
Mind map : learning made simple Chapter - 5

Let                            squaring both sides,
we get (x+iy)2= a+ib i.e. x2−y2=a, 2xy=b 
solving these equations, we get square root of z.
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     If z= a+ib is a complex number 
 (i)Distance of z from origin is called
     as modulus of complex number z.

     It is denoted by 

(ii) Angle θ made by OP with +ve 
      direction of X-axis is called 
      argument of z.
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A complex number z=a+ib can be represented by
a unique point P(a,b) in the argand plane 

z=a+ib is represented by a point P (a,b)
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 Let: z1= a+ib and z1= c+id be two complex numbers,
       where a,b,c,d     R and 

1. Addition:

2. Subtraction:

3. Multiplication:

4. Division:
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 Argument

Let a = r cos
b = r sin
where,

θ
θ

θ
θ

θ

θ
r z=

and    = arg (z)

The argument ‘θ’ of complex 
number z = a+ib is called 
principal argument of z if 
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General form of quadratic equation 
in x is  ax2+bx+c=0, 
Where                              
The solutions of given quadratic equation 
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Note:  A polynomial equation has 
            atleast one root.
            A polynomial equation of degree
            n has n roots.

A number of the form a+ib, where a,b    R and  
is called a complex number and denoted by ‘z’.
                      z= a+ib
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Imaginary part 

  Real part
Conjugate of a complex number: For a given complex number 
z=a+ib, its conjugate is defined as z= a – ib

For a non-zero complex number z=a+ib  
 
there exists a complex number            +            i  

denoted by  – or z−l, called multiplicative inverse of Z 
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Such that:
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Note: If a+ib = c+id 
⇔ a = c & b = d
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