

CHAPTER-12
GETTING STARTED WITH PL/SQL

SQL Vs PL/SQL:

Limitations of SQL are:

• No procedural capabilities .
• Time Consuming Processing or Network traffic.
• No Error Handling Routines/Procedures.

Advantages of PL/SQL are:

• Procedural Capabilities.
• Reduced Network Traffic.
• Error Handling Procedures/Routines.
• Facilitates Sharing.
• Improved Transaction Performance.
• Portable Code.

ANCHORED DECLARTION:

It refers to a declaration where a variable is declared with another variable or a table column used
as its anchor.
PL/SQL use %TYPE declaration attribute for anchoring.

Ex: num1 NUMBER(5);
 num2 num1%TYPE;
 empsal Emp.Salary%TYPE;

Note: Anchored types are evaluated at compile time.Thus,you need to recompile the change of
underlying type in the anchored variable.

TYPES OF PL/SQL VARIABLES:

• Local Variables.
• Substitution Variables.
• Bind or Host Variables.

PL/SQL BLOCK STRUCTURES:

DECLARE
/* definitions of <constants>
<variables>

BEGIN
<PL/SQL statement here>

[EXCEPTION]
<Exception Handling>

END;

 TYPES OF BLOCKS:

• Anonymous Blocks: Blocks without headers.
• Named Blocks: Blocks having headers or labels like procedure,functions,packages or

triggers.

 PL/SQL CONTROL STRUCTURES:
• Sequence
• Selection
• Iteration.

SELECTION CONSTRUCT: (Condition Testing or Decision Making Statements)

1. Simple IF:-

Syntax:
 IF <condition>THEN
 Statement
 END IF;

Example:
DECLARE
a number;
BEGIN
a :=&a;
if a>100 THEN
dbms_output.put_line(a);
END IF;

2. IF…THEN…ELSE…END IF:-
 Syntax:

 IF <condition>THEN
 Statement1;

ELSE
Statement2;

 END IF;

 Example:

DECLARE
a number;
b number;
BEGIN
a :=&a;
b :=&b;
if a>b THEN
dbms_output.put_line(a);
ELSE
dbms_output.put_line(b);
END IF;

3. NESTED IF ….ELSE:-

 IF <condition>THEN
 Statement1;

ELSIF <condition>
Statement2;
THEN
.
.
.
ELSE

 END IF;
Example:

DECLARE
a number;
b number;
c number;
BEGIN
a :=&a;
b :=&b;
c :=&c;
if a>b THEN
if a>c THEN
dbms_output.put_line(a);
ELSE
dbms_output.put_line(c);
END IF;
ELSE
if (b>c) THEN
dbms_output.put_line(b);
ELSE
dbms_output.put_line(c);
END IF;

 END IF:

4. ELSIF LADDER:-
 Example:

DECLARE
salary number;
BEGIN
salary :=&salary;
if salary >=10000 THEN
dbms_output.put_line(“CLASS I OFFICER”);
ELSIF salary <10000 AND salary>=8000 THEN
dbms_output.put_line(“CLASS II OFFICER”);
ELSIF salary <8000 AND salary>=5000 THEN
dbms_output.put_line(“CLASS III OFFICER”);
ELSE
dbms_output.put_line(“YOU ARE NOT IN JOB”);
END IF;

 END IF;

Points to remember for using IF:

• Always match up an IF with an END IF.
• You must put a space between the keywords END and IF.
• The ELSIF keyword does not have an embedded “E”.
• Place a semicolon (;) only after the END IF keywords.

 ITERATION CONSTRUCT : (LOOPS)
PL/SQL provides three different types of loops:
• The simple loop.
• The FOR loop.
• The WHILE loop.

A General Loop Structure:
A loop has two parts: the loop boundary and the loop body.
The Simple Loop:
Syntax:
 LOOP
 <executable statement>
 END LOOP;
Example:

DECLARE
n :=0;
LOOP
n:=n+1;
Dbms_output.put_line(n);
END LOOP;

NOTE: Simple loop does not terminate by itself.So EXIT and EXIT WHEN
statements are used with it to terminate the loop.
Ex: DECLARE
 count number :=0;
 BEGIN
 LOOP
 count :=count +1;

dbms_output.put_line(‘value of count is’||count);
IF count >=10 THEN
EXIT;
END IF;
END LOOP:
dbms_output.put_line(‘Hi,I m out of the loop’);
END;

 Ex: DECLARE
 count number :=0;
 BEGIN
 LOOP
 count :=count +1;

dbms_output.put_line(‘value of count is’||count);
EXIT WHEN count>=10 ;
END LOOP:
dbms_output.put_line(‘Hi,I m out of the loop’);
END;

THE NUMERIC FOR LOOP:
The FOR LOOP provided by PL/SQL comes in two forms:

a) Numeric For loop.
b) Cursor For loop.

NUMERIC FOR LOOP:
Syntax:
FOR <loop index> IN [REVERSE] <lowest number>..<highest number>
LOOP
<executable statements>
END LOOP;

Ex:
BEGIN
FOR num IN 1..20
LOOP
n := num*2;
dbms_output.put_line(n);
END LOOP;
END;

Ex:
BEGIN
FOR num IN REVERSE 1..20
LOOP
n := num*2;
dbms_output.put_line(n);
END LOOP;
END;

Characteristics of Numeric For Loop:
a) Loop index is automatically declared.
b) Expressions in range scheme are evaluated only once.
c) Loop index is not modifiable.

THE WHILE LOOP:
Syntax:
 WHILE <condition>
 LOOP
 <executable statement>
 END LOOP:
NOTE: WHILE loop tests the condition before executing the loop.

Ex:
 DECLARE
 n number;
 BEGIN
 WHILE n<=10
 LOOP

n := n+1;
dbms_output.put_line(n);
END LOOP;
END;

Variations of WHILE Loop:

WHILE TRUE
LOOP
<executable statement>
END LOOP;

The Nested Loops:
The nesting of loops or nested loops mean that a loop resides within another loop.
A loop can nest any type of loop.
Ex:
DECLARE
i number :=0;
BEGIN
WHILE i<10
LOOP
i :=i+1;
dbms_output.put_line(i);
END LOOP;
END;

LABELLING LOOPS:
Loops can be labeled to enhance readability.
Syntax:
<<outer loop>>
LOOP
.
.
EXIT WHEN condition;
END LOOP outer loop;

DATABASE INTERACTION IN PL/SQL:

We can use following SQL statements in PL/SQL code.

SELECT,INSERT,UPDATE,DELETE.

SELECT INTO statement:
This statement is used to store the resultant data of SELECT query into PL/SQL variables.
Syntax:
SELECT <select list> INTO <variable_list>
FROM <table>[WHERE <condition>];

The above syntax is used when we want to store some particular fields or columns of SQL into
PL/SQL variables.

But what if we wish to store entire row of data into PL/SQL variable, in that situation the concept
of records is used.

USING RECORDS:

A PL/SQL record is a group of multiple pieces of information,related to one another,called fields.

Types of Records:

a. Table based records.
b. Programmer based records.
c. Cursor based records.

Table based records:
It represents each field in the table. For this anchored declaration %ROWTYPE is used.
Syntax:
<record name> <table name>%ROWTYPE;

Programmer Defined Records:
It is an explicitly defined record in PL/SQL.It is defined with TYPE statement as per the following syntax.
Syntax:
TYPE <typename> IS RECORD (field_declaration[,field declaration]…);

Here,RECORD TYPE declared is treated as a data type,which can not hold values.For which we need to
declare a variable of that type.
Syntax:
Variablename RECORD type;

This variable can now be used to access individual columns or fields.

EXCEPTION HANDLING IN PL/SQL:

EXCEPTIONS are some unwanted or undesired situations,which terminate the PL/SQL script
unexpectedly.

Types Of EXCEPTIONS:
1. Predefined Exceptions.
2. Undefined Exceptions.
3. User-defined Exceptions.

Predefined Exceptions are not needed to be declared and raised while Userdefined Exceptions are to be
declared,raised and handled in EXCEPTION handling section.

* * *

