Quadratic Equations

Selected NCERT Questions

- 1. Find the roots of the quadratic equation $\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$.
- Sol. The given quadratic equation is

$$\sqrt{2}x^2 + 7x + 5\sqrt{2} = 0$$

By applying mid term splitting, we get

$$\sqrt{2}x^2 + 2x + 5x + 5\sqrt{2} = 0$$

$$\Rightarrow \qquad \sqrt{2}x(x+\sqrt{2}) + 5(x+\sqrt{2}) = 0 \Rightarrow (\sqrt{2}x+5)(x+\sqrt{2}) = 0$$
$$\Rightarrow \qquad x = \frac{-5}{\sqrt{2}}, -\sqrt{2} \quad \text{or} \qquad \frac{-5\sqrt{2}}{2}, -\sqrt{2}$$

 A train covers a distance of 480 km at a uniform speed. If the speed had been 8 km/h less, then it would have taken 3 hours more to cover the same distance. Find the original speed of the train. [CBSE 2020(30/1/2)]

Sol.	Let th	he speed of train be x km/h.	
		$\frac{480}{x-8} - \frac{480}{x} = 3$	1
	⇒	$x^2 - 8x - 1280 = 0$	1
		(x - 40) (x + 32) = 0	
		x = 40, -32 (Rejected)	1
	<i>:</i> .	Speed of train = 40 km/h	[CBSE Marking Scheme 2020(30/1/2)]

- 3. In a class test, the sum of Shefali's marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of her marks would have been 210. Find her marks in the two subjects.
- Sol. Let Shefali's marks in Mathematics be x.

Therefore, Shefali's marks in English is (30 - x).

Now, according to question,

		(x + 2)	(30 - x - x)	-3) = 210	⇒	(x +	(-2)(27-x) = 210
	⇒	27x - x	² + 54 -	2x = 210	⇒	25x	$-x^2 + 54 - 210 = 0$
	⇒	25x - x	² – 156 =	= 0	⇒	$-(x^{2})$	$(x^2 - 25x + 156) = 0$
	⇒	$x^2 - 25$	x + 156	= 0	⇒	x^2 –	13x - 12x + 156 = 0
	⇒	x(x-1)	(3) - 12(x)	(-13) = 0	\Rightarrow	(x –	13) (x - 12) = 0
	Either	x – 13	= 0 or	x - 12 =	0		
	⇒	x = 13	3 or	x =	12		
	<i>:</i> .	Shefa	li's mark	s in Mathen	natics =	13, n	narks in English = $30 - 13 = 17$
	or	Shefa	li's mark	s in Mathem	natics =	12, n	narks in English = $30 - 12 = 18$.
4.	Find tl	he roots		U .		equa	tion by applying the quadratic formula.
			$4x^2 + $	$4\sqrt{3}x + 3 =$	= 0		
Sol.	We have	ve,	$4x^2 + 4$	$4\sqrt{3}x + 3 =$	0		
	Here,		a = 4, b	$= 4\sqrt{3}$ an	dc = 3		
	There	fore,	$D = b^2$.	- 4ac			
			= (4	$\sqrt{3}$) ² - 4 ×	$4 \times 3 =$	48 -	-48 = 0
	\therefore		D=0,	roots exist a	ind are o	equal	l.
	Thus,		$x = \frac{-b}{2}$	$\frac{D \pm \sqrt{D}}{2a} = \frac{-4}{2a}$	$\sqrt{3}\pm 0$	$=\frac{-}{2}$	3
						-	
	Hence	, the ro	ots of giv	en equation	are $\frac{-v}{2}$	$\frac{3}{2}$ ar	nd $\frac{-\sqrt{3}}{2}$.
5.							tion by factorisation:
			$2x^2 - x$	$+\frac{1}{8}=0$			
6.1	We have	0.2	$-x + \frac{1}{8} =$	0			
301.			0				
	⇒	$16x^2$	$\frac{-8x+1}{8}$ =	= 0	⇒	>	$16x^2 - 8x + 1 = 0$
	⇒	$16x^2 -$	4x - 4x	+1 = 0	⇒	>	4x (4x - 1) - 1(4x - 1) = 0
	⇒	(4 <i>x</i> –	1) $(4x - 1)$) = 0			
	So, eitl	her 4x	-1 = 0	or $4x - 1$	= 0		
			$x = \frac{1}{4}$	or $x = \frac{1}{4}$			
			(257)	177 I			

Hence, the roots of the given equation are $\frac{1}{4}$ and $\frac{1}{4}$.

6. A motor boat whose speed is 18 km/h. in still water takes 1 hour more to go 24 km upstream than to return downstream to the same spot. Find the speed of the stream. [CBSE 2018(30/1/1)]

23)	Repretentative diagram.
(chaice 1)	
	Boat to S (strain 's spe
	· · · · · · · · · · · · · · · · · · ·
	Griven that
	Spead of boat = 18 km/hm in still water.
	Speed of stream = S (variable, must find)
	Distance upstream = 24 km
	Time upstream = I has more than time downstream.
	We know, speeds Distance Time = Pistance Time Speed.
	The foundhears 24
	Time upstheam = 24, Time downstheam = 24 18-5, Time downstheam = 24.
	$-3 \frac{24}{18-5} = \frac{1+\frac{24}{18+5}}{18+5}$
	24 (8+5+24
	18-5 18+5. (2000 - michiphying)
	24(18+5) = (42+5)(18-5)
	4321245 = 756+ 185-4125 -52
	-> 52 +245+245 + 432-756 = Q.
	\$2+485+(-324)=Q.
	5"+545-65 -324=0 -
	s (5+54) -6 (5+54) =D.
	(5-6) (x+64)=D.
17/	Now, either 5-6=0 or 5+54=0.
	->>=6 ->>==-54.
	So speed = 6 on -54 km/hn.
	But speed cannot be negative.
	=> speed of the stream is 6 km/hm.
	[Topper's Answer 2018(30/1/1

7. The diagonal of a rectangular field is 60 metres more than the shorter side. If the longer side is 30 metres more than the shorter side, find the sides of the field.

Sol. Let *ABCD* be the rectangular field. Let the shorter side *BC* of the rectangle = x metres.

According to question,

Diagonal of the rectangle, AC = (x + 60) metres side of the rectangle, AB = (x + 30) metres

By Pythagoras theorem, $AC^2 = AB^2 + BC^2$

- \therefore $(x + 60)^2 = (x + 30)^2 + x^2$
- or $x^2 + 120x + 3600 = x^2 + 60x + 900 + x^2$
- $\therefore \qquad (2x^2 x^2) + (60x 120x) + 900 3600 = 0$
- or $x^2 60x 2700 = 0$
- or (x 90)(x + 30) = 0

 \Rightarrow

:. Either x - 90 = 0 or x + 30 = 0

$$x = 90$$
 or $x = -30$ (But side cannot be negative)

So, the shorter side of rectangle = 90 m

and longer side of rectangle = 120 m

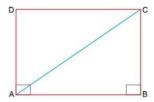
- 8. The sum of the reciprocals of Rehman's age (in years) 3 years ago and 5 years from now is $\frac{1}{3}$. Find his present age.
- Sol. Let the present age of Rehman be x years. So, 3 years ago, Rehman's age = (x - 3) years
 - And 5 years from now, Rehman's age = (x + 5) years

Now, according to question, we have

	$\frac{1}{x-3} + \frac{1}{x+5} = \frac{1}{3}$		
⇒	$\frac{x+5+x-3}{(x-3)(x+5)} = \frac{1}{3}$	⇒	$\frac{2x+2}{(x-3)(x+5)} = \frac{1}{3}$
⇒	6x + 6 = (x - 3)(x + 5)	⇒	$6x + 6 = x^2 + 5x - 3x - 15$
⇒	$x^2 + 2x - 15 - 6x - 6 = 0$	⇒	$x^2 - 4x - 21 = 0$
⇒	$x^2 - 7x + 3x - 21 = 0$	⇒	x(x-7) + 3(x-7) = 0
⇒	(x-7) (x+3) = 0	⇒	x = 7 or $x = -3$

But $x \neq -3$ (age cannot be negative)

Therefore, present age of Rehman = 7 years.


9. Find the value of k for which the quadratic equation kx(x-2) + 6 = 0 has two equal roots.

[CBSE 2019(30/4/1)]

Sol. Given equation $kx^2 - 2kx + 6 = 0$ For two equal roots

	D = 0
⇒	$b^2 - 4ac = 0$
⇒	$4k^2 - 4k \times 6 = 0$
⇒	4k(k-6)=0
⇒	k = 6

 $[k \neq 0, \text{ as if } k = 0 \text{ then the given equation is not a valid equation.}]$

10. The difference of square of two numbers is 180. The square of the smaller number is 8 times the larger number. Find the two numbers.

Sol. Let smaller and larger number be x and y respectively.

From question

$$y^2 - x^2 = 180$$
 ...(*i*)
 $x^2 = 8y$...(*ii*)

From (i) and (ii)

$$y^2 - 8y = 180$$

Also,

By applying quadratic formula, we get

 $y^2 - 8y - 180 = 0$

$$y = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 1 \times (-180)}}{2}$$
$$= \frac{8 \pm \sqrt{64 + 720}}{2} = \frac{8 \pm \sqrt{784}}{2}$$
$$= \frac{8 \pm 28}{2} = \frac{36}{2} \text{ or } \frac{-20}{2}$$
$$= 18 \text{ or } -10$$
If $y = 18$, $x^2 = 8 \times 18 = 144 \implies x = \pm 12$

Required two numbers are 18, 12 or 18, -12.

Also, y = -10 is not possible because $x^2 = 8 \times (-10) = -80$ (negative number which is not possible)

dimension of the second

C .1

×C .1

Multiple Choice Questions

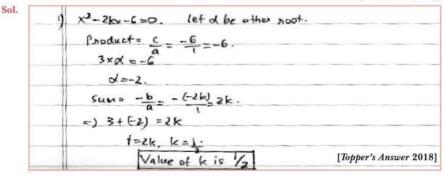
Choose and write the correct option in the following questions.

1.	a sector of the		ers is equal to 6 times the so wing equations represent th	0
	(a) $2x^2 + x - 9 =$	0	$(b) \ 2x^2 - x + 9 = 0$	
	(c) $x^2 + 2x + 18 =$	= 0	$(d) x^2 + 2x - 18 = 0$	
2.	Consider the equation cannot be the value		(a + b). For the equation to be	e quadratic, which of these Competency Based Question]
	(a) 2c	(b) 3c	(c) 4c	(d) $2c + 2b$
3.	Which of the follo	wing is not a quadrat	tic equation?	[NCERT Exemplar]
	$(a) \ \ 2(x-1)^2 = 4x^2$	-2x + 1	(b) $2x - x^2 = x^2 + 5$	
	(c) $(\sqrt{2}x + \sqrt{3})^2 +$	$-x^2 = 3x^2 - 5x$	$(d) \ (x^2 + 2x)^2 = x^4 + $	$3 + 4x^3$
4.	The roots of the q	uadratic equation x^2 -	-0.04 = 0 are	[CBSE 2020(30/2/1)]
	(a) ± 0.2	$(b) \pm 0.02$	(c) 0.4	(<i>d</i>) 2
5.	Which of the follo	owing equations has 2	as a root?	[NCERT Exemplar]
	(a) $x^2 - 4x + 5 =$	0	$(b) \ x^2 + 3x - 12 = 0$	
	(c) $2x^2 - 7x + 6 =$: 0	$(d) \ 3x^2 - 6x - 2 = 0$	
6.	Which of the follo	owing equations has t	he sum of its roots as 3?	[NCERT Exemplar]
	(a) $2x^2 - 3x + 6 =$: 0	$(b) - x^2 + 3x - 3 = 0$	
	(c) $\sqrt{2}x^2 - \frac{3}{\sqrt{2}}x + $	-1 = 0	$(d) \ 3x^2 - 3x + 3 = 0$	

7.	Rahul follows the below steps to f	find the roots of the equation $3x^2 - 1$	1x - 20 = 0, by splitting the
	middle term.		
	Step 1: $3x^2 - 11x - 20 = 0$	Step 2: $3x^2 - 15x + 4x$	-20=0
	Step 3: $3x(x-5) + 4(x-5) = 0$	Step 4: $(3x - 4)(x - 5)$	= 0
	Step 5: $x = \frac{4}{3}$ and 5		
	In which step did Rahul make t	he first error? [Competency Based Question]
	(a) Step 1 (b) Step 2	(c) Step 3	(<i>d</i>) Step 4
8.	If the list price of a toy is reduce	ed by ₹ 2, a person can buy 2 toys m	ore for ₹ 360. The original
	price of the toy is		
	(<i>a</i>) ₹18 (<i>b</i>) ₹ 20	(c) ₹ 19	(<i>d</i>) ₹ 21
9.	The quadratic equation whose o	one rational root is $3 + \sqrt{2}$ is	
	(a) $x^2 - 7x + 5 = 0$	$(b) x^2 + 7x + 6 = 0$	
	(c) $x^2 - 7x + 6 = 0$	$(d) \ x^2 - 6x + 7 = 0$	
10.	A student is trying to find the follows:	roots of $3x^2 - 10x - 8 = 0$ by sp	litting the middle term as
	Step 1: $3x^2 - 10x - 8 = 0$		
	Step 2: $3x^2 - mx + nx - 8 =$	= 0	
	What could be the values of m a		Competency Based Question]
	(a) $m = 8$ and $n = 2$	(b) $m = -8$ and $n = -2$	
	(a) $m = 0$ and $n = 2$ (c) $m = 12$ and $n = 2$	(d) $m = -12$ and $n = -12$	
11		6. W ()	
11.	The value(s) of k for which the o	quadratic equation $2x^2 + kx + 2 = 0$	[CBSE 2020(30/5/1)]
	(a) 4 (b) ± 4	(c) -4	$\begin{bmatrix} CBSE 2020(30/3/1) \end{bmatrix}$ (d) 0
19		$adratic equation x^2 + kx + 12 = 0$	
14.	$(a) -7 \qquad (b) 7$	(c) 4	(d) 8
13.	Which of the following equation	Contra Co	[NCERT Exemplar]
101	(a) $2x^2 - 3\sqrt{2}x + \frac{9}{4} = 0$	(b) $x^2 + x - 5 = 0$	(reziri zampar)
	(c) $x^2 + 3x + 2\sqrt{2} = 0$	(d) $5x^2 - 3x + 1 = 0$	
14	The quadratic equation $2x^2 - \sqrt{3}$		[NCERT Exemplar]
1 1.	(<i>a</i>) two distinct real roots	(b) two equal real ro	
	(c) no real root	(d) more than two re	
15	Which of the following equation		[NCERT Exemplar]
15.	(a) $x^2 - 4x + 3\sqrt{2} = 0$	(b) $x^2 + 4x - 3\sqrt{2} =$	
	(a) $x^2 - 4x - 3\sqrt{2} = 0$ (c) $x^2 - 4x - 3\sqrt{2} = 0$	(d) $3x^2 + 4\sqrt{3}x + 4 =$	
16	The quadratic equation $x^2 - 4x + 4x$	AND ADD ADD ADD ADD ADD ADD ADD ADD ADD	
10.	(a) $k = 4$	k = 0 has distinct real roots if (b) $k > 4$	[CBSE 2020(30/4/1)]
	(a) $k = 4$ (c) $k = 16$	(b) k > 4 (d) k < 4	
15			· · · · · · · · · · · · · · · · · · ·
17.	Consider the equation $px^2 + qx$ equation has real roots?	+ r = 0. Which conditions are suf	ficient to conclude that the
	(a) $p < 0, q > 0$	(b) $p > 0, q < 0$	
	(c) $p > 0, r > 0$	(d) p > 0, r < 0	
	~/ T = 0,	× / F	

18.	If the equation x^2 -	-mx+1=0 doe	s not possess i	real roots, then	l.	
	(a) $m > 2$	(b) $m < -2$	(c)	-2 < m < 2	(d) -3 < n	n < 3
Answe	rs					
1. (d	⁽⁾ 2. (a)	3. (c)	4. (<i>a</i>)	5. (c)	6. (b)	7. (d)
8. (b) 9. (d)	10. (c)	11. (b)	12. (b)	13. (b)	14. (c)
15. (a) 16. (d)	17. (d)	18. (c)			

Very Short Answer Questions


Each of the following questions are of 1 mark.

1. Find the value of k for which x = 2 is a solution of the equation $kx^2 + 2x - 3 = 0$.

[CBSE 2019(30/5/1)] Sol. $k(2)^2 + 2(2) - 3 = 0$ $k = -\frac{1}{4}$ [CBSE Marking Scheme 2019(30/5/1)]

2. If x = 3 is one root of the quadratic equation $x^2 - 2kx - 6 = 0$, then find the value of k.

[CBSE 2018(30/1)]

3. Write the discriminant of the quadratic equation: $(x + 5)^2 = 2(5x - 3)$. [CBSE 2019(30/3/1)]

Sol.

3.
$$(\pi + 3)^2 = 2(5\pi - 3)$$

 $\Rightarrow \chi^2 + 25 + 10\chi \pm 10\chi - 6$
 $\Rightarrow \chi^2 + 32 = 0.$
 $a^{-1}, b^{-0} > c^{-2}32$
Nicuminiant = $b^2 - 4ac$
 $= 0^2 - 4\chi I\chi 32$
 $= 0 - 124$
 $= -124$
[Topper's Answer 2019]

- 4. If a and b are the roots of the equation $x^2 + ax b = 0$, then find a and b.
- **Sol.** Sum of the roots = $a + b = -\frac{B}{4} = -a$ Product of the roots = $ab = \frac{C}{4} = -b$ a + b = -a and ab = -b \Rightarrow 2a = -b and a = -1 \Rightarrow b = 2and a = -1
 - 5. Find the value of k for which the roots of the equation $3x^2 10x + k = 0$ are reciprocal of each [CBSE 2019(30/1/1)] other?
- Sol. Given quadratic equation be

 \Rightarrow

$$3x^2 - 10x + k = 0$$

Since its roots are reciprocal to each other.

- \therefore Let one root be α , therefore other will be $\frac{1}{\alpha}$.
- Now, product of roots = $\frac{c}{a}$. $\alpha \times \frac{1}{\alpha} = \frac{k}{3} \implies 1 = \frac{k}{3} \implies k = 3$ ⇒
- 6. For what values of k does the quadratic equation $4x^2 12x k = 0$ have no real roots?

				[(//]
Sol.	For non-real roots, $D < 0$	⇒	$144 - 4 \times 4 \times (-k) < 0$	< 0 1/2
			16k < -144	
			k < -9	1/2
			[<i>CB</i> :	SE Marking Scheme 2019 (30/4/1)]

Short Answer Questions-I

Each of the following questions are of 2 marks.

- 1. Solve for x: $6x^2 + 11x + 3 = 0$
- Sol. Given equation,
 - $6x^2 + 11x + 3 = 0$ \Rightarrow $6x^2 + 9x + 2x + 3 = 0$ $3x(2x + 3) + 1(2x + 3) = 0 \implies (2x + 3)(3x + 1) = 0$ \Rightarrow 2x + 3 = 0 or 3x + 1 = 0 \Rightarrow $x = \frac{-3}{2}, \frac{-1}{2}$ \Rightarrow

2. Solve for x: $\sqrt{2x+9} + x = 13$

Sol.

16)	$\sqrt{2x+9} + x = 13$	
	$\sqrt{2\chi+9} = 13-\chi$	
	$2x+9 = (13-x)^2$	3
	$2x+9=169+x^2-26x$	=) $\chi^2 + 169 - 26\chi - 9 - 2\chi = 0$
		$\chi^2 = 28\chi + 160 = 0$
		$\chi^2 - 20\chi - 8\chi + 160 = 0$
		X(X-20)-8(X-20)=0
		$(\chi - 8) (\chi - 20) = 0$
		ucher = [x=8] or [x=20]
		[Topper's Answer 2016]

[CBSE 2020(30/4/1)]

[CBSE (AI) 2016(30/2)]

[CBSE 2019(30/4/1)]

- 3. If $x = \frac{2}{3}$ and x = -3 are roots of the quadratic equation $ax^2 + 7x + b = 0$, find the values of a and b. [CBSE Delhi 2016]
- **Sol.** Let us assume the quadratic equation be $Ax^2 + Bx + C = 0$.
 - Sum of the roots = $-\frac{B}{A}$
 - $\Rightarrow \qquad \frac{-7}{a} = \frac{2}{3} 3 \Rightarrow a = 3$

Product of the roots = $\frac{C}{4}$

 $\Rightarrow \qquad \frac{b}{a} = \frac{2}{3} \times (-3) \qquad \Rightarrow \qquad \frac{b}{a} = -2$ $\Rightarrow \qquad b = 3 \times (-2) \qquad \Rightarrow \qquad b = -6$

4. Find the roots of the quadratic equation $-x^2 + 7x - 10 = 0$ by using quadratic formula.

[NCERT Exemplar]

[CBSE Delhi 2014]

Sol. Given quadratic equation

$$-x^2 + 7x - 10 = 0$$

Its Discriminant $(D) = b^2 - 4ac$

$$\Rightarrow D = (7)^2 - 4 \times (-1) \times (-10) = 9$$

$$\therefore x = \frac{-b \pm \sqrt{D}}{2a} = \frac{-7 \pm \sqrt{9}}{2 \times (-1)} = \frac{-7 \pm 3}{-2}$$

$$\Rightarrow x = \frac{-7 + 3}{-2}, \frac{-7 - 3}{-2} = \frac{-4}{-2}, \frac{-10}{-2}$$

$$\Rightarrow$$
 $x = 2, 5$

5. Solve the quadratic equation $2x^2 + ax - a^2 = 0$ for x.

Sol. $2x^2 + ax - a^2 = 0$

Here, a = 2, b = a and $c = -a^2$

Using the formula,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \text{ we get}$$

$$x = \frac{-a \pm \sqrt{a^2 - 4 \times 2 \times (-a^2)}}{2 \times 2} = \frac{-a \pm \sqrt{9a^2}}{4} = \frac{-a \pm 3a}{4}$$

$$x = \frac{-a + 3a}{4} = \frac{a}{2}, \quad x = \frac{-a - 3a}{4} = -a \quad \Rightarrow \quad x = \frac{a}{2}, -a$$

- 6. Does there exist a quadratic equation whose co-efficients are rational but both of its roots are irrational? Justify your answer.
- **Sol.** Yes, $x^2 4x + 1 = 0$ is a quadratic equation with rational co-efficients.

Its roots are $\frac{4 \pm \sqrt{(-4)^2 - 4 \times 1 \times 1}}{2} = \frac{4 \pm \sqrt{12}}{2} = 2 \pm \sqrt{3}$, which are irrational.

- 7. Find the value of k for which the equation $x^2 + k(2x + k 1) + 2 = 0$ has real and equal roots. [CBSE Delhi 2017]
- Sol. Given quadratic equation:

 \Rightarrow

$$x^{2} + k(2x + k - 1) + 2 = 0$$
$$x^{2} + 2kx + (k^{2} - k + 2) = 0$$

For equal roots, $b^2 - 4ac = 0$ $4k^2 - 4k^2 + 4k - 8 = 0$ ⇒ $4k = 8 \implies k = 2$ ⇒

Short Answer Questions-II

Each of the following questions are of 3 marks.

1. In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced by 200 km/h and time of flight increased by 30 minutes. Find the original duration of flight. [CBSE 2020(30/1/1)]

 $\frac{1}{2}$

- Sol. Let original speed of the aircraft be x km/h.
 - Time taken to cover a flight of 600 km = $\frac{600}{r}$ h

When speed is reduced by 200 km/h

- New speed = (x 200) km/h
- Time taken to cover 600 km = $\frac{600}{r}$ h

ATQ,
$$\frac{600}{x-200} - \frac{600}{x} = \frac{30}{60}$$

 $\Rightarrow \quad 600\left(\frac{1}{x-200} - \frac{1}{x}\right) = \frac{1}{2} \quad \Rightarrow \quad 600\left(\frac{x-x+200}{x(x-200)}\right) = \frac{1}{2}$
 $\Rightarrow \quad 120000 \times 2 = x^2 - 200x \quad \Rightarrow \quad x^2 - 200x - 240000 = 0$
 $\Rightarrow \quad x = \frac{200 \pm \sqrt{40000 + 960000}}{2}$

$$\Rightarrow \qquad x = \frac{200 \pm 100000}{2} = \frac{200 \pm 1000}{2}$$

$$\therefore \qquad x = \frac{200 \pm 1000}{2} \qquad \text{(Negative sign neglected)}$$

$$x = \frac{1200}{2} = 600 \qquad \Rightarrow \qquad x = 600 \text{ km/h}$$

Original duration of flight = $\frac{600}{x} = \frac{600}{600}$ h = 1 hour

2. A two digit number is four times the sum of the digits. It is also equal to 3 times the product of digits. Find the number. [CBSE (F) 2016]

Sol. Let the ten's digit be x and unit's digit = y.

Number = 10x + yATQ, 10x + y = 4(x + y)6x = 3y \Rightarrow \Rightarrow 2x = y...(i) Again 10x + y = 3xy10x + 2x = 3x(2x) $12x = 6x^2$ \Rightarrow [From equation (i)] $6x^2 - 12x = 0$ 6x(x-2) = 0 \Rightarrow \Rightarrow x = 2 (rejecting x = 0) \Rightarrow From (i), 2x = y⇒ y = 4 \therefore The required number is $10x + y = 10 \times 2 + 4 = 24$.

3. A plane left 30 minutes late than its scheduled time and in order to reach the destination 1500 km away in time it had to increase its speed by 100 km/h. Find its usual speed.

[CBSE 2018]

Sol.

Usual speed = 5. We know, spead =	distance , other time =	distance speed.
-> Fлат question,	$\frac{1500}{100+5} + \frac{1}{2} = \frac{1500}{5}$	[half an hown late]. (10 min. o. 5 hn).
	1500 1500 1 (00+1 5 - 1 2	
1500 3000 - 5		
(00fs 25-	Chose multiplying,	
30005 = 300000 - 100		
52 +1001 - 300000	-0.	
5° 4 6005 - 5005 -	- 300000 = 0 .	
\$ (1+600) -500	(++600)=0	
(5-500)(2+60	7 0 0	
	ALC: NOTE: AND A	
\$ 5-500=0	0= 000 +2 no	
-> 5= 500 km/h	-> 5>-600 km/h.	
=> \$> \$00 0	n -600 km/hn.	
	cannot be negative.	

4. Solve the quadratic equation $(x-1)^2 - 5(x-1) - 6 = 0$.

Sol. We have,

Sol.

 $(x-1)^2 - 5(x-1) - 6 = 0$ $y^2 - 5y - 6 = 0$, where y = (x - 1) \Rightarrow $\Rightarrow \qquad y^2 - 6y + y - 6 = 0$ $\Rightarrow \qquad y(y-6) + 1(y-6) = 0$ (y-6)(y+1)=0 \Rightarrow y = -1, 6 \Rightarrow x - 1 = -1, or x - 1 = 6 \Rightarrow x = 0, 7 \Rightarrow x = 0 or 7·. 5. Solve for x: $x^2 + 5x - (a^2 + a - 6) = 0$ [Competency Based Question] [CBSE (F) 2015] $x^2 + 5x - (a^2 + a - 6) = 0$ $x^2 + 5x - (a^2 + 3a - 2a - 6) = 0$ $x^{2} + 5x - [a(a + 3) - 2(a + 3)] = 0$

 $x^{2} + 5x - (a - 2)(a + 3) = 0$

$$\therefore \quad x^2 + (a+3)x - (a-2)x - (a-2)(a+3) = 0$$

$$x[x + (a+3)] - (a-2)[x + (a+3)] = 0$$

$$[\{x + (a+3)\} \{x - (a-2)\}] = 0$$

$$\therefore \quad x = -(a+3) \text{ or } x = (a-2)$$

 \Rightarrow

$$x = -(a + 3)$$
 or $x = (a - 3)$
 $x = -(a + 3), (a - 2)$

Alternative method

$$\begin{aligned} x^2 + 5x - (a^2 + a - 6) &= 0\\ x &= \frac{-5 \pm \sqrt{5^2 - 4 \times 1 \times [-(a^2 + a - 6)]}}{2 \times 1}\\ &= \frac{-5 \pm \sqrt{25 + 4a^2 + 4a - 24}}{2} = \frac{-5 \pm \sqrt{4a^2 + 4a + 1}}{2}\\ &= \frac{-5 \pm \sqrt{(2a)^2 + 2.(2a).1 + 1^2}}{2} = \frac{-5 \pm \sqrt{(2a + 1)^2}}{2}\\ &= \frac{-5 \pm (2a + 1)}{2} = \frac{-5 + 2a + 1}{2}, \frac{-5 - 2a - 1}{2}\\ &= \frac{2a - 4}{2}, \frac{-2a - 6}{2} = (a - 2), -(a + 3) \end{aligned}$$

6. Using quadratic formula solve the following quadratic equation: $p^2 x^2 + (p^2 - q^2) x - q^2 = 0$

[Competency Based Question]

 $p^2 x^2 + (p^2 - q^2) x - q^2 = 0$ Sol. We have, Comparing this equation with $ax^2 + bx + c = 0$, we have $a = b^2 + b = b^2 - a^2$ and $c = -a^2$

$$a = p^{2}, b = p^{2} - q^{2} \text{ and } c = -q^{2}$$

$$D = b^{2} - 4ac = (p^{2} - q^{2})^{2} - 4 \times p^{2} \times (-q^{2})$$

$$= (p^{2} - q^{2})^{2} + 4p^{2}q^{2} = (p^{2} + q^{2})^{2} > 0$$

So, the given equation has real roots given by

$$\alpha = \frac{-b + \sqrt{D}}{2a} = \frac{-(p^2 - q^2) + (p^2 + q^2)}{2p^2} = \frac{2q^2}{2p^2} = \frac{q^2}{p^2}$$
$$\beta = \frac{-b - \sqrt{D}}{2a} = \frac{-(p^2 - q^2) - (p^2 + q^2)}{2p^2} = \frac{-2p^2}{2p^2} = -1$$

and

Hence, roots are $\frac{q^2}{p^2}$ and -1.

1

7. Solve for x:
$$\frac{1}{x+1} + \frac{2}{x+2} = \frac{4}{x+4}, x \neq -1, -2, -4$$

[CBSE (AI) 2016]

Sol.

$$\Rightarrow \frac{x+1}{(x+2)} \frac{x+2}{x+4}$$

$$\Rightarrow \frac{x+2+2(x+1)}{(x+1)(x+2)} = \frac{4}{x+4}$$

$$\Rightarrow (x+4)(x+2+2x+2) = 4(x+1)(x+2)$$

$$\Rightarrow (x+4)(3x+4) = 4(x^2+3x+2)$$

$$\Rightarrow x^2 - 4x - 8 = 0$$

4

$$\Rightarrow \qquad x = \frac{4 \pm \sqrt{16 + 32}}{2} = \frac{4 \pm 4\sqrt{3}}{2} = 2 \pm 2\sqrt{3}$$

8. If the roots of the quadratic equation $(a - b)x^2 + (b - c)x + (c - a) = 0$ are equal, prove that 2a = b + c. [CBSE (AI) 2016(30/2)]

10)	
19)	$(a-b)\chi^{2} + (b-c)\chi + (c-a) = 0$
	The root are equal, then D=0
110	Comparing eq" by an2+ 5x+ C= D
	a = (a-b); b(b-c); c = c-q
	$D = b^2 + 4ac$
	$-(b-c)^{2}-4x(a-b)(c-a)$
	Diae, D = 0
	$(b-c)^2 - 4(a-b)(c-a) = 0$
	$b^{2}+c^{2}-2bc-4(ac-a^{2}-bc+ab)=0$
	$b^{2}+c^{2}-2bc-4ac+4a^{2}+4bc-4ab=0$
	$4a^{2}+b^{2}+c^{2}+2bc-4ab-4ac=0$
	=) $(-20+b+c)^2 = 0$ $(0^2+b^2+c^2+20b+2bc+2co=(0+bc^2)]$
	-2a+b+c = 0
й. -	b+c=2a
	Time proved. [Topper's Answer 2016]

- 9. Find the values of k, for which the quadratic equation (k + 4)x² + (k + 1)x + 1 = 0 has equal roots.
 [CBSE 2020(30/3/1)]
- Sol. For equal roots $(k + 1)^2 4(k + 4) \times 1 = 0$ $\Rightarrow k^2 - 2k - 15 = 0$ $\Rightarrow (k + 3) (k - 5) = 0$ $\Rightarrow k = -3, 5$ [CBSE Marking Scheme 2020 (30/3/1)]
- 10. Find the positive value(s) of k for which both quadratic equations $x^2 + kx + 64 = 0$ and $x^2 8x + k = 0$ will have real roots. [CBSE (F) 2016]

 ≥ 0

Sol. (i) For $x^2 + kx + 64 = 0$ to have real roots

$$k^{-} - 4(1) (64) \ge 0$$
 i.e., $k^{-} - 256$
 $(k - 16) (k + 16) \ge 0 \implies k \le -16 \text{ or } k \ge 16$

 $\Rightarrow (k-16) (k+16) \ge 0 \Rightarrow k \le -16 c$ (*ii*) For $x^2 - 8x + k = 0$ to have real roots

$$(-8)^2 - 4(k) \ge 0$$
 i.e., $64 - 4k \ge 0 \implies k \le 16$

For (i) and (ii) to hold simultaneously k = 16.

11. If the equation $(1 + m^2) x^2 + 2mcx + c^2 - a^2 = 0$ has equal roots, show that $c^2 = a^2 (1 + m^2)$. [Competency Based Question] [CBSE Delhi 2017]

Sol. The given equation is $(1 + m^2) x^2 + (2mc) x + (c^2 - a^2) = 0$ Here, $A = 1 + m^2$, B = 2mc and $C = c^2 - a^2$ Since the given equation has equal roots, therefore $D = 0 \Rightarrow B^2 - 4AC = 0$. $\Rightarrow (2mc)^2 - 4(1 + m^2) (c^2 - a^2) = 0$ $\Rightarrow 4m^2c^2 - 4(c^2 - a^2 + m^2c^2 - m^2a^2) = 0$ $\Rightarrow m^2c^2 - c^2 + a^2 - m^2c^2 + m^2a^2 = 0$ [Dividing throughout by 4]

$$\Rightarrow -c^2 + a^2 (1 + m^2) = 0 \Rightarrow c^2 = a^2 (1 + m^2)$$

Hence proved

Hence proved.

12. If the roots of the equation $(c^2 - ab)x^2 - 2(a^2 - bc)x + b^2 - ac = 0$ in x are equal, then show that either a = 0 or $a^3 + b^3 + c^3 = 3abc$. [CBSE (AI) 2017]

Sol. For equal roots
$$D = 0$$

Therefore $4(a^2 - bc)^2 - 4(c^2 - ab)(b^2 - ac) = 0$
 $\Rightarrow 4[a^4 + b^2c^2 - 2a^2bc - b^2c^2 + ac^3 + ab^3 - a^2bc] = 0$
 $\Rightarrow a(a^3 + b^3 + c^3 - 3abc) = 0$
 $\Rightarrow \text{Either } a = 0 \text{ or } a^3 + b^3 + c^3 = 3abc$

13. If the roots of the equation $(a^2 + b^2) x^2 - 2(ac + bd)x + (c^2 + d^2) = 0$ are equal, prove that $\frac{a}{b} = \frac{c}{d}$. a [CBSE (AI) 2017(30/3)]

Sol.

20.			+bd) C=(c2+d2)		
	as no	ots are equal,			
		D= B2- 4AC	~ 0.		
		B2 = UAC			
	[-2(a)	+ bd]] = 4(0	22+62) (c"+d?)		
			= 16 Ca2/c2 +a2d2 +b2c2 + b2d2		
	$2abcd = a2d^2 + b2c^2$				
	$0 = a^2 d^2 - 2abcd + b^2 c^2$				
		0 - (ad -	bc)2		
		0 = ad-be	a		
	ad = bc				
	72	a . = c .			
		b d	Tabbanda taanaa 901		
	- He	nce, proved.	[Topper's Answer 20]		

Long Answer Questions

Each of the following questions are of 5 marks. 9. + 1 1

1. Solve for x:
$$\frac{x-1}{2x+1} + \frac{2x+1}{x-1} = 2$$
, where $x \neq -\frac{1}{2}$, 1.

[CBSE (AI) 2017(30/3)]

Sol.

$\begin{array}{cccc} Let & x-1 & be & y, \\ & & 2x+1 & \\ & & y + 1 & = 2 \\ & & y \\ & & y \\ & & y^2 + 1 & = 2y \\ & & & y^2 - 2y+1 = 0 \end{array}$	
$y^2 + 1 = 2y$	
3 3	
3 3	
12-2N+1= 0	
$y^2 - y - y + 1 = 0$	
y (y-1)-1 (y-1)=0	
: x=-2 or-2	
1	[Topper's Answer 2017]
	$y^{2} - y - y + 1 = 0$ $y (y-1) - 1 (y-1) = 0$ $(y-1) (y-1) = 0$ $- y = 1 or 1.$ Now, $a-1 = 1$ $2a+1$ $a-1 = 2a+1$ $-2 = a.$

2. Solve the following quadratic equation:

 $9x^2 - 9(a + b)x + [2a^2 + 5ab + 2b^2] = 0$ [Competency Based Question] [CBSE (F) 2016] Sol. Consider the equation $9x^2 - 9(a + b)x + [2a^2 + 5ab + 2b^2] = 0$

Now comparing with $Ax^2 + Bx + C = 0$, we get

A = 9, B = -9 (a + b) and $C = [2a^{2} + 5ab + 2b^{2}]$

Now discriminant,

$$D = B^{2} - 4AC$$

$$= \{-9 (a + b)\}^{2} - 4 \times 9 (2a^{2} + 5ab + 2b^{2})$$

$$= 9^{2} (a + b)^{2} - 4 \times 9 (2a^{2} + 5ab + 2b^{2})$$

$$= 9 \{9 (a + b)^{2} - 4 (2a^{2} + 5ab + 2b^{2})\}$$

$$= 9 \{9a^{2} + 9b^{2} + 18ab - 8a^{2} - 20ab - 8b^{2}\}$$

$$= 9 \{a^{2} + b^{2} - 2ab\} = 9 (a - b)^{2}$$

Now using the quadratic formula,

$$x = \frac{-B \pm \sqrt{D}}{2A} \text{, we get } x = \frac{9(a+b) \pm \sqrt{9(a-b)^2}}{2 \times 9}$$

$$\Rightarrow \qquad x = \frac{9(a+b) \pm 3(a-b)}{2 \times 9} \Rightarrow \qquad x = \frac{3(a+b) \pm (a-b)}{6}$$

$$\Rightarrow \qquad x = \frac{(3a+3b) + (a-b)}{6} \text{ and } \qquad x = \frac{(3a+3b) - (a-b)}{6}$$

$$\Rightarrow \qquad x = \frac{(4a+2b)}{6} \qquad \text{and } \qquad x = \frac{(2a+4b)}{6}$$

$$\Rightarrow \qquad x = \frac{2a+b}{3} \qquad \text{and } \qquad x = \frac{a+2b}{3} \text{ are required solution.}$$

At t minutes past 2 pm, the time needed by the minute hand of clock to show 3 pm was found to be 3 minutes less than t²/4 minutes. Find t. [Competency Based Question] [NCERT Exemplar]
 Sol. As we know that total time taken by the minute hand to run from 2 pm to 3 pm = 60 minutes. According to the question

$$\begin{array}{c} t + \left(\frac{t^2}{4} - 3\right) = 60 \\ \Rightarrow \quad 4t + t^2 - 12 = 240 \\ \Rightarrow \quad t^2 + 18t - 14t - 252 = 0 \\ \Rightarrow \quad t^2 + 18t - 14t - 252 = 0 \\ \Rightarrow \quad t(t+18) - 14(t+18) = 0 \\ \Rightarrow \quad t = 14 \text{ or } -18 \end{array}$$
But time can not be negative.

 \therefore t = 14 minutes

- 4. Seven years ago Varun's age was five times the square of Swati's age. Three years hence, Swati's age will be two-fifth of Varun's age. Find their present ages.
- Sol. Seven years ago, let Swati's age be x years. Then, seven years ago Varun's age was $5x^2$ years.
 - ... Swati's present age = (x + 7) years Varun's present age = $(5x^2 + 7)$ years Three years hence, Swati's age = (x + 7 + 3) years = (x + 10) years

Varun's age $(5x^2 + 7 + 3)$ years = $(5x^2 + 10)$ years

According to the question,

	$x + 10 = \frac{2}{5} (5x^2 + 10)$	⇒	$x + 10 = \frac{2}{5} \times 5 (x^2 + 2)$
⇒	$x+10=2x^2+4$	\Rightarrow	$2x^2 - x - 6 = 0$
\Rightarrow	$2x^2 - 4x + 3x - 6 = 0$	⇒	2x (x - 2) + 3(x - 2) = 0
\Rightarrow	(2x+3)(x-2) = 0		
⇒	x - 2 = 0 or $2x + 3 = 0$		
⇒	x = 2		$[\because 2x + 3 \neq 0 \text{ as } x > 0]$

Hence, Swati's present age = (2 + 7) years = 9 years and Varun's present age = $(5 \times 2^2 + 7)$ years = 27 years

5. A takes 6 days less than B to do a work. If both A and B working together can do it in 4 days, how many days will B take to finish it? [CBSE 2017(30/3)]

	Then A takes x-6 days to complete it.
-	Together they complete it in 4 days.
	According to work done per day,
	x-6 x 4
	$\alpha + \alpha - 6 = 1$
	a(a-6) 4
	4(2x-6) = x(x-6)
	$8x - 24 = x^2 - 6x$
	$\alpha^2 - 42 + 24 = 0$
	x2-122-22+24=0 ···
	$\pi(\pi - 12) - 2(\pi - 12) = 0$
	(x-2)(x-12) = 0
X	- X = 2 Or 12
	x=2 is not possible because then x-6 is (4)
	∴ X = 12.
	so, B takes 12 days to finish the work.

- 6. One-fourth of a herd of camels was seen in the forest. Twice the square root of the herd had gone to mountains and the remaining 15 camels were seen on the bank of a river. Find the total number of camels.
 [Competency Based Question]
- **Sol.** Let *x* be the total number of camels.

Then, number of camels in the forest $=\frac{x}{4}$

number of camels on mountains = $2\sqrt{x}$

and number of camels on the bank of river = 15

Thus, total number of camels = $\frac{x}{4} + 2\sqrt{x} + 15$

Now by hypothesis, we have

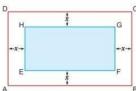
$$\frac{x}{4} + 2\sqrt{x} + 15 = x \qquad \Rightarrow \qquad 3x - 8\sqrt{x} - 60 = 0$$

Let $\sqrt{x} = y$, then $x = y^2$ $\Rightarrow \quad 3y^2 - 8y - 60 = 0 \qquad \Rightarrow \qquad 3y^2 - 18y + 10y - 60 = 0$ $\Rightarrow \quad 3y(y - 6) + 10(y - 6) = 0 \qquad \Rightarrow \qquad (3y + 10)(y - 6) = 0$ $\Rightarrow \quad y = 6 \quad \text{or} \quad y = -\frac{10}{3}$ Now, $y = -\frac{10}{3} \qquad \Rightarrow \qquad x = \left(-\frac{10}{3}\right)^2 = \frac{100}{9}$ ($\because x = y^2$) But, the number of camels cannot be a fraction. $\therefore \quad y = 6$

 $\therefore y = 6$

 $\Rightarrow \qquad x = 6^2 = 36$

Hence, the number of camels = 36


- 7. If Zeba was younger by 5 years than what she really is, then the square of her age (in years) would have been 11 more than five times her actual age. What is her age now? [NCERT Exemplar]
- Sol. Let the present age of Zeba be x years.

Age before 5 years = (x - 5) years

According to given condition,

But present age cannot be 1 year.

- ... Present age of Zeba is 14 years.
- 8. In a rectangular park of dimensions 50 m × 40 m, a rectangular pond is constructed so that the area of grass strip of uniform width surrounding the pond would be 1184 m². Find the length and breadth of the pond. [NCERT Exemplar, CBSE (F) 2017]

Sol. Let ABCD be rectangular lawn and EFGH be rectangular pond. Let x m be the width of grass area, which is same around the pond.

Given, Length of lawn = 50 m

Width of lawn = 40 m

$$\Rightarrow \qquad \text{Length of pond} = (50 - 2x) \text{ m}$$

Breadth of pond =
$$(40 - 2x)$$
 m

Also given,

Area of grass surrounding the pond = $1184m^2$

- \Rightarrow Area of rectangular lawn area of pond = 1184 m²
- $\Rightarrow 50 \times 40 \{(50 2x) \times (40 2x)\} = 1184$
- $\Rightarrow \qquad 2000 (2000 80x 100x + 4x^2) = 1184$
- $\Rightarrow \qquad 2000 2000 + 180x 4x^2 = 1184$

\Rightarrow	$4x^2 - 180x + 1184 = 0$	\Rightarrow	$x^2 - 45x + 296 = 0$
\Rightarrow	$x^2 - 37x - 8x + 296 = 0$	\Rightarrow	x(x-37) - 8(x-37) = 0
⇒	(x - 37) (x - 8) = 0	\Rightarrow	x - 37 = 0 or x - 8 = 0
⇒	x = 37 or x = 8		

x = 37 is not possible as in this case length of pond becomes $50 - 2 \times 37 = -24$ (not possible). Hence, x = 8 is acceptable.

 $\therefore \qquad \text{Length of pond} = 50 - 2 \times 8 = 34 \text{ m}$ Breadth of pond = 40 - 2 × 8 = 24 m

9. ₹ 9,000 were divided equally among a certain number of persons. Had there been 20 more persons, each would have got ₹ 160 less. Find the original number of persons.

[CBSE 2020(30/4/1)]

Sol. Let the original number of persons be x.

 $\therefore \qquad \text{Each person will get amount} = ₹ \frac{9000}{x}$ When 20 persons will increase

∴ Each person will get = ₹ $\frac{9000}{r+20}$

ATQ,

 $\frac{9000}{x} - \frac{9000}{x+20} = 160$ $\Rightarrow \quad 9000 \left(\frac{1}{x} - \frac{1}{x+20}\right) = 160 \quad \Rightarrow \quad 9000 \left(\frac{x+20-x}{x(x+20)}\right) = 160$ $\Rightarrow \quad 180000 = 160 (x^2 + 20x)$ $\Rightarrow \quad x^2 + 20x = 1125 \quad \Rightarrow \quad x^2 + 20x - 1125 = 0$ $\Rightarrow \quad x^2 + 45x - 25x - 1125 = 0 \quad \Rightarrow \quad x(x+45) - 25(x+45) = 0$ $\Rightarrow \quad (x-25) (x+45) = 0$ $\Rightarrow \quad x-25 = 0 \quad (but x+45 \neq 0 \Rightarrow x \neq -45)$ $\therefore \quad x = 25$

- : Original number of persons is 25.
- 10. Two taps running together can fill a tank in $3\frac{1}{13}$ hours. If one tap takes 3 hours more than the other to fill the tank, then how much time will each tap take to fill the tank? [CBSE (AI) 2017]

Sol. Let, time taken by faster tap to fill the tank be x hours. Therefore, time taken by slower tap to fill the tank = (x + 3) hours Since the faster tap takes x hours to fill the tank.

... Portion of the tank filled by the faster tap in one hour $=\frac{1}{x}$ Portion of the tank filled by the slower tap in one hour $=\frac{1}{x+3}$ Portion of the tank filled by the two tap together in one hour $=\frac{1}{\frac{40}{12}}=\frac{13}{40}$

According to question,

 $\Rightarrow \qquad \frac{1}{x} + \frac{1}{x+3} = \frac{13}{40} \qquad \Rightarrow \qquad \frac{x+3+x}{x(x+3)} = \frac{13}{40}$ $\Rightarrow \qquad 40 (2x+3) = 13x (x+3) \qquad \Rightarrow \qquad 80x + 120 = 13x^2 + 39x$

 $\Rightarrow 13x^2 - 41x - 120 = 0 \Rightarrow 13x^2 - 65x + 24x - 120 = 0$ $\Rightarrow 13x (x - 5) + 24 (x - 5) = 0 \Rightarrow (x - 5) (13x + 24) = 0$ Either x - 5 = 0 or 13x + 24 = 0 $\Rightarrow x = 5$ or $x = \frac{-24}{13}$ $\Rightarrow x = 5$ [$\because x \text{ cannot be negative}$]

Hence, time taken by faster tap to fill the tank = x = 5 hours and time taken by slower tap = x + 3 = 5 + 3 = 8 hours.

- 11. A two digit number is such that the product of its digits is 18. When 63 is subtracted from the number, the digits interchange their places. Find the number.
- Sol. Let the digit at tens place be x.

Then, digit at unit place = $\frac{18}{x}$ \therefore Number = $10x + \frac{18}{x}$

and number obtained by interchanging the digits = $10 \times \frac{18}{x} + x$ According to question,

 $\begin{array}{c} \left(10x + \frac{18}{x}\right) - 63 = 10 \times \frac{18}{x} + x \implies \\ \left(10x + \frac{18}{x}\right) - \left(10 \times \frac{18}{x} + x\right) = 63 \\ \Rightarrow \quad 10x + \frac{18}{x} - \frac{180}{x} - x = 63 \implies \\ 9x^2 - 63x - 162 = 0 \implies \\ x^2 - 7x - 18 = 0 \\ \Rightarrow \quad x^2 - 9x + 2x - 18 = 0 \implies \\ x(x - 9) + 2(x - 9) = 0 \\ \Rightarrow \quad x = 9 \\ \end{array}$

Hence, the required number = $10 \times 9 + \frac{18}{9} = 92$.

Case Study-based Questions

Each of the following questions are of 4 marks.

1. Read the following and answer any four questions from (i) to (v).

Raj and Ajay are very close friends. Both the families decide to go to Ranikhet by their own cars. Raj's car travels at a speed of x km/h while Ajay's car travels 5 km/h faster than Raj's car. Raj took 4 hours more than Ajay to complete the journey of 400 km. [CBSE Question Bank]

	(3) What will be the di	stance covered by A	iou's one in two hours		
	(2		stance covered by A	Ajay's car in two hours?		
		(a) $2(x+5)$ km		(b) $(x - 5)$ km		
		(c) $2(x + 10)$ km		(d) $(2x + 5)$ km		
	(11) The quadratic equation (n bar ar dan meneral sa mar 👻 1990 Kowana Webler		
		(a) $x^2 - 5x - 500 =$		$(b) x^2 + 4x - 400 = 0$		
		(c) $x^2 + 5x - 500 =$		$(d) x^2 - 4x + 400 = 0$		
	(iii) What is the speed	of Raj's car?			
		(a) 20 km/hour	(b) 15 km/hour	(c) 25 km/hour	(d) 10 km/hour	
	(iv) How much time Aj	ay took to travel 400) km?		
		(a) 20 hours	(b) 40 hours	(c) 25 hours	(d) 16 hours	
	(v) What is the speed	of Ajay's car?			
		(a) 15 km/h	(b) 20 km/h	(c) 25 km/h	(d) 30 km/h	
Sol.	We	have speed of Raj's (Car = x km/h			
	Th	erefore, speed of Ajay	r's Car = (x + 5)km/	h		
	No	w, time taken to comp	olete the journey by	$Raj = \frac{400}{x}$		
	and	l time taken to compl	ete the journey by A	$jay = \frac{400}{x+5}$		
	Acc	ording to question, F	aj took 4 hours mor	e than Ajay.		
	$\therefore \qquad \frac{400}{x} - \frac{400}{x+5} = 4 \implies 400 \left(\frac{x+5-x}{x(x+5)}\right) = 4$					
	$\Rightarrow 500 = x(x+5) = x^2 + 5x$					
	⇒	$x^2 + 5x - 500 =$	0			
	⇒	$x^2 + 25x - 20x -$	500 = 0			
	⇒	x(x + 25) - 20(x	+ 25) = 0			
	⇒	(x + 25) (x - 20)	= 0			
	⇒	$x = 20, x \neq -25$	(Because speed ca	n never be negative)		
	<i>.</i> :.	x = 20 km/h				
	<i>(i)</i>	Distance covered by	Ajay's car in two ho	urs		
		= Speed	l × Time			
		=(x + 5)	$) \times 2$			
		= 2(x +	5) km			
		\therefore Option (a) is corr	ect.			
	(ii)	We get the quadrati	c equation $x^2 + 5x -$	500 = 0 (Described ab	oove)	
		for the speed of Raj	s car.			
		\therefore Option (c) is corre				
	(iii)	Speed of the Raj's ca				
	15 35G		= 20 km/h			

 \therefore Option (a) is correct.

(*iv*) Time taken by Ajay to travel 400 km = $\frac{400}{100}$

$$= \frac{400}{20+5} = \frac{400}{25} = 16 \text{ hours}$$

 \therefore Option (d) is correct.

- (v) Speed of Ajay's car = (x + 5) km/h = 20 + 5 = 25 km/h
 - \therefore Option (c) is correct.
- 2. The speed of a motor boat is 20 km/h. For covering the distance of 15 km the boat took 1 hour more for upstream than downstream.

Based on above information answer the following questions.

- (i) What is the speed of current ?
- (ii) (a) Which is the correct quadratic equation for the speed of the current?(b) How much time boat took in downstream?

Sol. (i) We have downstream speed of motor boat = (20 + x) km/h and upstream speed of motor boat = (20 - x) km/h where x km/h is the speed of the stream.

We have,

(11)

$$\frac{15}{20-x} - \frac{15}{20+x} = 1$$

$$\Rightarrow \quad \frac{15(20+x-20+x)}{(20-x)(20+x)} = 1$$

$$\Rightarrow \quad 15 \times 2x = 400 - x^{2}$$

$$\Rightarrow \quad x^{2} + 30x - 400 = 0$$

$$\Rightarrow \quad x^{2} + 40x - 10x - 400 = 0$$

$$\Rightarrow \quad x(x+40) - 10(x+40) = 0$$

$$\Rightarrow \quad x(x+40) - 10(x+40) = 0$$

$$\Rightarrow \quad x(x+40) (x-10) = 0$$

$$\Rightarrow \quad x = 10$$

$$\therefore \quad x = 10 \text{ km/h}$$
(a) The quadratic equation $x^{2} + 30x - 400 = 0$ is for the speed of the current (Stream).

(b) Time taken by boat in downstream $= \frac{15}{20+x}$ hour $= \frac{15}{20+10} = \frac{15}{30} = \frac{1}{2}$ hour = 30 minutes

PROFICIENCY EXERCISE

Objective Type Questions:

- 1. Choose and write the correct option in each of the following questions.
 - (i) A sum of ₹4000 was divided among x persons. Had there been 10 more persons, each would have got ₹80 less. Which of the following represents the above situation?

$(a) x^2 + 10x + 500 = 0$	$(b) 8x^2 + 10x - 400 = 0$
(c) $r^2 + 10r - 500 = 0$	(d) $8r^2 + 10r + 400 = 0$

(ii) What is the smallest positive integer value of k such that the roots of the equation $x^2 - 9x + 18 + k = 0$ can be calculated by factorising the equation?

(iii) If the roots of $ax^2 + bx + c = 0$ are equal, then the value of c is

(a)
$$\frac{-b}{2a}$$
 (b) $\frac{b}{2a}$ (c) $\frac{-b^2}{4a}$ (d) $\frac{b^2}{4a}$

(iv) The product of three consecutive integers is equal to 6 times the sum of three integers. If the smallest integer is x, which of the following equations represent the above situation? (a) $2x^2 + x - 9 = 0$ (b) $2x^2 - x + 9 = 0$ (c) $x^2 + 2x + 18 = 0$ (d) $x^2 + 2x - 18 = 0$

- (v) For what value of k, the roots of the quadratic equation $3x^2 + 2kx + 27 = 0$ are real and equal?
 - $(c) k = \pm 6$ $(b)k = \pm 3$ $(d) k = \pm 9$ (a) $k = \pm 4$

(vi) If the discriminant of a quadratic equation is less than zero then it has

(d) can't be determined (a) equal roots (b) real roots (c) no real roots

Very Short Answer Questions:

- 2. If one root of the quadratic equation $6x^2 x k = 0$ is $\frac{2}{3}$, then find the value of k.
- [CBSE (F) 2017] 3. If one root of $5x^2 + 13x + k = 0$ is the reciprocal of the other root, then find value of k. [CBSE 2018 (C)]
- 4. Find the nature of roots of the quadratic equation $2x^2 4x + 3 = 0$. [CBSE 2019(30/2/1)]
- 5. For what values of 'a' the quadratic equation $9x^2 3ax + 1 = 0$ has equal roots?
- [CBSE 2019 (C) (30/1/1)] 6. Find the value(s) of k for which the quadratic equation $3x^2 + kx + 3 = 0$ has real and equal roots. [CBSE 2019(30/5/1)]
- 7. For what values of k does the quadratic equation $4x^2 12x k = 0$ have no real roots?

Short Answer Questions-I:

- 8. State whether the equation (x + 1)(x 2) + x = 0 has two distinct real roots or not. Justify your answer.
- 9. Is 0.3 a root of the equation $x^2 0.9 = 0$? Justify.
- 10. Find the value of k, for which x = 2 is a solution of the equation $kx^2 + 2x 3 = 0$.

[CBSE 2019(30/5/1)]

[1 mark each]

[1 mark each]

- [2 marks each]
- [CBSE 2019(30/4/2)]

- 13. Find the roots of the quadratic equation: $2x^2 + \frac{5}{2}x - 2 = 0$ using quadratic method. 14. If $(x^2 + y^2)(a^2 + b^2) = (ax + by)^2$, prove that $\frac{x}{a} = \frac{y}{1}$. [Competency Based Question] Short Answer Questions-II: [3 marks each] 15. Find the value of p, for which one root of the quadratic equation $px^2 - 14x + 8 = 0$ is 6 times the other. [CBSE (AI) 2017] 16. Solve for $x: \frac{1}{(x-1)(x-2)} + \frac{1}{(x-2)(x-3)} = \frac{2}{3}, x \neq 1, 2, 3.$ [CBSE (AI) 2016] 17. Solve for x: $2\left(\frac{2x-1}{x+3}\right) - 3\left(\frac{x+3}{2x-1}\right) = 5; x \neq -3, \frac{1}{2}$ [CBSE (F) 2014] 18. Solve for x: $\frac{14}{x+2} - 1 = \frac{5}{x+1}; \neq -3, -1$ [CBSE Delhi 2014] **19.** Solve for x: $4x^2 - 4a^2x + (a^4 - b^4) = 0$ **20.** Sum of the areas of two squares is 157 m^2 . If the sum of their perimeters is 68 m, find the sides [CBSE 2019, (30/4/2)] of the two squares. 21. Find the dimensions of a rectangular park whose perimeter is 60 m and area 200 m². [CBSE 2019(30/4/2)] **22.** Find that non-zero value of k, for which the quadratic equation $kx^2 + 1 - 2(k - 1)x + x^2 = 0$ has [CBSE Delhi 2015] equal roots. Hence find the roots of the equation. 23. Find the value of k for which the quadratic equation $(k + 1)x^2 - 6(k + 1)x + 3(k + 9) = 0, k \neq -1$ has equal roots. [CBSE 2019 (C) (30/1/3)] 24. If 2 is a root of the quadratic equation $3x^2 + px - 8 = 0$ and the quadratic equation $4x^2 - 2px + k = 0$ has equal roots, find the value of k. [CBSE (F) 2014] Long Answer Questions: 25. Solve for x: $\frac{x-3}{x-4} + \frac{x-5}{x-6} = \frac{10}{3}$; $x \neq 4, 6$ [CBSE (AI) 2014] **26.** Find x in terms of a, b and c: $\frac{a}{x-a} + \frac{b}{x-b} = \frac{2c}{x-c}$, $x \neq a, b, c$. [CBSE Delhi 2016] 27. Solve for x: $\frac{1}{x+1} + \frac{3}{x+1} = \frac{5}{x+4}, x \neq -1, -\frac{1}{5}, -4$ [CBSE (AI) 2017] 28. Solve for x: $\frac{1}{2a+b+2r} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2r}; x \neq 0, x \neq \frac{-2a-b}{2}, a, b \neq 0$ [CBSE 2019(30/4/3)]
 - 29. Solve the following equation for x: $\frac{1}{x+1} + \frac{2}{x+2} = \frac{7}{x+5}, x \neq -1, -2, -5$

11. If -5 is a root of the quadratic equation $2x^2 + px - 15 = 0$ and the quadratic equation $p(x^2 + x) + k = 0$ has equal roots, then find the value of k. [CBSE (F) 2014, (AI) 2016]

- [CBSE Delhi 2015]

- [5 marks each]

[CBSE 2019(C)(30/1/1)]

- 12. Find the roots of the quadratic equation:

 - $x^2 3\sqrt{5}x + 10 = 0$ by factorisation method.

- 30. The sum of the squares of two consecutive even numbers is 340. Find the numbers. [CBSE (F) 2014]
- **31.** Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number. [NCERT Exampler]
- 32. At present Asha's age (in years) is 2 more than the square of her daughter Nisha's age. When Nisha grows to her mother's present age, Asha's age would be one year less than 10 times the present age of Nisha. Find the present ages of both Asha and Nisha. [NCERT Exampler]
- 33. There is a square field whose side is 44 m. A square flower bed is prepared in its centre leaving a gravel path all round the flower bed. The total cost of laying the flower bed and gravelling the path at ₹2.75 and ₹1.50 per m² respectively, is ₹4904. Find the width of gravel path.
- **34.** A train covers a distance of 90 km at a uniform speed. Had the speed been 15 km/h more, it would have taken 30 minutes less for the journey. Find the original speed of the train.
- 35. In a class test, the sum of the marks obtained by Puneet in Mathematics and Science is 28. Had he got 3 marks more in Mathematics and 4 marks less in Science, the product of their marks, would have been 180. Find his marks in two subjects. [Competency Based Question]
- 36. A faster train takes one hour less than a slower train for a journey of 200 km. If the speed of slower train is 10 km/h less than that of faster train, find the speeds of two trains. [CBSE 2018(C)]
- 37. Two water taps together can fill a tank in 1⁷/₈ hours. The tap with longer diameter takes 2 hours less than the tap with smaller one to fill the tank separately. Find the time in which each tap can fill the tank separately. [Competency Based Question] [CBSE 2019(30/1/1)]
- 38. The total cost of a certain length of a piece of cloth is ₹200. If the piece was 5 m longer and each metre of cloth costs ₹2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original rate per metre? [CBSE 2019(30/2/2)]

Answers

1. (<i>i</i>) (<i>c</i>)	(<i>ii</i>) (<i>a</i>)	(iii) (d)	(<i>iv</i>) (<i>d</i>)	(v) (d)	(vi) (c)
2. $k = 2$	3. $k = 5$	4. No real ro	oot	5. $a = \pm 2$	6. $k = \pm 6$
7. <i>k</i> < – 9	8. Yes, it has	two distinct rea	al roots	9. No	10. $k = -\frac{1}{4}$
11. $k = \frac{7}{4}$	12. $\sqrt{5}, 2\sqrt{5}$	13. $x = \frac{-3}{2}, \frac{2}{3}$	15. $p = 3$	16. $x = 0, 4$	
17. $x = -\frac{1}{5}c$	or –10	18. $x = 1$ and	4	19. $x = \frac{a^2}{3}$	$\frac{(b^2)^2}{2}, \frac{a^2-b^2}{2}$
20. 6 m and	11 m	21. Length =	20 m and Brea	dth = 10 m	
22. $k = 3, x =$	$\frac{1}{2}, \frac{1}{2}$	23. $k = 3$	24. $k = 1$	25. $\frac{9}{2}$ and 7	7
$26. x = \frac{2ab}{a}$	$\frac{-ac-bc}{b-2c}, 0$	27. $\frac{-11}{17}$, 1	28. $x = -a$ or	$-\frac{b}{2}$	
29. $x = 1, x =$	$\frac{-3}{2}$	30. 12 and 14		31. 12	
32. Nisha's a	ge is 5 years, As	sha's age is 27 y	ears	33. 2 m	
34. 45 km/h	35. Mathema	tics: 9 and Scien	ice: 19 or Mathe	ematics: 12 an	d Science: 16

- 36. Speed of faster train = 50 km/h and speed of slower train = 40 km/h
- **37.** 5 hours, 3 hours **38.** *l* = 20 m, ₹10 per metre

Max marks: 40

SECTION A

1. Choose and write the correct option in the following questions. $(3 \times 1 = 3)$ (i) A student solved a quadratic equation and obtains the roots as -4 and 3. Part of the student's work to verify the root is shown: $(-4)^2 + 2(-4) - 9 = 0$. Based on the student's work, which of these is correct? [Competency Based Question] (a) The student calculated the roots of the equation that can be obtained by adding 1 to the equation that the student solved. (b) The student calculated the roots of the equation that can be obtained by adding -1 to the equation that the student solved. (c) The student calculated the roots correctly. (d) The student calculated the roots correctly but should replace 2(-4) in his work with 2(3). (ii) The roots of the quadratic equation $x^2 - 9x + 20 = 0$ are (a) -4.5(b) - 4, -5(c) 4, 5 (d) 4. -5

(iii) The smallest positive value of k for which the equation $x^2 + kx + 9 = 0$ has real roots is (a) - 6(b) 6 (c) 36(d) 3

2. Solve the following questions.

- (i) Show that x = -2 is a solution of $3x^2 + 13x + 14 = 0$.
- (ii) Find the value of k for which the roots of the equation $3x^2 10x + k = 0$ are reciprocal of each other. [CBSE 2019(30/1/1)]

SECTION B

Solve the following questions.

- 3. What are the roots of the equation $4x^2 2x 20 = x^2 + 9x^2$?
- 4. Solve for x: $\frac{x+3}{x+2} = \frac{3x-7}{2x-3}, x \neq -2, \frac{3}{2}$ [CBSE Delhi 2017(C)]
- 5. Determine the condition for one root of the quadratic equation $ax^2 + bx + c = 0$ to be thrice the other.

6. Find the value of k such that the equation $(k - 12) x^2 + 2(k - 12) x + 2 = 0$ has equal roots.

[CBSE Delhi 2017(C)]

Solve the following questions.

7. Solve for x: $3\left(\frac{3x-1}{2x+3}\right) - 2\left(\frac{2x+3}{2x-1}\right) = 5; x \neq \frac{1}{2}, -\frac{3}{2}$ [CBSE (F) 2014]

8. Solve for x: $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$; $a+b+x \neq 0$, $a, b, x \neq 0$ [Competency Based Question]

 $(4 \times 3 = 12)$

- $(2 \times 1 = 2)$
- $(4 \times 2 = 8)$

- 9. The difference of two natural numbers is 3 and the difference of their reciprocals is $\frac{3}{28}$. Find the numbers. [CBSE Delhi 2014]
- 10. Find the value of *c* for which the quadratic equation $4x^2 2(c + 1)x + (c + 1) = 0$ has equal roots, which are real. [*CBSE Delhi* 2017(*C*)]

Solve the following questions.

- The sum of the areas of two squares is 640 m². If the difference of their perimeters is 64 m, find the sides of the squares. [CBSE 2019(30/4/3)]
- 12. Two water taps together can fill a tank in 9 hours 36 minutes. The tap of larger diameter takes 8 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank. [CBSE (F) 2016]
- A motorboat whose speed is 24 km/h in still water takes 1 hour more to go 32 km upstream than to return downstream to the same spot. Find the speed of the stream. [CBSE (AI) 2016]

Answers

1. (<i>i</i>) (<i>a</i>) (<i>i</i>)	<i>i</i>) (<i>c</i>)	(<i>iii</i>) (<i>b</i>)			
2. (<i>ii</i>) $k = 3$	3. $-\frac{4}{3}, 5$	4. 5, –1	5. $3b^2 = 16 ac$	6. $k = 14$	7. 0, –7
8. $x = -a, -b$	9.7 and 4	10. $c = -1, 3$	11. 24 m and 8 m	12. 24 hours,	16 hours
13. 8 km/h					

$(3 \times 5 = 15)$