Chapter 12. Rational Expressions and Equations

Ex. 12.5

Answer 1CU.

The divisor of $2x^2 - 9x + 9$ that result in a remainder of 0 is option b and c because the factor of the trinomial is $2x^2 - 9x + 9 = (x - 3)(2x - 3)$.

For option b. consider the following division:

$$(2x^2-9x+9)\div(x-3)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
2x-3 \\
x-3 \overline{\smash)2x^2 - 9x + 9} \\
\underline{(-)2x^2 - 6x} \\
-3x+9 \\
\underline{(-)-3x+9} \\
0
\end{array}$$

For option c. consider the following division:

$$(2x^2-9x+9)\div(2x-3)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
x-3 \\
2x^2-9x+9 \\
\underline{(-)2x^2-3x} \\
-6x+9 \\
\underline{(-)-6x+9} \\
0
\end{array}$$

Answer 2CU.

A remainder of zero in a long division of a polynomial by a binomial means polynomial is exactly divisible by a binomial.

For example:

$$(2x+10)\div(x+5)$$

$$\begin{array}{r}
 2x + 5 \overline{\smash{\big)}\ 2x + 10} \\
 \underline{(-)2x + 10} \\
 0
\end{array}$$

The polynomial (2x+10) is exactly divisible by the binomial (x+5).

Answer 3CU.

A third-degree polynomial that includes a zero term $x^3 + 2x^2 + 8$

Rewrite the polynomial so that it can be divided by x+5 using long division:

$$x^3 + 2x^2 + 0x + 8$$

Answer 4CU.

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

Consider the following division:

$$(4x^3 + 2x^2 - 5) \div 2x = \frac{4x^3 + 2x^2 - 5}{2x}$$
Write as a rational expression.
$$= \frac{4x^3}{2x} + \frac{2x^2}{2x} - \frac{5}{2x}$$
Divide each term by 2x.
$$= \frac{\cancel{4x^3}}{\cancel{2x}} + \frac{\cancel{2x^2}}{\cancel{2x}} - \frac{5}{2x}$$
Simplify each term.
$$= 2x^2 + x - \frac{5}{2x}$$
Simplify.

Thus, the quotient is $2x^2 + x - \frac{5}{2x}$

Answer 5CU.

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

Consider the following division:

$$\frac{14a^{2}b^{2} + 35ab^{2} + 2a^{2}}{7a^{2}b^{2}}$$

$$= \frac{14a^{2}b^{2}}{7a^{2}b^{2}} + \frac{35ab^{2}}{7a^{2}b^{2}} + \frac{2a^{2}}{7a^{2}b^{2}}$$
Divide each term by $7a^{2}b^{2}$.
$$= \frac{14a^{2}b^{2}}{7a^{2}b^{2}} + \frac{35ab^{2}}{7a^{2}b^{2}} + \frac{2a^{2}}{7a^{2}b^{2}}$$
Simplify each term.
$$= 2 + \frac{5}{a} + \frac{2}{7b^{2}}$$
Simplify.

Thus, the quotient is $2 + \frac{5}{a} + \frac{2}{7b^2}$

Answer 6CU.

Consider the following division:

$$(n^{2} + 7n + 12) \div (n+3) = \frac{n^{2} + 7n + 12}{(n+3)}$$
 Write as a rational expression.

$$= \frac{(n+4)(n+3)}{(n+3)}$$
 Factor the numerator.

$$= \frac{(n+4)(n+3)}{(n+3)}$$
 Divide by the GCF.

$$= n+4$$
 Simplify.

Thus, the quotient is n+4.

Answer 7CU.

Consider the following division:

$$(r^2+12r+36)\div(r+9)$$

Use long division process to divide a polynomial by a binomial.

The quotient of $(r^2+12r+36)\div(r+9)$ is r+3 with a remainder 9, which can be written as

$$r+3+\frac{9}{r+9}$$

Answer 8CU.

Consider the following division:

$$\frac{4m^3 + 5m - 21}{2m - 3}$$

Rename the m^2 term using a coefficient of 0.

$$(4m^3 + 0m^2 + 5m - 21) \div (2m - 3)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
2m^{2} + 3m + 7 \\
2m - 3 \overline{)} \quad 4m^{3} + 0m^{2} + 5m - 21 \\
\underline{(-)4m^{3} - 6m^{2}} \\
6m^{2} + 5m \\
\underline{(-)6m^{2} - 9m} \\
14m - 21 \\
\underline{(-)14m - 21} \\
0
\end{array}$$

Thus, the quotient is $2m^2 + 3m + 7$

Answer 9CU.

Consider the following division:

$$(2b^2+3b-5)\div(2b-1)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
b+2 \\
2b-1 \overline{\smash)2b^2 + 3b - 5} \\
\underline{(-)2b^2 - b} \\
4b-5 \\
\underline{(-)4b-2} \\
-3
\end{array}$$

The quotient of $(2b^2+3b-5)\div(2b-1)$ is b+2 with a remainder -3, which can be written as $b+2-\frac{3}{2b-1}$.

Answer 10CU.

Substitute p = 75% = 0.75 in the formula $C = \frac{120,000p}{1-p}$ to find the cost for a manufacturer to reduce the pollutants.

$$C = \frac{120,000p}{1-p}$$
 Formula.
= $\frac{120,000(0.75)}{1-0.75}$ Substitute 0.75 for p.
= 360,000 Simplify.

Thus, the cost for a manufacturer is \$360,000

Answer 11PA.

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

Consider the following division:

$$(x^{2}+9x-7) \div 3x = \frac{x^{2}+9x-7}{3x}$$
 Write as a rational expression.

$$= \frac{x^{2}}{3x} + \frac{9x}{3x} - \frac{7}{3x}$$
 Divide each term by 3x.

$$= \frac{x^{2}}{3x} + \frac{9x}{3x} - \frac{7}{3x}$$
 Simplify each term.

$$= \frac{x}{3} + 3 - \frac{7}{3x}$$
 Simplify.

Thus, the quotient is $\frac{x}{3} + 3 - \frac{7}{3x}$.

Answer 12PA.

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

Consider the following division:

$$(a^2 + 7a - 28) \div 7a = \frac{a^2 + 7a - 28}{7a}$$
 Write as a rational expression.
$$= \frac{a^2}{7a} + \frac{7a}{7a} - \frac{28}{7a}$$
 Divide each term by 7a.
$$= \frac{a^2}{7a} + \frac{7a}{7a} - \frac{28}{7a}$$
 Simplify each term.
$$= \frac{a}{7} + 1 - \frac{4}{a}$$
 Simplify. Thus, the quotient is
$$\frac{a}{7} + 1 - \frac{4}{a}$$
.

Answer 13PA.

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

Consider the following division:

$$\frac{9s^{3}t^{2} - 15s^{2}t + 24t^{3}}{3s^{2}t^{2}}$$

$$= \frac{9s^{3}t^{2}}{3s^{2}t^{2}} - \frac{15s^{2}t}{3s^{2}t^{2}} + \frac{24t^{3}}{3s^{2}t^{2}}$$
Divide each term by $3s^{2}t^{2}$.
$$= \frac{9s^{3}t^{2}}{3s^{2}t^{2}} - \frac{15s^{2}t}{3s^{2}t^{2}} + \frac{24t^{3}}{3s^{2}t^{2}}$$
Simplify each term.
$$= 3s - \frac{5}{t} + \frac{8t}{s^{2}}$$
Simplify.

Thus, the quotient is $3s - \frac{5}{t} + \frac{8t}{s^2}$

Answer 14PA.

To divide a polynomial by a monomial, divide each term of the polynomial by the monomial.

Consider the following division:

$$\frac{12a^3b + 16ab^3 - 8ab}{4ab}$$

$$= \frac{12a^3b}{4ab} + \frac{16ab^3}{4ab} - \frac{8ab}{4ab}$$
Divide each term by $4ab$.
$$= \frac{3a^2}{4ab} + \frac{16ab^3}{4ab} - \frac{8ab}{4ab}$$
Simplify each term.
$$= 3a^2 + 4b^2 - 2$$
Simplify.

Thus, the quotient is $3a^2 + 4b^2 - 2$

Answer 15PA.

Consider the following division:

$$(x^{2}+9x+20) \div (x+5) = \frac{x^{2}+9x+20}{(x+5)}$$
 Write as a rational expression.

$$= \frac{(x+4)(x+5)}{(x+5)}$$
 Factor the numerator.

$$= \frac{(x+4)(x+5)}{(x+5)}$$
 Divide by the GCF.

$$= x+4$$
 Simplify.

Thus, the quotient is x+4.

Answer 16PA.

Consider the following division:

$$(x^{2}+6x-16) \div (x-2) = \frac{x^{2}+9x+20}{(x-2)}$$
 Write as a rational expression.

$$= \frac{(x+8)(x-2)}{(x-2)}$$
 Factor the numerator.

$$= \frac{(x+8)(x-2)}{(x-2)}$$
 Divide by the GCF.

$$= x+8$$
 Simplify.

Thus, the quotient is x+8

Answer 17PA.

Consider the following division:

$$(n^2 - 2n - 35) \div (n + 5) = \frac{n^2 - 2n - 35}{(n + 5)}$$
 Write as a rational expression.

$$= \frac{(n - 7)(n + 5)}{(n + 5)}$$
 Factor the numerator.

$$= \frac{(n - 7)(n + 5)}{(n + 5)}$$
 Divide by the GCF.

$$= n - 7$$
 Simplify.

Thus, the quotient is n-7

Answer 18PA.

Consider the following division:

$$(s^{2}+11s+18) \div (s+9) = \frac{s^{2}+11s+18}{(s+9)}$$
 Write as a rational expression.

$$= \frac{(s+2)(s+9)}{(s+9)}$$
 Factor the numerator.

$$= \frac{(s+2)(s+9)}{(s+9)}$$
 Divide by the GCF.

$$= s+2$$
 Simplify.

Thus, the quotient is s+2.

Answer 19PA.

Consider the following division:

$$(z^2-2z-30)\div(z+7)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
z-9 \\
z+7 \overline{\smash)} \quad z^2 - 2z - 30 \\
\underline{(-)z^2 + 7z} \\
-9z - 30 \\
\underline{(-)-9z - 63} \\
33
\end{array}$$

The quotient of $(z^2-2z-30)\div(z+7)$ is z-9 with a remainder 33, which can be written as

$$z-9+\frac{33}{z+7}$$

Answer 20PA.

Consider the following division:

$$(a^2+4a-22)\div(a-3)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
a+7 \\
a-3 \overline{\smash)} \quad a^2 + 4a - 22 \\
\underline{(-)a^2 - 3a} \\
7a - 22 \\
\underline{(-)7a - 21} \\
-1
\end{array}$$

The quotient of $(a^2+4a-22)\div(a-3)$ is a+7 with a remainder -1, which can be written as

$$a+7-\frac{1}{a-3}$$

Answer 21PA.

Consider the following division:

$$(2r^2 - 3r - 35) \div (r - 5) = \frac{2r^2 - 3r - 35}{(r - 5)}$$
 Write as a rational expression.

$$= \frac{(2r + 7)(r - 5)}{(r - 5)}$$
 Factor the numerator.

$$= \frac{(2r + 7)(r - 5)}{(r - 5)}$$
 Divide by the GCF.

$$= 2r + 7$$
 Simplify.

Thus, the quotient is 2r+7

Answer 22PA.

Consider the following division:

$$(3p^2+20p+11)\div(p+6)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
3p+2 \\
p+6 \overline{\smash)3p^2 + 20p + 11} \\
\underline{(-)3p^2 + 18p} \\
2p+11 \\
\underline{(-)2p+12} \\
-1
\end{array}$$

The quotient of $(3p^2+20p+11)\div(p+6)$ is 3p+2 with a remainder $_{-1}$, which can be written as $3p+2-\frac{1}{p+6}$.

Answer 23PA.

Consider the following division:

$$\frac{3t^2 + 14t - 24}{3t - 4}$$

$$= \frac{(t+6)(3t-4)}{(3t-4)}$$
Factor the numerator.
$$= \frac{(t+6)(3t-4)}{(3t-4)}$$
Divide by the GCF.
$$= t+6$$
Simplify.

Thus, the quotient is t+6.

Answer 24PA.

Consider the following division:

$$\frac{12n^2 + 36n + 15}{2n + 5}$$

$$= \frac{3(2n+1)(2n+5)}{(2n+5)}$$
Factor the numerator.
$$= \frac{3(2n+1)(2n+5)}{(2n+5)}$$
Divide by the GCF.
$$= 3(2n+1)$$
Simplify.

Thus, the quotient is 3(2n+1)

Answer 26PA.

Consider the following division:

$$\frac{20b^3 - 27b^2 + 13b - 3}{4b - 3}$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
5b^2 - 3b + 1 \\
4b - 3) 20b^3 - 27b^2 + 13b - 3 \\
\underline{(-)20b^3 - 15b^2} \\
-12b^2 + 13b \\
\underline{(-)-12b^2 + 9b} \\
4b - 3 \\
\underline{(-)4b - 3} \\
0
\end{array}$$

Thus, the quotient is $5b^2 - 3b + 1$

Answer 27PA.

Consider the following division:

$$\frac{6x^3-9x^2+6}{2x-3}$$

Rename the x term using a coefficient of 0.

$$(6x^3-9x^2+0x+6)\div(2x-3)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
3x^2 \\
2x-3 \overline{\smash{\big)}\ 6x^3 - 9x^2 + 0x + 6} \\
\underline{(-)6x^3 - 9x^2} \\
6
\end{array}$$

The quotient of $\frac{6x^3-9x^2+6}{2x-3}$ is $3x^2$ with a remainder 6, which can be written as

$$3x^2 + \frac{6}{2x-3}$$

Answer 28PA.

Consider the following division:

$$\frac{9g^3+5g-8}{3g-2}$$

Rename the g^2 term using a coefficient of 0.

$$(9g^3+0g^2+5g-8)\div(3g-2)$$

Use long division process to divide a polynomial by a binomial.

$$3g^{2} + 2g + 3$$

$$3g - 2) 9g^{3} + 0g^{2} + 5g - 8$$

$$(-)9g^{3} - 6g^{2}$$

$$6g^{2} + 5g$$

$$(-)6g^{2} - 4g$$

$$9g - 8$$

$$(-)9g - 6$$

$$-2$$

The quotient of $\frac{9g^3+5g-8}{3g-2}$ is $3g^2+2g+3$ with a remainder -2, which can be written as

$$3g^2 + 2g + 3 - \frac{2}{3g - 2}$$

Answer 29PA.

Consider the following division:

$$(6n^3 + 5n^2 + 12) \div (2n + 3)$$

Rename the n term using a coefficient of 0.

$$(6n^3 + 5n^2 + 0n + 12) \div (2n + 3)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
3n^{2} - 2n + 3 \\
2n + 3 \overline{)} \quad 6n^{3} + 5n^{2} + 0n + 12 \\
\underline{(-)6n^{3} + 9n^{2}} \\
-4n^{2} + 0n \\
\underline{(-)-4n^{2} - 6n} \\
6n + 12 \\
\underline{(-)6n + 9} \\
3
\end{array}$$

The quotient of $(6n^3+5n^2+12)\div(2n+3)$ is $3n^2-2n+3$ with a remainder 3, which can be written as $3n^2-2n+3+\frac{3}{2n+3}$.

Answer 30PA.

Consider the following division:

$$(4t^3+17t^2-1)\div(4t+1)$$

Rename the t term using a coefficient of 0.

$$(4t^3+17t^2+0t-1)\div(4t+1)$$

Use long division process to divide a polynomial by a binomial.

$$\frac{t^{2} + 4t - 1}{4t^{3} + 17t^{2} + 0t - 1}
 \underbrace{(-)4t^{3} + t^{2}}_{16t^{2} + 0t}
 \underbrace{(-)16t^{2} + 4t}_{-4t - 1}
 \underbrace{(-)-4t - 1}_{0}$$

Thus, the quotient is $t^2 + 4t - 1$

Answer 31PA.

The expression $\frac{W(L-x)}{x}$ represents the weight of an object that can be lifted if W pounds of

force are applied to a lever L inches long with the fulcrum placed x inches from the object.

Substitute 150 for W, and 60 for L in the expression to determine the heaviest rock he could lift if the fulcrum is x inches from the rock:

$$= \boxed{\frac{150(60-x)}{x}}$$

Answer 32PA.

The expression $\frac{W(L-x)}{x}$ represents the weight of an object that can be lifted if W pounds of

force are applied to a lever L inches long with the fulcrum placed x inches from the object.

Use the above expression to find the weight of a rock.

Substitute 210 for W, 6.12 = 72 for L and 20 for x in the expression.

$$\frac{W(L-x)}{x}$$

$$= \frac{210(72-20)}{20}$$
Substitute.
$$= 546$$
Simplify

Thus, the weight of a rock is 546 pounds

Answer 33PA.

First find the perimeter of the bedroom:

$$P = 2l + 2b$$
 Formula.
 $= 2(14) + 2(12)$ Substitute.
 $= 28 + 24$ Simplify.
 $= 52 \text{ ft or } 624 \text{ in.}$

Now find the length of walls to put decorative border.

$$624-42-42-34.5-34.5$$

= 471 in.

The border comes in 5-yard rolls. Now find the number of rolls of border.

$$471 \text{ in} \cdot \frac{1 \text{ ft}}{12 \text{ in}} \cdot \frac{1 \text{ yard}}{3 \text{ ft}} \cdot \frac{1 \text{ roll}}{1 \text{ yard}}$$

$$= 471 \text{ in} \cdot \frac{1 \text{ ft}}{12 \text{ in}} \cdot \frac{1 \text{ yard}}{3 \text{ ft}} \cdot \frac{1 \text{ roll}}{5 \text{ yard}}$$

$$= \frac{471 \text{ rolls}}{12 \cdot 3 \cdot 5}$$
≈ 3 rolls

Thus, the number of rolls of border is $\boxed{3}$.

Answer 34PA.

The expression $\frac{\pi d^2}{64}$ can be used to determine the number of slices of a round pizza with diameter d.

Divide total cost C by number of slices $\frac{\pi d^2}{64}$ to find a formula to calculate the cost per slice.

$$s = C \div \frac{\pi d^2}{64}$$

$$= C \cdot \frac{64}{\pi d^2}$$
Multiply by the reciprocal of $\frac{\pi d^2}{64}$.
$$= \frac{64C}{\pi d^2}$$
Simplify.

Thus, the formula to calculate the cost per slice is $\frac{64C}{\pi d^2}$

Answer 35PA.

The expression $\frac{\pi d^2}{64}$ can be used to determine the number of slices of a round pizza with diameter d.

Divide total cost C by number of slices $\frac{\pi d^2}{64}$ to find a formula to calculate the cost per slice.

$$s = C \div \frac{\pi d^2}{64}$$

$$= C \cdot \frac{64}{\pi d^2}$$
Multiply by the reciprocal of $\frac{\pi d^2}{64}$.
$$= \frac{64C}{\pi d^2}$$
Simplify.

Thus, the formula to calculate the cost per slice is $\frac{64C}{\pi d^2}$.

Complete the table below:

Size (d)	10-inch	14-inch	18-inch
Price (C)	\$4.99	\$8.99	\$12.99
Number of slices $\frac{\pi d^2}{64}$	5	10	16
Cost per slice $\frac{64C}{\pi d^2}$	\$1.02	\$0.93	\$0.82

Thus, 18-inch pizza offers the best price per slice.

Answer 36PA.

Use the following information:

The density of a material is its mass per unit volume.

To find the densities for the materials divide Mass by Volume.

Material	Mass (g)	Volume (cm³)	Density = $\frac{\text{Mass}}{\text{Volume}}$
Aluminum	4.15	1.54	$\frac{4.15}{1.54} = 2.69$
Gold	2.32	0.12	$\frac{2.32}{0.12} = 19.33$
Silver	6.30	0.60	$\frac{6.30}{0.60} = 10.50$
Steel	7.80	1.00	$\frac{7.80}{1.00} = 7.80$
Iron	15.20	1.95	$\frac{15.20}{1.95} = 7.79$

Copper	2.48	0.28	$\frac{2.48}{0.28} = 8.86$
Blood	4.35	4.10	$\frac{4.35}{4.10} = 1.06$
Lead	11.30	1.00	$\frac{11.30}{1.00} = 11.30$
Brass	17.90	2.08	$\frac{17.90}{2.08} = 8.61$
concrete	40.00	20.00	$\frac{40.00}{20.00} = 2$

Answer 37PA.

Use the following information:

The density of a material is its mass per unit volume.

To find the densities for the materials divide Mass by Volume.

Material	Mass (g)	Volume (cm³)	Density = $\frac{\text{Mass}}{\text{Volume}}$
Aluminium	4.15	1.54	$\frac{4.15}{1.54} = 2.69$
Gold	2.32	0.12	$\frac{2.32}{0.12}$ = 19.33
Silver	6.30	0.60	$\frac{6.30}{0.60} = 10.50$
Steel	7.80	1.00	$\frac{7.80}{1.00} = 7.80$
Iron	15.20	1.95	$\frac{15.20}{1.95} = 7.79$
Copper	2.48	0.28	$\frac{2.48}{0.28} = 8.86$
Blood	4.35	4.10	$\frac{4.35}{4.10}$ = 1.06
Lead	11.30	1.00	$\frac{11.30}{1.00} = 11.30$
Brass	17.90	2.08	$\frac{17.90}{2.08} = 8.61$
concrete	40.00	20.00	$\frac{40.00}{20.00} = 2$

Now plot the graph of the densities for the materials:

Answer 38PA.

Use the following information:

The density of a material is its mass per unit volume.

To find the densities for the materials divide Mass by Volume.

Material	Mass (g)	Volume (cm³)	Density = $\frac{\text{Mass}}{\text{Volume}}$
Aluminium	4.15	1.54	$\frac{4.15}{1.54} = 2.69$
Gold	2.32	0.12	$\frac{2.32}{0.12}$ = 19.33
Silver	6.30	0.60	$\frac{6.30}{0.60} = 10.50$
Steel	7.80	1.00	$\frac{7.80}{1.00} = 7.80$
Iron	15.20	1.95	$\frac{15.20}{1.95} = 7.79$
Copper	2.48	0.28	$\frac{2.48}{0.28} = 8.86$
Blood	4.35	4.10	$\frac{4.35}{4.10}$ = 1.06
Lead	11.30	1.00	$\frac{11.30}{1.00} = 11.30$
Brass	17.90	2.08	$\frac{17.90}{2.08} = 8.61$
concrete	40.00	20.00	$\frac{40.00}{20.00} = 2$

Now plot the graph of the densities for the materials:

Answer 40PA.

Let
$$f(x) = x^2 + 7x + 12$$

Since, x+k is a factor of the function f(x) then

$$x + k = 0$$
$$x = -k$$

Substitute -k for x in the function

$$f(x) = x^{2} + 7x + 12$$

$$f(-k) = (-k)^{2} + 7(-k) + 12$$

$$0 = k^{2} - 7k + 12$$

$$0 = (k-3)(k-4)$$
 Factor.

Use zero factor property. Solve for k.

$$k-3=0$$
 or $k-4=0$
 $k=3$ $k=4$

Thus, the value of k is $\boxed{3 \text{ and } 4}$.

Answer 41PA.

Let
$$f(x) = x^2 + 7x + k$$

Function is divided by x+2, there is a remainder of 2.

$$x + 2 = 0$$

$$x = -2$$

Substitute -2 for x in the function

$$f(x) = x^{2} + 7x + k - (R)$$

$$f(-2) = (-2)^{2} + 7(-2) + k - 2$$

$$0 = 4 - 14 + k - 2$$

$$12 = k$$
R = 2 (Remainder)

Thus, the value of k is $\boxed{12}$.

Answer 42PA.

Let
$$f(x) = x^2 - 2x - k$$

Since, x+7 is a factor of the function f(x) then

$$x + 7 = 0$$

$$x = -7$$

Substitute -7 for x in the function

$$f(x) = x^{2} - 2x - k$$

$$f(-7) = (-7)^{2} - 2(-7) - k$$

$$0 = 49 + 14 - k$$

$$k = 63$$

Thus, the value of k is $\boxed{63}$.

Answer 43PA.

Divide can be used to find the number of pieces of fabric available when you divide a large piece of fabric into smaller pieces.

Answer should include the following.

- The two expressions are equivalent. If you use the Distributive Property, you can separate the numerator into two expressions with the same denominator.
- When you simplify the right side of the equation, the numerator is a−b and the denominator is c. This is the same as the expression on the left.

Answer 44PA.

To find the length of the rectangle divide the area of rectangle by width.

$$\frac{m^2 + 4m - 32}{m - 4}$$
 Write as a rational expression.

$$= \frac{(m+8)(m-4)}{(m-4)}$$
 Factor the numerator.

$$= \frac{(m+8)(m-4)}{(m-4)}$$
 Divide by the GCF.

$$= m+8$$
 Simplify.

Thus, the length of the rectangle is m+8

Answer 45PA.

Consider the following division:

$$(x^3 + 5x - 20) \div (x - 3)$$

Rename the x^2 term using a coefficient of 0.

$$(x^3+0x^2+5x-20)\div(x-3)$$

Use long division process to divide a polynomial by a binomial.

$$\begin{array}{r}
x^2 + 3x + 14 \\
x - 3 \overline{\smash)} \quad x^3 + 0x^2 + 5x - 20 \\
\underline{(-)x^3 - 3x^2} \\
3x^2 + 5x \\
\underline{(-)3x^2 - 9x} \\
14x - 20 \\
\underline{(-)14x - 42} \\
22
\end{array}$$

The quotient of $(x^3+5x-20)\div(x-3)$ is $x^2+3x+14$ with a remainder 22, which can be written as option B. $x^2+3x+14+\frac{22}{x-3}$.

Answer 46MYS.

Consider the following rational expression.

$$\frac{x^2 + 5x + 6}{x^2 - x - 12} \div \frac{x + 2}{x^2 + x - 20}$$

$$= \frac{x^2 + 5x + 6}{x^2 - x - 12} \cdot \frac{x^2 + x - 20}{x + 2}$$

$$= \frac{(x + 3)(x + 2)}{(x - 4)(x + 3)} \cdot \frac{(x + 5)(x - 4)}{(x + 2)}$$
Factor the numerator and denominator.
$$= \frac{(x + 3)(x + 2)}{(x + 4)(x + 3)} \cdot \frac{(x + 5)(x + 4)}{(x + 2)}$$
The GCF is $(x + 3)(x + 2)(x - 4)$.
$$= x + 5$$
Simplify.

Thus, the quotient is x+5

Answer 47MYS.

Consider the following rational expression.

$$\frac{m^{2} + m - 6}{m^{2} + 8m + 15} \div \frac{m^{2} - m - 2}{m^{2} + 9m + 20}$$

$$= \frac{m^{2} + m - 6}{m^{2} + 8m + 15} \cdot \frac{m^{2} + 9m + 20}{m^{2} - m - 2}$$
Multiply by the reciprocal of $\frac{m^{2} - m - 2}{m^{2} + 9m + 20}$.

$$= \frac{(m + 3)(m - 2)}{(m + 5)(m + 3)} \cdot \frac{(m + 5)(m + 4)}{(m - 2)(m + 1)}$$
Factor the numerator and denominator.

$$= \frac{(m + 3)(m - 2)}{(m + 5)(m + 3)} \cdot \frac{(m + 5)(m + 4)}{(m - 2)(m + 1)}$$
The GCF is $(m + 3)(m - 2)(m + 5)$.

$$= \frac{m + 4}{m + 1}$$
Simplify.

Thus, the quotient is $\frac{m+4}{m+1}$

Answer 48MYS.

Consider the following rational expression.

$$\frac{b^{2} + 19b + 84}{b - 3} \cdot \frac{b^{2} - 9}{b^{2} + 15b + 36}$$

$$= \frac{(b + 12)(b + 7)}{(b - 3)} \cdot \frac{(b - 3)(b + 3)}{(b + 12)(b + 3)}$$
Factor the numerator and denominator.
$$= \frac{(b + 12)(b + 7)}{(b - 3)} \cdot \frac{(b - 3)(b + 3)}{(b + 12)(b + 3)}$$
The GCF is $(b + 12)(b - 3)(b + 3)$.
$$= b + 7$$
Simplify.

Thus, the quotient is b+7.

Answer 49MYS.

Consider the following rational expression.

$$\frac{z^{2}+16z+39}{z^{2}+9z+18} \cdot \frac{z+5}{z^{2}+18z+65}$$

$$= \frac{(z+13)(z+3)}{(z+6)(z+3)} \cdot \frac{(z+5)}{(z+5)(z+13)}$$
Factor the numerator and denominator.
$$= \frac{(z+13)(z+3)}{(z+6)(z+3)} \cdot \frac{(z+5)}{(z+5)(z+13)}$$
The GCF is $(z+13)(z+3)(z+5)$.
$$= \frac{1}{z+6}$$
Simplify.

Thus, the quotient is $\frac{1}{z+6}$.

Answer 50MYS.

Consider the following expression:

$$3\sqrt{7} - \sqrt{7}$$

= $(3-1)\sqrt{7}$ Distributive property.
= $2\sqrt{7}$ Simplify.

Thus, the answer is $2\sqrt{7}$.

Use a TI-83 calculator to verify answer:

Answer 51MYS.

Consider the following expression:

$$\sqrt{72} + \sqrt{32}$$

$$= \sqrt{36 \cdot 2} + \sqrt{16 \cdot 2}$$
 Factor
$$= 6\sqrt{2} + 4\sqrt{2}$$
 Simplify
$$= (6+4)\sqrt{2}$$
 Distributive property.
$$= 10\sqrt{2}$$
 Simplify.

Thus, the answer is $10\sqrt{2}$

Use a TI-83 calculator to verify answer:

Answer 52MYS.

Consider the following expression:

$$\sqrt{12} - \sqrt{18} + \sqrt{48}$$

$$= \sqrt{4 \cdot 3} - \sqrt{9 \cdot 2} + \sqrt{16 \cdot 3}$$
 Factor
$$= 2\sqrt{3} - 3\sqrt{2} + 4\sqrt{3}$$
 Simplify
$$= 2\sqrt{3} + 4\sqrt{3} - 3\sqrt{2}$$
 Group like terms.
$$= (2+4)\sqrt{3} - 3\sqrt{2}$$
 Distributive property.
$$= 6\sqrt{3} - 3\sqrt{2}$$
 Simplify.

Thus, the answer is $6\sqrt{3} - 3\sqrt{2}$

Use a TI-83 calculator to verify answer:

Answer 53MYS.

Consider the following expression:

$$d^{2}-3d-40$$

$$= d^{2}-8d+5d-40$$

$$= d(d-8)+5(d-8)$$

$$= (d-8)(d+5)$$
Write $-3d$ as $-8d+5d$.

Distributive property.

Factor out $(d-8)$.

Thus, the factor is (d-8)(d+5)

Answer 54MYS.

Consider the following expression:

$$x^{2} + 8x + 16$$

$$= x^{2} + 4x + 4x + 16$$

$$= x(x+4) + 4(x+4)$$

$$= (x+4)(x+4)$$
Write 8x as $4x + 4x$.

Distributive property.

Factor out $(x+4)$.

Thus, the factor is (x+4)(x+4) or $(x+4)^2$

Answer 55MYS.

Consider the following expression:

$$t^2 + t + 1$$

For the trinomial $t^2 + t + 1$, b = 1, and c = 1. There are no such pair of numbers, whose sum is 1 and whose product is 1.

Thus, the expression is prime

Answer 57MYS.

Consider the following expression:

$$\left(6n^2 - 6n + 10m^3\right) + \left(5n - 6m^3\right)$$

$$= 6n^2 - 6n + 10m^3 + 5n - 6m^3$$
 Distributive property.
$$= 10m^3 - 6m^3 + 6n^2 - 6n + 5n$$
 Group like terms.
$$= 4m^3 + 6n^2 - n$$
 Combine like terms.
Thus, the sum is
$$4m^3 + 6n^2 - n$$

Answer 58MYS.

Consider the following expression:

$$(3x^2 + 4xy - 2y^2) + (x^2 + 9xy + 4y^2)$$

$$=3x^2+4xy-2y^2+x^2+9xy+4y^2$$

$$=3x^2+x^2+4xy+9xy-2y^2+4y^2$$

$$=4x^2 + 13xy + 2y^2$$

Thus, the sum is
$$4x^2 + 13xy + 2y^2$$

Distributive property.

Group like terms.

Combine like terms.

Answer 59MYS.

Consider the following expression:

$$(a^3-b^3)+(-3a^3-2a^2b+b^2-2b^3)$$

$$=a^3-b^3-3a^3-2a^2b+b^2-2b^3$$

$$=a^3-3a^3-2a^2b+b^2-b^3-2b^3$$

$$= -2a^3 - 2a^2b + b^2 - 3b^3$$

Thus, the sum is $[-2a^3 - 2a^2b + b^2 - 3b^3]$

Distributive property.

Group like terms.

Combine like terms.

Answer 60MYS.

Consider the following expression:

$$(2g^2+6h)+(-4g^2-8h)$$

$$=2g^2+6h-4g^2-8h$$

Distributive property.

$$=2g^2-4g^2+6h-8h$$

Group like terms.

$$=-2g^2-2h$$

Combine like terms.

Thus, the sum is $\boxed{-2g^2-2h}$