum
 68. Who indirectly determined of the mass of the electron by measuring the charge of the electron (a) Rutherford (b) Einstein (c) Thomson (d) Millik 69. Who discovered spin quantum number 	
(a) Rutherford(b) Einstein(c) Thomson(d) Millik69.Who discovered spin quantum number	s [CBSE PMT 2000]
69. Who discovered spin quantum number	an
	[RPMT 2000]
(a) Unlenbeck and Goudsmit (b) Neil's Boh	r
(c) Zeeman (d) Sommerfield	

In Rutherford scattering experiment, what will be the correct angle for α scattering for an impact parameter b 70. = 0

(a) 90°	(b) 270°
---------	----------

A beam of fast moving alpha particles were directed towards a thin film of gold. The parts A', B' and C' of the 71. transmitted and reflected beams corresponding to the incident parts A, B and C of the beam, are shown in the adjoining diagram. The number of alpha particles in [CPMT 1986, 88; RPET 2000]

(c) 0°

- (a) *B*' will be minimum and in *C*' maximum
- (b) A' will be maximum and in B' minimum

(c) A' will be minimum and in B' maximum

(d) C' will be minimum and in B' maximum

[EAMCET (Med.) 1998; JIPMER 2000]

n²

(d) 180°

[BHU Med. 2000]

[J & K CET 2000]

[CBSE 1994; JIPMER 2000]

72.	The radius of hydrogen a	atom in its ground state is 5.	$3 \times 10^{-11} m$. After collision w	ith an electron it is found to
	have a radius of 21.2×10^{-1}	11 <i>m</i> . What is the principal qua	antum number <i>n</i> of the final	state of the atom[CBSE 1994; CPMT
	(a) $n = 4$	(b) $n = 2$	(c) <i>n</i> = 16	(d) $n = 3$
73.	The de-Broglie wavelengt	ch of thermal neutrons is of the	e order of the	
	(a) Distance between ato	ms in crystals	(b) Size of the nucleus	
	(c) Bohr's radius		(d) Size of a grain	
74.	As per Bohr model the minimum $Li^{(z=3)}$ atom is	inimum energy required to rer	nove an electron from the g	round state of doubly ionised
				[IIT-JEE 1997; MH CET 2000]
	(a) 1.51 <i>eV</i>	(b) 13.6 <i>eV</i>	(c) 4.08 eV	(d) 122.4 <i>eV</i>
75.	The concept of stationary	orbits was proposed by		[Pb. PMT 2000]
	(a) Neil Bohr	(b) J.J. Thomson	(c) Rutherford	(d) I. Newton
76.	The electron in a hydro following statements is th	gen atom makes a transitior rue	n from an excited state to	ground state. Which of the
				[IIT-JEE (Screening) 2000]
	(a) Its kinetic energy inc	reases and its potential and to	tal energies decrease	
	(b) Its kinetic energy dec	reases, potential energy incre	ases and its total energy rer	nains same
	(c) Its kinetic and total e	nergies decrease and its poter	itial energy increases	
	(d) Its kinetic, potential	and total energies decrease		
//•	same charge as the elect particle to the first excit in the terms of Rydberg c	ron. Apply Bohr atom model a ed level. The longest wavelen constant <i>R</i> for hydrogen atom)	and consider all possible tra gth photon that will be emi equal to	ansitions of this hypothetical tted has wavelength λ (given
				[IIT-JEE (Screening) 2000]
	(a) 9/5 <i>R</i>	(b) 36/5 R	(c) 18/5 R	(d) 4/ <i>R</i>
78.	According to the Rutherfo	ord's atomic model, the electro	ons inside the atom are	[KCET (Med.) 2000]
	(a) Stationary	(b) Not stationary	(c) Centralized	(d) None of these
7 9 .	The radius of hydrogen a	tom in ground state is of the o	rder	[EAMCET 1994; MH CET 2000]
	(a) 10^{-8} cm	(b) $10^{-6} cm$	(c) 10^{-4} cm	(d) $10^{-7} cm$
80.	The radius of the Bohr of electron in the third excit	orbit in the ground state of 1 ted state of He^+ will be	hydrogen atom is 0.5 Å. Tl	he radius of the orbit of the [MP PMT 2000]
	(a) 8 <i>Å</i>	(b) 4 Å	(c) $0.5 $	(d) 0.25 Å
81.	What will be the angular	momentum of a electron, if er	nergy of this electron in <i>H</i> -a	tom is 1.5 eV (in J-sec)
				[RPMT 2000]
	(a) 1.05×10^{-34}	(b) 2.1×10^{-34}	(c) 3.15×10^{-34}	(d) -2.1×10^{-34}
82.	The ratio of the longest to	o shortest wavelengths in Brac	ckett series of hydrogen spe	ctra is [EAMCET (Engg.) 2000]
	(a) $\frac{25}{9}$	(b) $\frac{17}{6}$	(c) $\frac{9}{5}$	(d) $\frac{4}{3}$
83.	The ratio of minimum to	maximum wavelength in Balm	er series is	[MP PET 2000]
	(a) 5:9	(b) 5:36	(c) 1:4	(d) 3:4
84.	When an electron jumps	from the fourth orbit to the se	cond orbit, one gets the	[CBSE 2000]

	(a) Second line of Lym series	nan series		(b) Second line of Pase	chen
	(c) Second line of Balı	mer series	(d)	First line of Pfund serie	es
85.	Calculate the series lir	nit of the Lyman series of	hydrogen atom	[BHU Med. 20	000]
	(a) $9.1176 \times 10^{-6} cm$	(b) 10968 cm	(c) $1.2157 \times 10^{-5} cm$	(d) 82259 cm	
86.	Which of the following	g phenomena suggests the	presence of electron energy lev	els in atoms [JIPMER 1	999]
	(a) Radio active decay	(b) Isotopes	(c) Spectral lines	(d) α -particles scatter	ing
87.	The ionisation potenti of 970.6 Å, the number	al of <i>H</i> -atom is 13.6 V whe r of emission lines will be	en it is excited from ground sta (according to Bohr's theory)	te by monochromatic radiat [RPET 1	:ions . 999]
	(a) 10	(b) 8	(c) 6	(d) 4	
88.	Which of the following	g spectral series in hydroge	en atom give spectral line of 48	60 Å [Roorkee 1	999]
	(a) Lyman	(b) Balmer	(c) Paschen	(d) Bracket	
89.	The energy required to	o excite an electron from t	he ground state of hydrogen atc	m to the first excited state,	is [Pb Pl
	(a) $1.602 \times 10^{-14} J$	(b) $1.619 \times 10^{-16} J$	(c) $1.632 \times 10^{-18} J$	(d) $1.656 \times 10^{-20} J$	
90.	The ratio of longest w spectrum of hydrogen	vavelength and the shorte is	st wavelength observed in the	five spectral series of emis	sion
				[MP PET 1	999]
	(a) $\frac{4}{3}$	(b) $\frac{525}{376}$	(c) 25	(d) $\frac{900}{11}$	
91.	If in Rutherford's exp scattered particles at a	eriment, the number of pa an angle 60° and 120° will	articles scattered at 90° angle be	are 28 per <i>min</i> , then numbe [UPSEAT 1	er of . 999]
	(a) 112/min., 12.5/min	ι (b) 100/min., 200/m	in (c) 50/min., 12.5/min	(d) 117/min., 25/min	
92.	When the hydrogen at	om is changed from its gro	ound state to excited state	[AMU 1	999]
	(a) P.E. increases but	K.E. decreases	(b) K.E. increases but	P.E. decreases	
	(c) P.E. increases		(d) K.E. increases		
93.	The velocity of an ele electron in its fifth orb	ctron in the second orbit pit will be	of sodium atom (atomic numb	er = 11) is v. the velocity o [MP PET 1	of an 999]
	(a) <i>v</i>	(b) $\frac{22}{5}v$	(c) $\frac{5}{2}v$	(d) $\frac{2}{5}v$	
94.	The ratio between pote	ential energy and kinetic e	energy of the electron in $(n - 1)^{t}$	^h orbit of hydrogen atom is	
				[MP PET 1994; KCET 1	999]
	(a) – 2	(b) 2	(c) 1	(d) - 1	
95.	Which of the following	g transitions in hydrogen a	tom emits a photon of lowest fi	requency (<i>n</i> = quantum num)	ber) [BH
	(a) $n = 2$ to $n = 1$	(b) $n = 4$ to $n = 3$	(c) $n = 3$ to $n = 1$	(d) $n = 4$ to $n = 2$	
96.	In hydrogen spectrum	the shortest wavelength i	n Balmer series is λ . The short	est wavelength in Bracket se	eries
	will be			[EAMCET (Engg.) 1	999]
	(a) 2λ	(b) 4λ	(c) 9λ	(d) 16λ	
97.	Which of the following	g statements is true regard	ling Bohr's model of hydrogen a	tom.	
-	(I) Orbiting speed of e	lectrons decreases as it fal	lls to discrete orbits away from	the nucleus.	
	(II) Radii of allowed of	rbits of electrons are prop	ortional to the principal quantu	m number.	
	(III) Frequency with w principal quantum nur	which electrons orbit arour nber.	nd the nucleus in discrete orbits	is inversely proportional to) the

(IV) Binding force with which the electron is bound to the nucleus increases as it shifts to outer orbits.

Atomic structure 75 Select the correct answer using the codes given below [SCRA 1998] (a) I and III (b) II and IV (c) I, II and III (d) II, III and IV 98. The Rydberg constant R for hydrogen is [MP PMT 1998] (a) $R = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{2\pi^2 m e^2}{ch^2}$ (b) $R = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{2\pi^2 m e^4}{ch^2}$ (c) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\pi^2 m e^4}{c^2 h^2}$ (d) $R = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \frac{2\pi^2 m e^4}{ch^3}$ In the Bohr model of a hydrogen atom, the centripetal force is furnished by the coulomb attraction between the 99. proton and the electron. If a_0 is the radius of the ground state orbit, m is the mass and e is charge on the electron and ε_0 is the vacuum permittivity, the speed of the electron is [CBSE PMT 1998] (d) $\sqrt{\frac{4\pi\varepsilon_0 a_0 m}{c_0}}$ (c) $\frac{e}{\sqrt{4\pi\varepsilon_0 a_0 m}}$ (b) $\frac{e}{\sqrt{\varepsilon_0 a_0 m}}$ (a) 0 100. The 21 cm radio wave emitted by hydrogen in interstellar space is due to the interaction called the hyperline interaction in atomic hydrogen. The energy of the emitted wave is nearly [CBSE 1998] (a) 10^{-17} Joule (c) 7×10^{-8} Joule (d) 10^{-24} Joule (b) 1 Joule 101. Which one of the series of hydrogen spectrum is in the visible region[RPMT 1999; MP PET 1990; MP PMT 1994; AFMC 1994; (b) Balmer series (a) Lyman series (c) Paschen series (d) Bracket series 102. Frequency of the series limit of Balmer series of hydrogen atom in terms of Rydberg constant R and velocity of light C is [KCET 1998] (b) $\frac{RC}{4}$ (d) $\frac{4}{RC}$ (c) 4*RC* (a) RC **103.** Hydrogen atom excites energy level from the fundamental state to n = 3. Number of spectral lines, according to Bohr, is [CPMT 1997] (c) 1 (d) 2 (b) 3 (a) 4 **104.** Ionization energy of hydrogen is 13.6 eV. If $h = 6.6 \times 10^{31}$ *J-sec*, the value of *R* will be of the order of [**RPMT 1997**] (b) $10^7 m^{-1}$ (c) $10^4 m^{-1}$ (a) $10^{10} m^1$ (d) $10^{-7} m^{-1}$ 105. In a hydrogen atom, which of the following electronic transitions would involve the maximum energy change[MP PET : (a) From n = 2 to n = 1(b) From n = 3 to n = 1(c) From n = 4 to n = 2(d) From n = 3 to n = 2**106.** The Rutherford α -particle experiment shows that most of the α -particles pass through almost unscattered while some are scattered through large angles. What information does it give about the structure of the atom[AFMC 1997] (a) Atom is hollow (b) The whole mass of the atom is concentrated in a small centre called nucleus (c) Nucleus is positively charged (d) All of the above 107. An ionic atom equivalent to hydrogen atom has wavelength equal to 1/4 of the wavelengths of hydrogen lines. the ion will be [RPET 1997] (d) Na^{10+} (c) Ne⁹⁺ (a) He^+ (b) Li^{++} 108. The required energy to detach one electron from Balmer series of hydrogen spectrum is [CPMT 1997] (a) 13.6 eV (b) 10.2 eV (c) 3.4 eV (d) - 1.5 eV 109. Number of spectral lines in hydrogen atom is [CPMT 1997] (b) 6 (c) 15 (d) Infinite (a) 3 110. A hydrogen atom in its ground state absorbs 10.2 eV of energy. The orbital angular momentum is increased by (Given Planck constant $h = 6.6 \times 10^{-34} J$ - sec) [MP PET 1995; MP PMT 1997] (c) 2.11×10^{-34} J- sec (b) 3.16×10^{-34} J - sec (d) 4.22×10^{-34} J- sec (a) $1.05 \times 10^{-34} J$ - sec

The ratio of the frequencies of the long wavelength limits of Lyman and Balmer series of hydrogen spectrum is 111. [Haryana CEE 1996] (a) 27:5 (b) 5:27 (c) 4:1 (d) 1:4 **112.** An electron in hydrogen and one in singly ionised helium atom are excited to the state n = 2. A photon is emitted when these electrons jump back to the ground state in each case. Then [CPMT 1996] (a) Energy of photon is same in both (b) Radiations emitted by helium ion are shifted towards the red as compared to radiation from hydrogen atom (c) Radiations emitted by helium ion are shifted towards the violet as compared to radiations from hydrogen atom (d) None of these 113. Ionisation potential of hydrogen atom is 13.6 eV. Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV. The spectral lines emitted by hydrogen atoms according to Bohr's theory will be [CBSE PMT 1996] (b) Two (c) Three (a) One (d) Four 114. According to classical physics, the electron orbit in the hydrogen atom is unstable because [CPMT 1995] (a) The electron is an unstable particle (b) The electron has very high kinetic energy (c) An accelerated electron radiates out E.M. waves (d) An accelerated electron absorbs E.M. waves 115. According to Bohr's theory of the hydrogen atom, the diameter of the first orbit is about [CPMT 1995] (a) 0.1 Å (b) 1 Å (c) 13.6 *Å* (d) 5890 Å 116. The splitting of line into groups under the effect of electric or magnetic field is called [AFMC 1995] (a) Zeeman's effect (b) Bohr's effect (c) Heisenberg's effect (d) Magnetic effect The number of revolutions per second made by an electron in the first Bohr orbit of hydrogen atom is of the 117. order of [AMU 1995] (a) 10²⁰ **(b)** 10¹⁹ (c) 10^{17} (d) 10^{15} **118.** Which of the following statements about the Bohr model of the hydrogen atom is false (a) Acceleration of electron in n = 2 orbit is less than that in n = 1 orbit (b) Angular momentum of electron in n = 2 orbit is more than that in n = 1 orbit (c) Kinetic energy of electron in n = 2 orbit is less than that in n = 1 orbit (d) Potential energy of electron in n = 2 orbit is less than that in n = 1 orbit **119.** An electron makes a transition from orbit n = 4 to the orbit n = 2 of a hydrogen atom. The wave number of the emitted radiations (R = Rydberg's constant) will be (a) $\frac{16}{3R}$ (b) $\frac{2R}{16}$ (c) $\frac{3R}{16}$ (d) $\frac{4R}{16}$ **120.** Energy levels A, B, C of a certain atom corresponding to increasing values of energy *i.e.*, $E_A < E_B < E_C$. If $\lambda_1, \lambda_2, \lambda_3$ are the wavelengths of radiations corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct [CBSE 1990; AIIMS 1995] (a) $\lambda_3 = \lambda_1 + \lambda_2$ С λ_1 (b) $\lambda_3 = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$ B λ_2 λ_3 (c) $\lambda_1 + \lambda_2 + \lambda_3 = 0$ Α

(d) $\lambda_3^2 = \lambda_1^2 + \lambda_2^2$

121. The figure indicates the energy level diagram of an atom and the origin of six spectral lines in emission (*e.g.*, line no. 5 arises from the transition from level *B* to *A*). The following spectral lines will also occur in the absorption spectrum [CBSE 1995]

			<u>т</u>	C						
	(a) 1, 4, 6		+							
	(b) 4, 5, 6		+	A						
	(c) 1, 2, 3		\downarrow	\downarrow \downarrow X						
	(d) 1, 2, 3, 4, 5, 6			2 3 4 3 0	_					
122.	If in some atomic orbit, q	uantum numbers n , l and m_l	are sam	ne, then the maximu	Im number of	electrons that				
	can be present there are					[RPMT 1995]				
	(a) 2	(b) $2n^2$	(c) (2 <i>l</i> ·	+ 1)	(d) $2(2l+1)$					
123.	Which one of these is non-	divisible				[KCET 1994]				
	(a) Nucleus	(b) Photon	(c) Pro	oton	(d) Atom					
124.	The fact that protons carry	y energy was established by			[ISM	Dhanbad 1994]				
	(a) Doppler's effect	(b) Compton's effect	(c) Boł	nr's theory	(d) Diffracti	on of light				
125.	The ratio of the speed of the	he electrons in the ground sta	te of hyd	lrogen to the speed o	of light in vac	uum is [MNR 1994]				
	(a) 1/2	(b) 2/137	(c) 1/1	37	(d) 1/237					
126.	Bohr's model of <i>H</i> -atom pr	edicts that the absorption spe	ectra invo	olves		[CBSE 1993]				
	(a) Accelerating electrons		(b) Dec	celerating electrons		, ,				
	(c) Electron going to high	er K.E. level	(d) Ele	ctrons going to lowe	er momentum	levels				
127.	x-rays are not emitted from	m excited hydrogen atoms, be	cause			[RPET 1993]				
	(a) Hydrogen atoms contains only one electron									
	(b) Energy levels of the hy	drogen atoms are very closed	spaced							
	(c) There are no neutrons	in the nucleus of the <i>H</i> -atom								
	(d) All of the above									
128.	Energy levels of the hydr ionisation potential for the	ogen atom are order of ener e atom in second excited state	gy are - is	-13.6, -3.40, -1.51,	-0.85, -0.54, [(, O <i>eV</i> . The C BSE PMT 1993]				
	(a) 13.6 <i>volt</i>	(b) 1.51 V	(c) 1.51	1 eV	(d) 13.6 <i>eV</i>					
129.	Which of the following is t	rue				[MP PET 1993]				
	(a) Lyman series is a cont	inuous spectrum								
	(b) Paschen series is a line	e spectrum in the infrared								
	(c) Balmer series is a line	spectrum in the ultraviolet								
	(d) The spectral series for	mula can be derived from the	Rutherf	ord model of the hyd	lrogen atom					
130.	Every series of hydrogen an upper limit of waveleng	spectrum has an upper and lo gth equal to 18752 Å is (Rydbo	ower lim erg const	it in wavelength. The tant $R = 1.097 \times 10^7$ p	ne spectral se er metre)	ries which has [MP PMT 1993]				
	(a) Balmer series	(b) Lyman series	(c) Pas	chen series	(d) Pfund set	ries				
131.	Hydrogen atom emits blue would the atom emit when	light when it changes from n it changes from the $n = 5$ lev	a = 4 ener rel to the	gy level to the $n = 2$ n = 2 level	level. Which	colour of light [KCET 1993]				
	(a) Red	(b) Yellow	(c) Gre	een	(d) Violet					
132.	The wavelength of radiation	on emanating from transition	of an ato	om						
	(i) From electronic state	A to C and								

(ii) From electronic state B to C are 1000 Å and 5000 Å respectively. What is the wavelength of radiation emanating from transition of the atom from state A to B

	(a) 4000 Å	(b) 2000 Å	(c) 1250 Å	(d) 500 Å						
33.	The ionization energy transition between 3rd	of hydrogen atom is 13.6 <i>e</i> 1 and 4th orbit is	V. Following Bohr's theory,	the energy correspon [CBSE]	ding to a PMT 1992]					
	(a) 3.40 <i>eV</i>	(b) 1.51 <i>eV</i>	(c) 0.85 <i>eV</i>	(d) 0.66 <i>eV</i>						
84.	Which of the following	g pairs, have identical atomic	structure	[CBSE]	PMT 1992]					
	(a) Li^+, Na^+	(b) <i>He</i> , <i>Ne</i> ⁺	(c) <i>He</i> , <i>Li</i>	(d) C, N^+						
5.	As the electron in Boh	r orbit of hydrogen atom pass	es from state $n = 2$ to $n = 1$, t	the KE (K) and PE (U) of	hange as[
	(a) <i>K</i> two-fold, <i>U</i> also	two-fold (b)	K four-fold, U also four	-fold (c) <i>K</i> four-fold,	U two-fo					
;6.	The ionisation energy	of 10 times ionised sodium at	om is	[D]	PMT 1991]					
	(a) 13.6 <i>eV</i>	(b) $13.6 \times 11 eV$	(c) $\frac{13.6}{11} eV$	(d) $13.6 \times (11)^2 eV$						
37.	If the electron in H ato	om radiates a photon of wavel	ength 4860 Å, the KE of the o	electron [C	PMT 1991]					
	(a) Decreases by $2.0 \times 4.1 \times 10^{-19} J$ (d)	$10^{-19} J$ (b) Increases by $8.2 \times 10^{-19} J$	Increases by $4.1 \times 10^{-19} J$	(c) Decreases	by					
38.	Assume that there exit value of first excitatio	ist an atom, according to Bol n potential for this atom will	hr model, whose first ioniza be	ntion potential is 20 <i>V</i> , [RI	then the MT 1989]					
	(a) 5V	(b) 10V	(c) 15V	(d) 25 <i>V</i>						
9.	The following diagram	indicates the energy levels o	of a certain atom when the sy	stem moves from 2 <i>E</i> l	evel to E.					
	A photon of wavelength λ is emitted. The wavelength of photon produced during its transition from $\frac{4E}{3}$ level									
	to E is		2 <i>E</i>	[[[PMT 1989]					
	(a) $\lambda/3$									
	(u) <i>n</i> /3									
	(b) $3\lambda/4$		4/3							
	(b) $3\lambda/4$ (c) $4\lambda/3$		4/3 <i>E</i>							

 140. The energy levels of the hydrogen spectrum is shown in figure. There are some transitions A, B, C, D and E.

 Transition A, B and C respectiv

 [CPMT 1986, 88]

(a) First member of Lyman series, third spectral line of Balmer series and the second spectral line of Paschen series

(b) Ionization potential of hydrogen, second spectral line of Paschen series

(c) Series limit of Lyman series, third spectral line of Balmer series and second spectral line of Paschen series

(d) Series limit of Lyman series, second spectral line of Balmer series and third spectral line of Paschen series

141. The orbital quantum number of subshell which contains 7 orbitals is[RPMT 1986]

(a) l=7 (b) l=3 (c) l=0 (d) None of these

142. When alpha particles are sent through a thin metal foil most of them go straight through the foil because[IIT-JEE 1984]

				Atomic structure 79				
	(a) Alpha particles are m	uch heavier than electrons	(b) Alpha particles are p	ositively charged				
	(c) Most of the atom is e	mpty space	(d) Alpha particles move	e with high velocity				
143.	A hydrogen atom moving	with velocity $4m/s$ absorbs a	photon of wavelength λ an	d stops. The value of λ will be				
	(a) 1000 <i>Å</i>	(b) 2000 Å	(c) 3000 Å	(d) 4000 Å				
144.	A hydrogen atom moving atoms are in the ground will be	g with velocity u collides ine state before collision. The m	elastically with another hy inimum value of u , so that	drogen atom at rest. Both the one of the atoms get excited,				
	(a) $3.12 \times 10^6 \ m/s$	(b) $9.36 \times 10^5 \ m/s$	(c) $6.24 \times 10^4 \text{ m/s}$	(d) $5 \times 10^3 m/s$				
145.	The angular momentum of	of electron in hydrogen atom i	is proportional to					
	(a) \sqrt{r}	(b) 1/ <i>r</i>	(c) r^2	(d) $1/\sqrt{r}$				
146.	The frequency of revolut – 1)th orbit, then the rela	ion of electron in <i>n</i> th orbit is ation between the frequency (f_n . If the electron makes a v) of emitted photon and f_n	transition from <i>n</i> th orbit to (<i>n</i> will be				
	(a) $v = f_n^2$	(b) $v = \sqrt{f_n}$	(c) $v = \frac{1}{f_n}$	(d) $v = f_n$				
147.	Two photons from excite must come from	d atomic hydrogen are detect	ted. Their energies are 10.2	eV and 1.9 eV. These photons				
	(a) A single atom		(b) Two different atoms					
	(c) Either a single atom	or two atoms	(d) None of these					
148.	Goudsmit and Uhelenbec	k postulated the concept of ele	ectron spin in order to explain					
	(a) Hydrogen spectra		(b) Fine structure of hyd	lrogen spectra				
	(c) Doublet structure of	Alkali metal spectra	(d) Elliptical orbit motic	on of electrons in atom				
149.	The angular momenta of	electrons in an atom produces	S					
	(a) Magnetic moment	(b) Zeeman effect	(c) Light	(d) Nuclear fission				
150.	For an atom situated in a	magnetic field, the number o	f possible orientations for o	brbit with $n = 3$ are				
	(a) 9	(b) 7	(c) 5	(d) 3				
151.	In Bohr model of hydroge	en atom, the force on the elect	ron depends on the princip	al quantum number as				
	(a) $F \propto 1/n^3$	(b) $F \propto 1/n^4$	(c) $F \propto 1/n^5$	(d) Does not depend on <i>n</i>				
152.	A proton and an electron photon is emitted in this	, both at rest initially, combine process. Then the wavelength	ne to form a hydrogen ator 1 of this photon is	n in the ground state. A single				
	(a) 912 <i>Å</i>	(b) 3646 <i>Å</i>	(c) 8201 <i>Å</i>	(d) None of these				
153.	When a hydrogen atom e	mits a photon in going from <i>n</i>	n = 5 to $n = 1$, its recoil spee	d is almost				
	(a) $10^{-4} m/s$	(b) $2 \times 10^{-2} m/s$	(c) 4 <i>m/s</i>	(d) $8 \times 10^2 m/s$				
154.	The ratio between total atom (both in ground sta	acceleration of the electron is te) is	n singly ionized helium ato	om and doubly ionized lithium				
	(a) $\frac{2}{3}$	(b) $\frac{4}{9}$	(c) $\frac{8}{27}$	(d) 1				
155.	Suppose the potential en	nergy between electron and p	proton at a distance r is g	given by $-\frac{ke^2}{3r^3}$. Application of				
	Bohr's theory to hydroge	n atom in this case shows that	t					
	(A) Energy in the <i>n</i> th orb electron)	it is proportional to n^6	(B) Energy is proportion	onal to m^{-3} (m = mass of				
	(a) Only (A) is correct		(b) Only (B) is correct					
	(c) Both (A) and (B) are	correct		(d) None are correct				

156. An electron with kinetic energy 5 *eV* is incident on a hydrogen atom in its ground state. The collision

- (a) Must be elastic
 (b) May be partially elastic
 (c) Must be completely inelastic
 (d) May be completely
- inelastic

157. Suppose, the electron in a hydrogen atom makes transition from n = 3 to n = 2 in $10^{-8} s$. The order of the torque acting on the electron in this period, using the relation between torque and angular momentum as discussed in the chapter on rotational mechanics is

(a)
$$10^{-34}$$
 N-m (b) 10^{-24} *N*-m (c) 10^{-42} *N*-m (d) 10^{-8} *N*-m

158. The distance of the closest approach of an alpha particle fired at a nucleus with momentum p is r_0 . The distance of the closest approach when the alpha particle is fired at the same nucleus with momentum 2p will be

(a)
$$2r_0$$
 (b) $4r_0$ (c) $\frac{r_0}{2}$ (d) $\frac{r_0}{4}$

159. Radiations of wavelengths λ are incident on atoms of hydrogen in ground state. These atoms absorb fraction of these radiation. The excited atoms have ten different wavelengths in the emission spectrum. Then value of λ is

(a)
$$570 \dot{A}$$
 (b) $750 \dot{A}$ (c) $590 \dot{A}$ (d) $950 \dot{A}$

- **160.** Potential energy between a proton and an electron is given by $U = \frac{Ke^2}{3R^3}$, then radius of Bohr's orbit can be given
 - by

(a)
$$\frac{Ke^2m}{h^2}$$
 (b) $\frac{6\pi^3}{n^3}\frac{Ke^2m}{h^2}$ (c) $\frac{2\pi}{n}\frac{Ke^2m}{h^2}$ (d) $\frac{4\pi^2Ke^2m}{n^2h^2}$

161. The minimum kinetic energy of an electron, hydrogen ion, helium ion required for ionization of a hydrogen atom is E_1 in case electron is collided with hydrogen atom. It is E_2 if hydrogen ion is collided and E_3 when helium ion is collided. Then

(a)
$$E_1 = E_2 = E_3$$
 (b) $E_1 > E_2 > E_3$ (c) $E_1 < E_2 < E_3$ (d) $E_1 > E_3 > E_2$

- **162.** The wave number of first line of Balmer series in hydrogen atom is $1.52 \times 10^{6} m^{-1}$. The wave number of first line of Lyman series in Be^{3+} will be
 - (a) $2.43 \times 10^8 m^{-1}$ (b) $1.31 \times 10^8 m^{-1}$ (c) $5.44 \times 10^8 m^{-1}$ (d) $6.83 \times 10^8 m^{-1}$
- **163.** A photon of energy 10.2 *eV* corresponds to light of wavelength λ_0 . Due to an electron transition from n = 2 to n = 1 in a hydrogen atom, light of wavelength λ is emitted. If we take into account the recoil of the atom when the photon is emitted

(a)
$$\lambda = \lambda_0$$
 (b) $\lambda < \lambda_0$

(c) $\lambda > \lambda_0$

(d) The data is not sufficient to reach a conclusion

	Assignments																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
а	d	а	b	а	d	b	С	b	а	b	а	с	с	а	а	d	С	а	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	с	d	С	b	b	а	с	d	d	d	b	а	d	b	а	d	а	с	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	С	b	С	b	а	С	С	d	b	d	d	d	b	d	а	b	b	d	с
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a, d	С	а	d	С	d	С	d	а	d	b	b	С	d	а	а	С	b	а	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
с	а	а	С	а	с	С	b	С	d	а	а	d	а	b	b	а	d	С	d
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	b	b	b	b	d	а	С	d	а	а	с	С	С	b	а	d	d	с	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	а	b	С	С	d	b	b	b	С	d	с	d	d	b	d	с	С	d	С
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	С	а	С	а	d	С	С	b	а	b	а	С	С	С	а	b	d	d	d
161	162	163																	
С	b	С																	