
"Young man, in mathematics you don’t understand things. 
You just get used to them".

-John von Neumann

12.1 Introduction
	 Mathematics	 can	 be	 broadly	 classified	 into	 two	 categories:	 Continuous 
Mathematics −	 It	 is	based	upon	 the	 results	 concerning	 the	 set	of	 real	numbers	
which	is	uncountably infinite.	It	is	characterized	by	the	fact	that	between	any	two	
real	numbers,	there	is	always	a	set	of	uncountably	infinite	numbers.	For	example,	a	
function	in	continuous	mathematics	can	be	plotted	in	a	smooth	curve	without	break.																																			
 Discrete Mathematics −	It	involves	distinct	values	which	are	either	finite 
or countably infinite;	i.e.	between	any	two	points,	there	are	finite	or	countably	
infinite	number	of	points.	For	example,	if	we	have	a	finite	set	of	objects,	the	
function	can	be	defined	as	a	list	of	ordered	pairs	having	these	objects,	and	can	
be	presented	as	a	complete	list	of	those	pairs.

	 The	mathematicians	who	 lived	 in	 the	 latter	 part	 of	 the	19th and early in 
the 20th	centuries	developed	a	new	branch	of	mathematics	called	discrete mathematics consisting	of	
concepts		based	on	either	finite or countably infinite sets	like	the	set	of	natural	numbers.	These	sets	are	
called	discrete	sets	and	the	beauty	of	such	sets	is	that,	one	can	find	that	a	one-to-one	correspondence	
can	be	defined	from	these	sets	onto	the	set	of	natural	numbers.	So,	the	elements	of	a	discrete	set	can	be	
arranged	as	a	sequence.	This	special	feature	of	discrete	sets	cannot	be	found	in	any	uncountable	set	like	
the	set	of	real	numbers	where	the	elements	are	distributed	continuously	throughout	without	any	gap.	

	 Everyone	is	aware	of	the	fact	that	the	application	of	computers	is	playing	an	important	role	in	
every	walk	of	our	lives.	Consequently	the	computer science has	become	partially	a	science	of	clear	
understanding	and	concise	description	of	computable	discrete	sets.	Also	the	modern	programming	
languages	are	to	be	designed	in	such	a	way	that	they	are	suitable	for	descriptions	in	a	concise	manner.	
This	compels	the	computer	scientists	to	train	themselves	in	learning	to	formulate	algorithms	based	on	
the discrete sets. 

	 The	main	advantage	of	studying	discrete	mathematics	is	that	its	results	serve	as	very	good	tools	
for	 improving	 the	 reasoning	 and	 problems	 solving	 capabilities.	 Some	of	 the	 branches	 of	 discrete	
mathematics are combinatorics, mathematical logic, boolean algebra, graph theory, coding 
theory etc.	Some	of	the	topics	of	discrete	mathematics	namely	permutations, combinations, and 
mathematical induction were	already	discussed	 in	 the	previous	year.	 In	 the	present	chapter,	 two	
topics	namely	binary operations and mathematical logic of	discrete	mathematics	are	discussed.	
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Symbols

∈  -	 belongs	to.
⋺ -	 such	that.
∀  -	 for	every.
⇒  -	 implies.
∃  -	 there	exists

 In	general,	the	word	‘operation’	refers	to	the	process	of	operating	upon	either	a	single	or	more	
number	of	elements	at	a	time.	For	instance,	finding	the	negative	of	an	element	in	  involves	a	single	
element	at	a	time.	So	it	is	called	an	unary operation. On	the	other	hand	the	process	of	finding	the	sum	
of	any	two	elements	in	  involves	two	elements	at	a	time. This	kind	of	operation	is	called	a	binary 
operation and	in	general	an	operation	involving	 n elements is called an n-ary operation, n∈ . In	
this	section	a	detailed	discussion	of	the	binary	operations	is	presented. 

Learning Objectives

	 Upon	completion	of	this	chapter,	students	will	be	able	to	
 • define	binary	operation	and	examine	various	properties	
 • define	binary	operation	on	Boolean	matrices	and	verify	various	properties
 • define	binary	operation	on	modular	classes	and	examine	various	properties	
 • identify	simple	and	compound	statements
 • define	logical	connectives	and	construct	truth	tables
 • identify	tautology,	contradiction,	and	contingency
 • establish	logical	equivalence	and	apply	duality	principle

12.2 Binary Operations
12.2.1  Definitions
	 The	basic	arithmetic	operations	on	  are addition (+ ), subtraction (- ),	multiplication (× ), and 
division (÷).	Eminent	mathematicians	of	the	latter	part	of	19thcentury	and	in	20thcentury	like	Abel,	Cayley,	
Cauchy,	and	others,	tried	to	generalize	the	properties	satisfied	by	these	usual	arithmetic	operations.	To	this	
end	they	developed	new	abstract	algebraic	structures	through	the	axiomatic approach.	This	new	branch	
of	algebra	dealing	with	these	abstract	algebraic	structures	is	known	as	abstract algebra. 
	 To	begin	with,	consider	a	simple	example	involving	the	basic	usual	arithmetic	operations	addition	
and	multiplication	of	any	two	natural	numbers.

m n+ ∈ ; m n× ∈ ,	∀ ∈ =m n, { , , ,...} 1 2 3

Each	of	the	above	two	operations	yields	the	following	observations:
	 (1)	 At	a	time	exactly	two	elements	of	 are	processed.
	 (2)	 The	resulting	element	(outcome)	is	also	an	element	of	 .
	 Any	 such	 operation	 defined	 on	 a	 nonempty	 set	 is	 called	 a	 binary operation or a binary 
composition on the set in	abstract	algebra.
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Definition 12.1
	 Any	operation	* defined	on	a	non-empty	set S is called a binary operation on S if	the	following	
conditions	are	satisfied:
	 (i)	 The	operation	*	must	be	defined	for	each	and	every	ordered	pair	 ( , )a b ∈ S S× .
	 (ii)	 It	assigns	a	unique element a b∗ of	 S to	every	ordered	pair	 ( , )a b ∈ S S× .

	 In	 other	words,	 any	 binary	 operation	* on S is	 a	 rule	 that	 assigns	 to	 each ordered pair of	
elements	of	S  a unique element	of	S .	Also	*	can	be	regarded	as	a	function (mapping) with	input	in	
the	Cartesian	product	 S S× and	the	output	in S . 

∗ × →: S S S   ;  ∗ = ∗ ∈( , )a b a b S ,	where	 a b* 	is	an	unique	element.

	 A	binary	operation	defined	by			∗ × →: S S S ;  ∗ = ∗ ∈( , )a b a b S demands	that	the	output	 a b∗

must	always	lie	the	given	set	S and	not	in	the	complement	of	it.	Then	we	say	that	‘∗ is closed on S ’	or		

‘ S  is closed with	respect	to	∗ ’.	This	property	is	known	as	the	closure property.

Definition 12.2

 Any	non-empty	 set	on	which	one	or	more	binary	operations	 are	defined	 is	
called an algebraic structure.
	 Another	 way	 of	 defining	 a	 binary	 operation	 ∗  on S  is	 as	 follows: 
∀ ∈ ∗a b S a b, , 	is	unique	and	a b S∗ ∈ .

Note
 It	follows	that	every	binary	operation	satisfies	the	closure	property.
Note
 The	operation∗ is	just	a	symbol	which	may	be		+ × −, , , 	÷	matrix	addition,	matrix	multiplication,	
etc.	depending	on	the	set	on	which	it	is	defined.
	 For	instance,	though	+  and ×  are binary on ,	- is not binary	operation	on . 
	 To	verify	this,	consider ( , )3 4 ∈ ×  .

∗ = − = − = − ∉( , ) ( , )a b 3 4 3 4 1 

.
 Hence - is not binary operation on  .	So	 	is	to	be	extended	to	  in order that - becomes 
binary	operation	on	 . 	Thus	  	 is	 closed	with	 respect	 to	 + × −, , and .	Thus	 ( , , , ) + × −  is an 
algebraic	structure.

Observations
	 The	binary	operation	depends	on	the	set	on	which	it	is	defined.
	 (a)	 The	operation	–	which	is	not binary operation on  	but	it	is	binary	on	 .   The set   is 

extended	to	include	negative	numbers.	We	call	the	included	set		 .
	 (b)	 The	 operation	 ÷	 on	   is not binary operation on  .	 	 For	 instance,	 for ( , )1 2 ∈ ×  ,	 

÷ 1 2
1

2
,  ( ) = ∉ . Hence  	has	to	be	extended	further	into	 .

	 (c)	 It	is	a	known	fact	that	the	division	by	 0 is not	defined	in	basic	arithmetic.	So	÷	is	binary	
operation	 on	 the	 set	  \{ }0 .	 Thus	 + × −, , are	 binary	 operation	 on	   and ÷  is binary 
operation	on \{ }0 .

	 Now	the	question	is	regarding	the	reasons	for	extending	further	  to  and	then	from to . 
Accordingly,	 a	 number	 system	 is	 needed	 where	 not	 only	 all	 the	 basic	 arithmetic	 operations	 
+ − ×, , , ÷	but	also	to	include	the	roots	of	the	equations	of	the	form	“ x2 2 0− = ”	and“ x2 1 0+ = ”. 

Fig.	12.1

a b

Sa b*
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So,	in	addition	to	the	existing	systems,	the	collection	of	irrational	numbers	and	imaginary	numbers	
(See	Chapter	3)	are	to	be	adjoined.	Consequently	  and then  are	obtained.	The	biggest	number	
system properly	includes	all	the	other	number	systems, ,  ,	and as	subsets.	

    

 \ 0{ }  \ 0{ }  \ 0{ }

+ Binary Binary Binary Binary Binary
Not  

Binary
Not  

Binary
Not  

Binary

-
Not 

Binary
Binary Binary Binary Binary

Not  
Binary

Not  
Binary

Not  
Binary

× Binary Binary Binary Binary Binary Binary Binary Binary

÷
Not 

Binary
Not 

Binary
Not 

Binary
Not	Binary

Not 
Binary

Binary Binary Binary

Table12.1
Example12.1 
	 Examine	the	binary	operation	(closure	property)	of	the	following	operations	on	the	respective	
sets	(if	it	is	not,	make	it	binary):		

  (i) a b a ab b a b∗ = + − ∀ ∈3 5 2; , 
 (ii) a b a

b
a b∗ =

−
−







 ∀ ≠ ∈

1

1
1, , 

Solution

	 (i)	 Since	× 		is	binary	operation	on	  , ,a b a b ab∈ ⇒ × = ∈  and b b b× = ∈2

	 ...	(1)

  The	 fact	 that	 + 	 is	 binary	 operation	 on	  	 and	 (1)	 ⇒ 3ab ab ab ab= + + ∈( ) 
 and 

5 2 2 2 2 2 2b b b b b b= + + + + ∈( ) 

.    .... (2)

	 	 Also	 a∈  and 3ab∈ implies	 a ab+ ∈3 
.			 ...	(3)

	 	 (2),	 (3),	 the	 closure	 property	 of	 - on  yield a b a ab b∗ = + − ∈( )3 5 2

.	 Since	 a b�

belongs	to	 ,	*	is	a	binary	operation	on	 .
	 (ii)	 In	 this	 problem	 a b∗ is	 in	 the	 quotient	 form.	 Since	 the	 division	 by	 0 is	 undefined,	 the	

denominator b -1must	be	nonzero.
	 	 It	is	clear	that	b − =1 0  if	b =1.	As	1∈ ,	∗  is	not	a	binary	operation	on	the	whole	of	 . 

However	 it	can	be	found	 that	by	omitting	 1	from	  ,	 the	output	 a b∗ 	exists	 	 in	  \{ }1 . 
Hence ∗ is	a	binary	operation	on \{ }1 .

12.2.2 Some more properties of a binary operation
Commutative property
 Any	 binary	 operation	 ∗defined	 on	 a	 nonempty	 set	 S is	 said	 to	 satisfy	 the	 commutative	 
property,	if

a b b a a b S∗ = ∗ ∈∀ , .

Number 
System

Operation
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Associative property
 Any	binary	operation∗defined	on	a	nonempty	set	 S is	said	to	satisfy	the	associative	property,	if

a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , .

Existence of identity property
 An	element	 e S∈ is said to be the Identity Element of	 S under	the	binary	operation∗ if	for	all	
a S∈ we	have	that	 a e a∗ = and e a a∗ = .

Existence of inverse property
 If	an	identity	element	 e exists	and	if	for	every	 a S∈ ,	there	exists	b in S such	that	 a b e∗ = and 
b a e∗ =  then b S∈ is said to be the Inverse Element of	 a .	In	such	instances,	we	write	b a= −1 .

Note
  a–1	is	an	element	of	S.	It	should	be	read	as	the	inverse	of	a and not as 1

a
.

Note
 (i)  The multiplicative identity is 1in  and	it	is	the	one	and	only	one	element	with	the	property

n n n n⋅ = ⋅ = ∀ ∈1 1 ,  . 
 (ii)  The multiplicative inverse of	any	element,	say	 2 in  is 1

2
and	no	other	nonzero	rational	

number x has	the	property	that	2 2 1⋅ = ⋅ =x x .
Note
 Whenever	a	mathematical	statement	involves	‘for	every’	or	‘	for	all’	,	it	has	to	be	proved		for	every	
pair	or	three	elements.	It	is	not	easy	to	prove	for	every	pair	or	three	elements.	But	these	types	of	definitions	
may	be	used	to	prove	the	negation	of	the	statement.	That	is,	negation	of	“for	every”	or	“for	all”	is	“there	
exists	not”.	So,	produce	one	such	pair	or	three	elements	to	establish	the	negation	of	the	statement.	
	 The	questions	of	 existence	 and	uniqueness	 of	 identity	 and	 inverse	 are	 to	 be	 examined.	 	The	
following	theorems	prove	these	results	in	the	more	general	form.

Theorem 12.1: (Uniqueness of Identity) 
 In	an	algebraic	structure	the	identity	element	(if	exists)	must	be	unique.

Proof
 Let ( , )S ∗ be	an	algebraic	structure.	Assume	that	the	identity	element	of	 S exists	in	 S .
	 It	is	to	be	proved	that	the	identity	element	is	unique.	Suppose	that	 e1  and e2 be	any	two	identity	
elements	of	 S .
	 First	treat e1 as the identity and e2 as	an	arbitrary	element	of	 S .
	 Then	by	the	existence	of	identity	property,	 e e e e e2 1 1 2 2∗ = ∗ = .	 ...	(1)
	 Interchanging	the	role	of	 e1 and e2 ,	 e e e e e1 2 2 1 1∗ = ∗ = .    …(2)
	 From	(1)	and	(2),	 e e1 2= .	Hence	the	identity	element	is	unique	which	completes	the	proof.

Theorem 12.2 (Uniqueness of Inverse) 
 In	an	algebraic	structure	the	inverse	of	an	element	(if	exists)	must	be	unique.

Proof
 Let ( , )S ∗ be	an	algebraic	structure	and	a S∈ .	Assume	that	the	inverse	of	a 	exists	in	 S .		It	is	to	

be	proved	that	the	inverse	of	 a 	is	unique.	The	existence	of	inverse	in	 S ensures	the	existence	of	the	

identity element e in S .
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 Let a S∈ .	It	is	to	be	proved	that	the	inverse	 a (if	exists)	is	unique.	
	 Suppose	that a has	two	inverses,	say,	 a1 ,	 a2 .
	 Treating a1 as	an	inverse	of a gives	 a a a a e∗ = ∗ =1 1 	 …(1)
	 Next	treating	 a2 	as	the	inverse	of a gives	 a a a a e∗ = ∗ =2 2  …(2)

a a e a a a a a a e a a1 1 1 2 1 2 2 2= ∗ = ∗ ∗ = ∗ ∗ = ∗ =( ) ( ) 	(by	(1)	and	(2)).
	 So, a a1 2= .	Hence	the	inverse	of	 a is	unique	which	completes	the	proof.

Example 12.2
	 Verify	the	(i)	closure	property,	(ii)	commutative	property,	(iii)	associative	property	(iv)	existence	
of	identity	and	(v)	existence	of	inverse	for	the	arithmetic	operation	+ on  . 
Solution

 (i) m n+ ∈ ,∀ ∈m n,  . Hence+ is	a	binary	operation	on	 .
	 (ii)	 Alsom n n m m n+ = + ∀ ∈, , 

.	So	the	commutative	property	is	satisfied
 (iii) ∀ ∈ + + = + +m n p m n p m n p, , , ( ) ( )

.	Hence	the	associative	property	is	satisfied.
	 (iv)	 m e e m m e+ = + = ⇒ = 0. Thus ∃ ∈0 ⋺ ( ) ( )m m m+ = + =0 0 .	 Hence	 the	 existence	

of	identity	is	assured.
	 (v)	 m m m m m m m m+ = + = ⇒ = − ∀ ∈ ∃ − ∈' ' ' . ,0 Thus  

⋺
    m m m m+ − = − + =( ) ( ) 0 .	Hence,	the	existence	of	inverse	property	is	also	assured.	Thus	

we	see	that	the	usual	addition	+ on  satisfies	all	the	above	five	properties.
    Note that the additive identity is 0 and the additive inverse	of	any	integer	m is-m .
Example 12.3
	 Verify	the	(i)	closure	property,	(ii)	commutative	property,	(iii)	associative	property	(iv)	existence	
of	identity	and	(v)	existence	of	inverse	for	the	arithmetic	operation	-  on  .

Solution
 (i)	Though	- is not binary on ; it is binary on  .	To	check	the	validity	of	any	more	properties	

satisfied	by	–	on	 ,	it	is	better	to	check	them	for	some	particular	simple	values.	

 (ii)	Take	m = 4 ,	 n = 5  and  ( ) ( )m n− = − = −4 5 1and ( ) ( )n m− = − =5 4 1.     
    Hence ( ) ( )m n n m− ≠ − .	So	the	operation	- 	is	not	commutative	on	 .

	 (iii)	 In	 order	 to	 check	 the	 associative	 property,	 let	 us	 put	 m n= =4 5,  and p = 7  in both   

( )m n p- -  and  m n p- -( ) .

  
( ) ( ) ( )m n p− − = − − = − − =−4 5 7 1 7 8 	 …(1)

  
m n p− − = − − = + =( ) ( ) ( )4 5 7 4 2 6 .        …(2)

	 	 	From	(1)	and	(2),	it	follows	that	 m n p m n p( )– – –– ≠ ( ) .
	 	 	Hence	–	is	not	associative	on	 .
	 (iv)	 Identity	does	not	exist	(why?).
	 (v)	 Inverse	does	not	exist	(why?).
Example 12.4
	 Verify	 the	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property	 
(iv)	 existence	 of	 identity	 and	 (v)	 existence	 of	 inverse	 for	 the	 arithmetic	 operation	 +  on  
 e=	the	set	of	all	even	integers.
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Solution
	 	Consider	the	set	of	all	even integers 

 e k k= ∈{ } = − − −{ }2 6 4 2 0 2 4 6| ..., , , , , , , ,... .
	 Let	us	verify	the	properties	satisfied	by	+ on  e . 

 (i)	 The	sum	of	any	two	even	integers	is	also	an	even	integer.	
	 	 	Because x y x me, ∈ ⇒ = 2 and y n= 2 ,	m n, ∈ . 
	 	 	So	 x y m n m n e+ = + = +( ) ( )∈2 2 2 

. Hence + is	a	binary	operation	on e .
 (ii) ∀ ∈x y e,  , ( ) ( ) ( ) ( ) ( )x y m n n m n m y x+ = + = + = + = +2 2 2 2 . 
	 	 	So	+ has	commutative	property.	
	 (iii)	 Similarly	it	can	be	seen	that∀ ∈x y z e, ,  ,	 ( ) ( )x y z x y z+ + = + + . 
	 	 	Hence	the	associative	property	is	true.		 					

	 (iv)	 	Now	take	 x k= 2 ,	then	 2 2 2 0k e e k k e+ = + = ⇒ = .  
   Thus∀ ∈ ∃ ∈x e e , 0 ⋺ x x x+ = + =0 0 .   
	 	 	So,	0 is the identity element.

	 (v)	 	Taking	 x k= 2  and ′x 	 as	 its	 inverse,	 we	 have	 2 0 2 2k x x k x k+ = = + ⇒ = −' ' ' . i.e., 
x x' = − .

		 	 	Thus	∀ ∈ ∃ − ∈x xe e ,  ⋺ x x x x+ − = − + =( ) ( ) 0

   Hence -x is	the	inverse	of	 x eÎ .

Example 12.5

	 Verify	 the	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property	 
(iv)	 existence	 of	 identity	 and	 (v)	 existence	 of	 inverse	 for	 the	 arithmetic	 operation	 +  on  
 o =	the	set	of	all	odd	integers.
Solution
	 Consider	the	set	 o 	of	all	odd integers  

 o k k= + ∈{ } = − − −{ }2 1 5 3 1 1 3 5: ..., , , , , , ,... . + is 
not a binary operation on o 	because	when	 x m y n x y m n= + = + + = + +2 1 2 1 2 2, , ( ) 	is	even	for	
all m and n.	For	instance,	consider	the	two	odd	numbers	 3 7, ∈ o .	Their	sum	 3 7 10+ = is	an	even	
number.	In	general,	if	x,	y∈ 0 ,	then	 x y+( )∉ 0 .	Other	properties	need	not	be	checked	as	it	is	not	
a	binary	operation.
Example 12.6
	 Verify	 (i)	 closure	 property	 (ii)	 commutative	 property,	 and	 (iii)	 associative	 	 property	 of	 the	
following	operation	on	the	given	set.
  a b a a bb∗ = ∈( ) ∀; ,  (exponentiation	property)
Solution
	 (i)	 It	is	true	thata b a a bb∗ = ∈∈ ∀ ; , .		So	∗  is a binary operation on  . 
 (ii) a b ab∗ =  and b a ba∗ = .	Put,	 a = 2  and b = 3 . Then a b∗ = =2 83 	but	b a∗ = =3 92  
	 	 So	 a b∗ 	need	not	be	equal	tob a∗ . Hence ∗  does not have commutative property.
	 (iii)	 Next	consider	

 
a b c a b ac bc∗ ∗ = ∗ =( ) ( ) ( ) .	Take	 a b= =2 3, and c = 4 . 

  Then a b c∗ ∗ = ∗ ∗ = =( ) ( )2 3 4 2 23 814

	 	 But	 a b c a c a a ab b c bc bc∗ ∗ = ( )∗ = ( ) = = =( ) ( ) 212

  Hence a b c a b c∗ ∗( ) ≠ ∗( )∗ .	So	∗ does not have associative property on  .
  Note: This	binary	operation	has	no	identity	and	no	inverse.	(Justify).
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Example 12.7

	 Verify	 	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property,	 
(iv)	existence	of	identity,	and	(v)	existence	of	inverse	for	following	operation	on	the	given	set.	
 m n m n mn m n∗ = + − ∈; , 

 m n m n mn m n∗ = + − ∈; , 

Solution
 (i)	 	The	output	m n mn+ -  is	clearly	an	integer	and	hence∗  is a binary operation on  .

 (ii) m n m n mn n m nm n m∗ = + − = + − = ∗ , ∀ ∈m n,  .	So	∗  has commutative property.

	 (iii)	 Consider	 ( )m n p∗ ∗ = ( )m n mn p+ − ∗ = ( ) ( )m n mn p m n mn p+ − + − + −
     =  m n p mn mp np mnp+ + − − − + 	 ...	(1)
	 	 	Similarly	m n p∗ ∗( ) = m n p np∗ + −( )  = m n p np m n p np+ + − − + −( ) ( )

      =  m n p np mn mp mnp+ + − − − +  ... (2)
	 	 	From	(1)	and	(2),	we	see	that	m n p m n p∗ ∗ = ∗ ∗( ) ( ) . Hence ∗   has associative property.

	 (iv)	 An	integer	 e 	is	to	be	found	such	that	
    m e e m m∗ = ∗ = , ∀ ∈m ⇒ + −m e m e = m

    ⇒ −e m( )1 = 0 ⇒ e  =  0 or m =1.	But	 m is	an	arbitrary	integer	and	hence	need	not	be	

equal	to	1.	So	the	only	possibility	is e = 0 .	Also	m∗0 = 0∗ =m m, ∀ ∈m  . Hence 0 is the 

identity element and hence the existence of identity	is	assured.

	 (v)	 An	element	 ′∈m  is	to	be	found	such	that	m m∗ ′ = ′∗ = =m m e 0, ∀ ∈m  .

    m m∗ ′ = 0 ⇒ + ′− ′m m m m = 0 ⇒ ′m = m
m -1

.	When	m=1, ′m 	is	not	defined.

	 	 		When	m m= ′2, m m= ′2,  is	an	integer.	But	except	m=2, ′m need	not	be	an	integer	for	all	values	of	
m. Hence inverse does not exist in  .

12.2.3 Some binary operations on Boolean Matrices 
Definition 12.3

 A	Boolean Matrix is	a	real	matrix	whose	entries	are	either	0 or 1. 

	 Note	 that	 the	boolean	entries	0	 and	1	can	be	defined	 in	 several	ways.	 In	 electrical	 switch	 to	
describe	“on	and	off”,	in	graph	theory,	the	“adjacency	matrix”	etc	,	the	boolean	entries	0	and	1	are	
used.	We	consider	the	same	type	of	Boolean	matrices	in	our	discussion.	
	 The	following	two	kinds	of	operations	on	the	collection	of	all	boolean	matrices	are	defined.	
 Let A aij=    and B bij=   	be	any	two	boolean	matrices	of	the	same type. Then their join∨ and 
meet∧ are	defined	as	follows:

Definition 12.4: Join of A and B

   A B∨  =  a b a b cij ij ij ij ij  ∨   = ∨  =  

   where	 cij  =  
1 1 1

0 0 0

,

,

if either or

if both and

a b
a b

ij ij

ij ij

= =
= =
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Definition 12.5: Meet of A and B

 A B∧ = a b a b cij ij ij ij ij  ∧   = ∧  =  where	 c
a b
a bij
ij ij

ij ij
=

= =
= =





1 1 1

0 0 0

,

, .

if both and

if either or

	 It	is	clear	that	 a b a b∨( ) = { }max , ; a b a b∧( ) = { }min , ,	 a b, ,∈{ }0 1 .

Example 12.8

 Let   A =










0 1

1 1
,	 B =











1 1

0 1
	 be	 any	 two	 boolean	matrices	 of	 the	 same	 type.	 Find	 A B∨  and 

A B∧  .
Solution

   Then A B∨  =  
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

1 1

1 1









 ∨









 =

∨ ∨
∨ ∨









 =











   A B∧  =  
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

0 1

0 1









 ∧









 =

∧ ∧
∧ ∧









 =











Properties satisfied by join and meet
 Let 𝔹 be	the	set	of	all	boolean	matrices	of	the	same	type.	We	only	state	the	properties	of	meet	
and	join.

Closure property
 A B, ∈𝔹 ,	 A B a b a bij ij ij ij∨ = ∨ = ∨ ∈[ ] [ ] [ ] 𝔹 .	(Because,	 a bij ij∨( )  is either 0 or	1	∀i j, . ∨  is a 
binary	operation	on	𝔹 .

Associative property
  A B C∨ ∨( )  = A B C A B C, , , A B C A B C, , ,  𝔹 . ∨  is	associative.

Existence of identity property
 ∀ ∈A 𝔹 ,	 ∃ the	 null	matrix	 0∈𝔹 ⋺ A A A∨ = ∨ =0 0 .	The	 identity	 element	 for	 ∨  is	 the	 null	
matrix.

Existence of inverse property
	 	For	any	matrix	 A∈𝔹 ,	it	is	impossible	to	find	a	matrix	
 B∈  𝔹 ⋺ A B B A∨ = ∨ = 0 .	So	the	inverse	does	not	exist.
	 Similarly,	 it	 can	 be	 verified	 that	 the	 operation	 meet	 ∧  satisfies	 (i)	 closure	 property   

(ii)	commutative	property	(iii)	associative	property	(iv)	the	matrix		U =










1 1
1 1

	exists	as	the	identity	in	

𝔹 	and	(v)	the	existence	of	inverse	is	not	assured.

12.2.4 Modular Arithmetic
	 Having	 discussed	 the	 properties	 of	 operations	 like	 basic	 usual	 arithmetic	 operations,	matrix	
addition	and	multiplication,	join	and	meet	of	boolean	matrices,	one	more	new	operation	called	the	
Modular Arithmetic is	discussed	 in	 this	section. The	modular	arithmetic	 refers	 to	 the	process	of	
dividing some	number a by	a	positive	integer	n 	(	>	1),	called	modulus,		and	then	equating	a  with	the	
remainderb modulo	n	and	it	is	written	as	 a b n≡ (mod ) ,	read	as	‘a	is	congruent	to	b	modulo	 n ’.

12th_Maths_Vol 2_EM_CH 12_Discrete Mathematics.indd   232 16-12-2021   12:33:41



Discrete Mathematics233

 Here a b≡ (mod n ) means a b n k− = ⋅ for	 some	 integer	 k  and b  is the least  
non-negative integer when	a 	is	divided	by	n.
	 For	 instance, 25 4 7 20 2 3 1 3≡ − ≡ − ≡(mod ), (mod ) (mod ) and 15 0 5≡ (mod ) ,	 etc.	 Further	 the	
set	of	integers	when	divided	by	n , 	leaves	the	remainder	0 1 2 1, , , , n - .	In	the	case	of	 5 ,	

   [ ]0  =  
 , , , , , , , ,− − −{ }15 10 5 0 5 10 15

   [ ]1  =  … − − − …{ }, , , , , , ,14 9 4 1 6 11  

   [ ]2  =  { ], , , , , , ,… − − − …13 8 3 2 7 12  

   [ ]3  =   … − − − …{ }, , , , , , ,12 7 2 3 8 13

   [ ]4  =  … − − − …{ }, , , , , , , .11 6 1 4 9 14  

	 We	 write	 this	 as	
 5 0 1 2 3 4={ }[ ],[ ],[ ],[ ],[ ] .	 	 In	 each	 class,	 any	 two	 numbers	 are	 congruent	 

modulo	5.

Before 2007,	modular	arithmetic	is	used	in	10-digit	ISBN	(International	Standard	Book	Number) 
numbering	 system.	 For	 instance,	 the	 last	 digit	 is	 for	 parity	 check.	 It	 is	 from	 the	 set	
{ , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 X .		In	ISBN	number,	81-7808-755-3,	the	last	digit	3 is obtained as

					1*8+2*1+3*7+4*8+5*0+6*8+7*7+8*5+9*5=8+2+21+32+0+48+49+40+45=245≡ 3 11(mod ) .
	 Alternatively,	the	weighted	sum	is	calculated	in	the	reverse	manner
	 9*8+8*1+7*7+6*8+5*0+4*8+3*7+2*5+1*5=245	=	3	(mod	11).
	 In	both	ways,	we	get	the	same	check	number	3.	
After 2007,	13-digit	ISBN	numbering	has	been	followed.	The	first	12	digits	(from	left	to	right)	are	
multiplied	by	the	weights	3,1,3,1,….	starting	from	right	to	left.	Then	the	weighted	sum	is	calculated.	
The	 higher	multiple	 of	 10	 is	 taken.	Then	 the	 difference	 is	 calculated.	Then	 its	 additive	 inverse	
modulo	10	is	the	thirteenth	digit.
	 For	instance,	consider	the	ISBN	Number:	978-81-931995-6-5.Take	12	digits	from	left	to	right.

9 7 8 8 1 9 3 1 9 9 5 6
1 3 1 3 1 3 1 3 1 3 1 3
9 21 8 24 1 27 3 3 9 27 5 18

The	total	of	last	row	is	155.	The	nearest	(higher)	integer	in	multiples	of	10	is	160.	The	difference	
160-155=5.	The	additive	inverse	modulo	10	is	5	which	is	13-th	digit	in	the	ISBN	number.

	 Two	new	operations	namely	addition modulo n n( )+  and multiplication modulo n n( )×  are 
defined	on	the	set	 n of	all	non-negative	integers	less	than	n	under	modulo	arithmetic.

Definition 12.6

 (i) The	addition	modulo	n is	defined	as	follows.
  Let a b n, ∈ . Then 
  a bn+ = the	remainder	of a b+ on	division	by	 n .
	 (ii)	 The	multiplication	modulo	n	is	defined	as	follows.	
  Let a b n, ∈ . Then 
  a bn× =the	remainder	of	 a b× 	on	division	by	 n
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Example 12.9 
	 Verify	 	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property,	 
(iv)	 existence	 of	 identity,	 and	 (v)	 existence	 of	 inverse	 for	 the	 operation	 +5

on  5 	 using	 table 
corresponding	to	addition	modulo	5.
Solution
 It	is	known	that 5 0 1 2 3 4={ }[ ], ], ], ], ] [  [  [  [ .	The	table	corresponding	to	addition	modulo	5	is	as	
follows:	We	take	reminders	{ , , , , }0 1 2 3 4 	to	represent	the	classes	{[ ],[ ],[ ],[ ],[ ]}0 1 2 3 4 .

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table12.2
	 (i)	 Since	each	box	in	the	table	is	filled	by	exactly one element of	  5 ,	the	output	 a b+5  is 

unique	and	hence	+5  is a binary operation.

 (ii) The entries are symmetrically	 placed	 with	 respect	 to	 the	 main diagonal.	 So+5  has 
commutative property.

	 (iii)	 The	table	cannot	be	used	directly	for	the	verification	of	the	associative	property.	So	it	is	to	
be	verified	as	usual.	

	 							For	instance,	 2 3 4 0 4 45 5 5+ + = + =( )  (mod 5) 

       and 2 3 4 2 2 4 55 5 5+ +( ) = + = ( )mod . 

       Hence 2 3 4 2 3 45 5 5 5+( ) + = + +( ) . 

	 	 Proceeding	like	this	one	can	verify	this	for	all	possible	triples	and	ultimately	it	can	be	shown	
that +5 	is	associative.	

	 (iv)	 The	row	headed	by	0	and	the	column	headed	by	0	are	identical.	Hence	the	identity	element	
is 0.

	 (v)	 The	existence	of	inverse	is	guaranteed	provided	the	identity	0	exists	in	each	row	and	each	
column.	From	Table12.2,	 it	 is	clear	 that	 this	property	 is	 true	 in	 this	case.	The	method	of	
finding	the	inverse	of	any	one	of	the	elements	of	 5 ,	say	2	is	outlined	below.

	 	 First	find	the	position	of	the	identity	element	0	in	the	III	row	headed	by	2.	Move	horizontally	
along	the	III	row	and	after	reaching	0,	move	vertically	above	0	in	the	IV	column,	because	0	
is	in	the	III	row	and	IV	column.	The	element	reached	at	the	topmost	position	of	IV	column	
is	3.	This	element	3	is	nothing	but	the	inverse	of	2,	because,	2 3 0 55+ = (mod ) .	In	this	way,	
the	inverse	of	each	and	every	element	of		 5 	can	be	obtained.	Note	that	the	inverse	of	0	is	
0,that	of	1	is	4,		that	of	2	is	3,		that	of	3	is	2	,	and,	that	of		4	is	1.

Example 12.10
 Verify	 (i)	 closure	 property,	 (ii)	 commutative	 property,	 (iii)	 associative	 property,	 
(iv)	existence	of	identity,	and	(v)	existence	of	inverse	for	the	operation	×11 	on	a	subset	A ={ , , , , }1 3 4 5 9

of	the	set	of	remainders	{ , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 10 .
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Solution
 The	table	for	the	operation	 1́1 	is	as	follows.

×11 1 3 4 5 9
1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

Table12.3
	 Following	the	same	kind	of	procedure	as	explained	in	the	previous	example,	a	brief	outline	of	the	
process	of	verification	of	the	properties	of		×11 	on	A	is	given	below.

	 (i)	 Since	each	box	has	an	unique	element	of	A,	×11  is a binary operation	on	A.

	 (ii)	 The	entries	are	symmetrical	about	the	main	diagonal.	Hence	×11  has commutative property.

							(iii)	 As	usual,	the	associative property	can	be	seen	to	be	true.

	 (iv)	 The	entries	of	both	the	row	and	column	headed	by	the	element	1	are	identical.	Hence	1	is	the	
identity element.

	 (v)	 Since	 the	 identity	 1	 exists	 in	 each	 row	and	 each	 column,	 the	existence of inverse	 property																						
is	assured	for	×11 .	The	inverse	of	1	is	1,	that	of	3	is	4,	that	of		4	is	3,	5	is	9	,	and,	that	of		9	is	5.

 EXERCISE 12.1
 1.	 Determine	whether	∗ is	a	binary	operation	on	the	sets	given	below.

   (i) a b a b∗ = . on   (ii) a b a b A∗ = ( ) = { }min , , , , ,on 1 2 3 4 5

   (iii) a b a b∗ =( )  is binary on .

 2. On  ,	define	∗  by m n m n m nn m∗( )= + ∀ ∈: ,  .	Is	∗  binary on  ?

 3. Let ∗ 	be	defined	on by ( )a b a b ab∗ = + + − 7 .	Is	∗  binary on ?	If	so,	find	3 7

15
∗
−





 .

 4. Let A a b a b= + ∈{ : , }5  .	Check	whether	the	usual	multiplication	is	a	binary	operation	on

A .

 5.	 	 (i)	 Define	an	operation∗on  as	follows: a b a b a b∗ =
+






 ∈

2
; ,  .	Examine	the	closure,	

commutative,	and	associative	properties	satisfied	by	∗  on ℚ.

	 	 	 (ii)	 Define	an	operation∗on  as	follows:	a b a b a b∗ =
+






 ∈

2
; ,  .	Examine	the		existence	

of	identity	and	the	existence	of	inverse		for	the	operation	∗  on ℚ.
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 6.	 Fill	in	the	following	table	so	that	the	binary	operation	∗on A a b c={ , , } is	commutative.

∗ a b c

a b

b c b a

c a c

 7.	 Consider	the	binary	operation	∗ 	defined	on	the	set	 A a b c d={ , , , } 	by	the	following	table:

∗ a b c d

a a c b d

b d a b c

c c d a a

d d b a c

	 	 	Is	it	commutative	and	associative?

 8. Let A =
















1 0 1 0

0 1 0 1

1 0 0 1

, B =
















0 1 0 1

1 0 1 0

1 0 0 1

,	C =
















1 1 0 1

0 1 1 0

1 1 1 1

 be any three boolean matrices 

of	the	same	type.	Find	(i)	 A B∨  (ii) A B∧  (iii) A B C∨( )∧ 		(iv)	 A B C∧( )∨ .

 9.  (i) Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗ 	 be	 the	 matrix	 multiplication.	 Determine	

whetherM is	closed	under	∗ .		If	so,	examine	the	commutative	and	associative	properties	

satisfied	by	∗  on M .

   (ii) Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗ 	 be	 the	 matrix	 multiplication.	 Determine	

whetherM is	 closed	under	 ∗ .	 	 If	 so,	 examine	 the	existence	of	 identity,	 existence	of	

inverse	properties	for	the	operation	∗  on M .

 10.  (i) Let A be  \ 1{ } .	Define	 ∗  on A  by x y x y xy∗ = + − .	 Is	 ∗  binary on A ?	 If	 so,	

examine	the	commutative	and	associative	properties	satisfied	by	∗  on A .

   (ii) Let A be 
 \ 1{ } .	 Define	 ∗  on A  by x y x y xy∗ = + − .	 Is	 ∗  binary on A ? 

If	so,	examine	the	existence	of	identity,	existence	of	inverse	properties	for	the	operation
∗  on A .
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12.3 Mathematical Logic
	 George	 Boole	 was	 a	 self-taught	 English	 Mathematician,	 Philosopher	 and	
Logician.	His	 results	on	Boolean Algebra involving	 the	binary	numbers	play	an	
important	 role	 in	 various	 fields,	 particularly	more	 in	 computer	 applications.	 He	
introduced	the	idea	of	Symbolic	Logic	and	contributed	a	lot	of	results	to	the	fast	
development	of	Mathematical	Logic.	
	 The	reputed	Greek	philosopher	Aristotle	(384-322BC(BCE))	wrote	the	first	book	
on	logic.	The	famous	German	philosopher	and	mathematician	Gottfried	Leibnitz	of	
17thcentury	framed	the	idea	of	using	symbols	in	Logic.	Later	this	idea	was	realized	
by	George	Boole	and	Augustus	de	Morgan	in	19th century.	George	Boole	established	
the	fact	that	logic	is	very	much	related	to	mathematics	by	linking	logic,	symbols,	and	
algebra	together.	Mathematical	Logic	was	developed	in	the	late	19thand early 20thcenturies.	
	 In	1930	the	researchers	noticed	(Neumann’s	statement	in	his	death	bed:	0 and 1 are going to 
rule the world)	that	the	binary	numbers	0	and	1	could	be	used	to	analyze	electrical	circuits	and	thus	
used	 to	design	electronic	computers.	Today	digital	computers	and	electronic	circuits	are	designed	
to	 implement	 this	binary	arithmetic.	We	study	Mathematical	Logic	as	 the	 language	and	deductive	
system	of	Mathematics	and	Computer	Science.
	 Generally	Logic	is	the	study	of	valid	reasoning.	But	mathematical	logic	allows	us	to	represent	
knowledge	in	a	precise	mathematical	way	and	it	also	allows	us	to	make	valid	inferences	using	a	set	of	
precise	rules.	It	is	regarded	as	a	powerful	tool	for	computer	science	because	it	is	mainly	used	to	verify	
the	correctness	of	programs.

12.3.1 Statement and its truth value
	 The	 simplest	 part	 of	Mathematical	Logic	 is	 the	Propositional Logic and	 its	 building	blocks	
are	statements	or	propositions.	Mostly	communication	needs	the	use	of	language	through	which	we	
impart	our	ideas.	They	are	in	the	form	of	sentences.	
	 There	are	various	types	of	sentences	like
	 (1)	Declarative	(Assertive	type)

	 (2)	 Imperative	(A	command	or	a	request	type)

	 (3)	Exclamatory	(Emotions,	excitement	type)

	 (4)	 Interrogative	(Question	type)

	 (5)	Open	type

Definition 12.7
 Any	declarative sentence is called a statement or a proposition which	is	either	true or false 
but	not	both.
	 Any	 imperative sentence such	 as	 exclamatory,	 command	 and	 any	 interrogative sentence 
cannot	be	a	proposition.
 The truth value of	a	statement	refers	to	the	truth	or	the	falsity	of	that	particular	statement.	 	
The truth	value	of	a	true	statement	is	true and it is denoted by T or	1. The	truth	value	of	a	false	
statement is false and it is denoted by F or 0.
	 An	open sentence is	a	sentence	whose	truth	can	vary	according	to	some	conditions,	which	are	
not	 stated	 in	 the	sentence.	 	For	 instance,	 (i)	 x× =7 35 	 is	an	open	sentence	whose	 truth	value	
depends	on	value	of	 x .	That	is,	if	 x = 5 ,	it	is	true	and	if	x � 5,	it	is	false.	(ii)	He is a bad person. 
This	is	an	open	sentence.	Opinion	varies	from	individual	to	individual.

George	Boole	
(1815-1864)
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Example 12.11
	 Identify	the	valid	statements	from	the	following	sentences.
Solution:
	 (1)	Mount	Everest	is	the	highest	mountain	of	the	world.
 (2) 3 4 8+ = .
	 (3)	 7 5 10+ > .
	 (4)	Give	me	that	book.
 (5) ( )10 7− =x .
	 (6)	How	beautiful	this	flower	is!
	 (7)	Where	are	you	going?
	 (8)	Wish	you	all	success.
	 (9)	This	is	the	beginning	of	the	end.
	 The	truth	value	of	the	sentences	(1)	and	(3)	are T,	while	that	of	(2)	is	F. Hence they are statements. 

The	sentence	(5)	is	true	for	 x = 3 	and	false	for	x � 3	and	hence	it	may	be	true	or	false	but	not	
both.	So	it	is	also	a	statement.

	 The	sentences	(4),	(6),	(7),	(8)	are	not statements,	because	(4)	is	a	command,	(6)	is	an	exclamatory,	
(7)	is	a	question	while	(8)	is	a	sentence	expressing	one’s	wishes	and	(9)	is	a	paradox.

12.3.2 Compound Statements, Logical Connectives, and Truth Tables  

Definition 12.8: (Simple and Compound Statements) 

 Any	sentence	which	cannot	be	split	further	into	two	or	more	statements	is	called	an	atomic 
statement or a simple statement. If	 a	 statement	 is	 the	 combination	 of	 two	 or	 more	 simple	
statements,	then	it	is	called	a	compound statement or a molecular statement. Hence it is clear 
that	any	statement	can	be	either	a	simple	statement	or	a	compound	statement.

Example for simple statements
	 The	sentences	(1),	(2),	(3)	given	in	example	12.11	are	simple	statements.

Example for Compond statements
	 Consider	the	statement,		“1	is	not	a	prime	number	and	Ooty	is	in	Kerala”.	
Note	that	the	above	statement	is	actually	a	combination	of	the	following	two	simple	statements:
 p :	1	is	not	a	prime	number.

 q :	Ooty	is	in	Kerala.	
	 Hence	the	given	statement	is	not	a	simple	statement.	It	is	a	compound	statement.
	 From	the	above	discussions,	it	follows	that	any	simple	statement	takes	the	value	either	T or F . 
So	it	can	be	treated	as	a	variable	and	this	variable	is	known	as	statement variable or propositional 
variable.	The	propositional	variables	are	usually	denoted	by	p,	q,	 r ,	....	

Definition 12.9 : (Logical Connectives) 

 To	 connect	 two	 or	more	 simple	 sentences,	we	 use	 the	words	 or	 a	 group	 of	words	 such	 as	
“and”,	“or”,	“if-then”,	“if	and	only	if”,	and	“not”.	These	connecting	words	are	known	as	logical 
connectives.
	 In	 order	 to	 construct	 a	 compound	 statement	 from	 simple	 statements,	 some	 connectives	 are	
used. Some	basic	logical	connectives	are	negation (not), conjunction (and) and disjunction(or).
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Definition 12.10
 A	statement formula	is	an	expression	involving	one	or	more	statements	connected	by	some	
logical	connectives.	

Definition 12.11: (Truth Table) 
 A	table	showing	the	relationship	between	truth	values	of	simple	statements	and	the	truth	values	
of	compound	statements	formed	by	using	these	simple	statements	is	called	truth table. 

Definition12.12

 (i) Let p be	a	simple	statement.	Then	the	negation	of	 p 	is	a	statement	whose	truth	value	is	
opposite	to	that	of p .	It	is	denoted	by	¬p,	read	as	not p .The	truth	value	of	¬p is  T , if p
is F ,	otherwise	it	is	F .

 (ii) Let p and q be	any	two	simple	statements.	The	conjunction of	 p and q is obtained by 
connecting	 p and q by	the	word	and.	It	is	denoted	by	 p q∧ ,	read	as	‘ p 	conjunction	 q ’	
or	‘ p  hat q ’.	The	truth	value	of	 p q∧  is T ,	whenever	both	 p and q are T and it is F
otherwise.

 (iii) The disjunction	of	any	two	simple	statements	 p and q is	the	compound	statement	obtained	
by	connecting	 p and q by	the	word	‘or’.	It	is	denoted	by	 p q∨ ,	read	as	‘ p 	disjunction	q
’	or	‘ p cup	 q ’.The	truth	value	of	 p q∨ is F ,	whenever	both	 p and q are F and it is T
otherwise.

Logical Connectives and their Truth Tables
(1) Truth Table for NOT [¬] (Negation)

Truth Table for ¬ p
p ¬ p

T F
F T
Table	12.4

(2) Truth table for AND [∧∧ ] (Conjunction)
Truth Table for p qÙ

p q p q∧∧
T T T
T F F
F T F
F F F

Table	12.5
(3) The truth tables for OR [∨∨ ] (Disjunction)

Truth Table for p q∨∨

p q p q∨∨
T T T
T F T
F T T
F F F

Table	12.6
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Example 12.12
 Write	the	statements	in	words	corresponding	to	¬ p, p q∧ , p q∨ and q∨¬p, where	 p 	is	‘It	is	
cold’	and	 q is	‘It	is	raining.’	
Solution
	 (1)	¬p :	 It	is	not	cold.	
 (2) p q∧ 	 :	 It	is	cold	and	raining.
	 (3)	 p q∨ 	 :	 It	is	cold	or	raining.
 (4) q∨¬p	 :	 It	is	raining	or	it	is	not	cold
 Observe	that	the	statement	formula	  p	has	only	1	variable	 p and	its	truth	table	has	 2 21= ( )  
rows.	Each	of	the	statement	formulae	 p q∧  and p q∨ 	has	two	variables	 p and q .	The	truth	table	
corresponding	to	each	of	them	has	4= ( )22 	rows.	In	general,	it	follows	that	if	a	statement	formula	
involves	 n 	variables,	then	its	truth	table	will	contain	2n rows.

Example 12.13
	 How	many	rows	are	needed	for	following	statement	formulae?
  (i) p t p s∨¬ ∧ ∨¬( )  (ii) p q r s t v∧( )∨ ¬ ∨¬( )( ) ∧ ¬ ∧( )
Solution
 (i) p t p s∨¬( ) ∧ ∨¬( ) contains	3	variables	 p s, ,and	t .	Hence	the	corresponding	truth	table	will	

contain 2 83 = 	rows.	
 (ii) ( ) ( ) ( )p q r s t v∧ ∨ ¬ ∨¬ ∧ ¬ ∧( ) 	 contains	 6	 variables	 p q r s t, , , , ,	 and	 v . Hence the 

corresponding	truth	table	will	contain	2 646 = 	rows.

Conditional Statement

Definition 12.13
	 The	conditional	statement	of	any	two	statements	 p and q is	the	statement,	“If	 p ,	then	q ” and 
it is denoted by p q→ . Here p is called the hypothesis or antecedent and q is called the 
conclusion or consequence. p q→ is	false	only	if	 p is	true	and	 q is	false.	Otherwise	it	is	true.

Truth table for p q→ 

p q p q→→
T T T
T F F
F T T
F F T

Table	12.7
Example 12.14
 Consider	 p q→ :	If	today	is	Monday,	then	4	+	4	=	8.
	 Here	the	component	statements	p and q	are	given	by,	
 p:	Today	is	Monday;	q:	4	+	4	=	8.	
	 The	truth	value	of	 p q→  is T	because	the	conclusion	q is T. 
	 An	important	point	is	that	 p q→ 	should	not	be	treated	by	actually	considering	the	meanings	of	
p and q	in	English.	Also	it	is	not	necessary	that	 p should	be	related	to	q at all.
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Consequences
 From	the	conditional	statement	 p q→ ,	three	more	conditional	statements	are	derived.	They	are	
listed	below.
 (i) Converse statement q p→ .
 (ii) Inverse statement ¬ →¬p q .
 (iii) Contrapositive statement ¬ →¬q p .

Example 12.15
	 Write	 down	 the	 (i)	 conditional	 statement	 (ii)	 converse	 statement	 (iii)	 inverse	 statement,	 and	 
(iv)	contrapositive	statement		for	the	two	statements	 p and q given	below.

 p :	The	number	of	primes	is	infinite.   q:	Ooty	is	in	Kerala.

Solution
	 Then	the	four	types	of	conditional	statements	corresponding	to	 p  and q are	respectively	listed	
below.
 (i) p q→ :	(conditional	statement)	“If	the	number	of	primes	is	infinite	then Ooty	is	in	Kerala”.	

 (ii) q p→ 	:	(converse	statement)	“If Ooty	is	in	Kerala	then the	number	of	primes	is	infinite”	

 (iii) ¬ →¬p q 	(inverse	statement)	“If the	number	of	primes	is	not infinite	then Ooty is not in 

Kerala”.

	 (iv)	 ¬ →¬q p 	(contrapositive	statement)	“If Ooty is not in	Kerala	then the	number	of	primes	is	
not	infinite”.

Bi-conditional Statement

Definition 12.14
 The bi-conditional statement of	any	two	statements	 p  and q is	the	statement	“ p 	if	and	only	
if	 q ” and is denoted by p q↔ .	Its	truth	value	is	T ,	whenever	both	 p  and q have	the	same	truth	
values,	otherwise	it	is	false.

Truth table for p q«

p q p q«

T T T
T F F
F T F
F F T

Table	12.8

Exclusive OR (EOR)[∨∨ ]
Definition 12.15

 Let p  and q  be	any	two	statements.	Then	 p EOR q is	such	a	compound	statement	that	its	
truth	value	is	decided	by	either	 p  or q but	not both.	It	is	denoted	by	 p ⊽ q .	The	truth	value	of	 
p ⊽ q is T whenever	either	 p  or q is T, otherwise	it	is	F. The	truth	table	of	 p ⊽ q is	given	below.
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Truth Table for p p q∨∨(( )) q 

p q p p q∨∨(( )) q
T T F
T F T
F T T

F F F

Table	12.9
Example 12.16
	 Construct	the	truth	table	for	 p q p q∨( ) ∧ ∨¬( ) .

p q ¬ q r : p q∨∨(( )) s: p q∨∨¬¬(( )) r Ù s

T T F F T F

T F T T F F

F T F T F F

F F T F T F
Table	12.10

	 Also	the	above	result	can	be	proved	without	using	truth	tables.	This	proof	will	be	provided	after	
studying	the	logical	equivalence.	

12.3.3 Tautology, Contradiction, and Contingency

Definition 12.16

 A	statement	 is	 said	 to	be	a	 tautology if	 its	 truth	value	 is	always	 T irrespective	of	 the	 truth	
values	of	its	component	statements.	It	is	denoted	by	𝕋.

Definition 12.17

 A	statement	is	said	to	be	a	contradiction	if	its	truth	value	is	always	F irrespective	of	the	truth	
values	of	its	component	statements.	It	is	denoted	by	𝔽.

Definition 12.18

 A	statement	which	is	neither	a	tautology	nor	a	contradiction	is	called	contingency

Observations 

	 1.	For	 a	 tautology,	 all	 the	 entries	 in	 the	 column	corresponding	 to	 the	 statement	 formula	will	
contain T. 

	 2.	For	a	contradiction,	all	the	entries	in	the	column	corresponding	to	the	statement	formula	will	
contain F.        

	 3.	The	negation	of	a	tautology	is	a	contradiction	and	the	negation	of	a	contradiction	is	a	tautology.

 4. The	 disjunction	 of	 a	 statement	 with	 its	 negation	 is	 a	 tautology	 and	 the	 conjunction	 of	 a	
statement	with	its	negation	is	a	contradiction.	That	is	 p p∨¬  is a tautology and p p∧¬  is a 
contradiction. This	can	be	easily	seen	by	constructing	their	truth	tables	as	given	below.	
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Example for tautology

    p ¬p p p∨∨¬¬

T F T

F T T

Table	12.11

	 Since	the	last	column	of		 p p∨¬ contains	only	T,		 p p∨¬ is	a	tautology.

Example for contradiction

p ¬ p p∧∧ ¬p

T F F

F T F

Table	12.12
	 Since	the	last	column	contains	only	F,	 p p∧¬  is a contradiction.

Note
 All	 the	 entries	 in	 the	 last	 column	 of	 Table	 12.10	 are	 F and hence p q p q∨( ) ∧ ∨¬( ) is a 
contradiction.

Example for contingency

p q p q↔↔ ¬ q p q→→¬¬¬ q ¬ ¬¬ →→¬¬( )p q¬ q) ( )p q↔↔  ∧∧  ¬ ¬¬ →→¬¬( )p q¬ q)

T T T F F T T
T F F T T F F
F T F F T F F
F F T T T F F

Table	12.13
	 In	the	above	truth	table,	the	entries	in	the	last	column	are	a	combination	of	T and F.	The	given	
statement	is	neither	a	tautology	nor	a	contradiction.	It	is	a	contingency.

12.3.4  Duality

Definition 12.19

 The dual of	 a	 statement	 formula	 is	 obtained	 by	 replacing	 ∨  by ∧∧ ,	 ∧∧  by ∨ ,	 T by F  
F by  T . A	dual	is	obtained	by	replacing	𝕋 (tautology) by 𝔽 (contradiction),	and,	𝔽 by 𝕋. 

Remarks
	 (1)	 The	symbol	¬  is	not	changed	while	finding	the	dual.
	 (2)	 Dual	of	a	dual	is	the	statement	itself.
	 (3)	 The	special	statements	𝕋	(tautology)	and	𝔽	(contradiction)	are	duals	of	each	other.
 (4) T is	changed	to	F 	and	vice-versa.		
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Principle of Duality
 If	 a	 compound	 statement	 S1 contains only ¬ ,	 ∧ ,	 and	 ∨  and statement S2  arises	 from	 S1 by 
replacing	∧  by ∨ ,	and,	∨  by ∧  then S1 is	a	tautology	if	and	only	if	 S2 is a contradiction.
For example
	 (i)	The	dual	of	 ( ) ( )p q r s∨ ∧ ∧ ∨𝔽 is ( ) ( )p q r s∧ ∨ ∨ ∧𝕋.
	 (ii)	The	dual	of p ∧ [¬ q p q∨ ∧ ∨( )  ¬ r ] is p∨  [¬ q p q∧ ∨ ∧( ) ¬ r ].

12.3.5 Logical Equivalence

Definition 12.20
 Any	two	compound	statements	A and B are said to be logically equivalent or	simply	equivalent 
if	the	columns	corresponding	to	 A and B in	the	truth	table	have	identical truth values.	The	logical	
equivalence	of	the	statements	 A  and B is denoted by A B≡ or A B⇔ .

	 From	the	definition,	it	is	clear	that,	if	 A  and B are	logically	equivalent,	then	 A BÛ 	must	be	
a tautology.

Some Laws of Equivalence
1. Idempotent Laws
 (i) p p p∨ ≡  (ii) p p p∧ ≡ .
Proof

p p p p∨∨ p p∧∧

T T T T

F F F F

Table	12.14

	 In	 the	 above	 truth	 table	 	 for	 both	 p ,	 p p∨  and p p∧ 	 have	 the	 same	 truth	 values.	Hence	
p p p∨ ≡ and p p p∧ ≡ .

2. Commutative Laws
 (i) p q q p∨ ≡ ∨     (ii) p q q p∧ ≡ ∧ .

Proof (i)
p q p q∨∨ q p∨∨

T T T T
T F T T
F T T T
F F F F

Table	12.15
	 The	columns	corresponding	to	 p q∨  and q p∨  are identical. Hence p q q p∨ ≡ ∨ . 
	 Similarly	(ii)	 p q q p∧ ≡ ∧ 	can	be	proved.

3. Associative Laws
 (i) p q r p q r∨ ∨( ) ≡ ∨( )∨  (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .
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Proof
	 The	truth	table	required	for	proving	the	associative	law	is	given	below.

p q r p q∨∨ q r∨∨ p q r∨∨(( )) ∨∨ p q r∨∨ ∨∨(( ))

T T T T T T T

T T F T T T T

T F T T T T T

T F F T F T T

F T T T T T T

F T F T T T T

F F T F T T T

F F F F F F F

Table	12.16
	 The	columns	corresponding	to	 p q r∨( )∨  and p q r∨ ∨( )  are identical.

 Hence p q r p q r∨ ∨( ) ≡ ∨( )∨ . 

	 Similarly,	(ii)	 p q r p q r∧ ∧( ) ≡ ∧( ) ∧ 	can	be	proved.

4. Distributive Laws
 (i) p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( )  (ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

Proof (i)
p q r q r∧∧ p q r∨∨ ∧∧( ) p q∨∨ p r∨∨ ( ) ( )p q p r∨∨ ∧∧ ∨∨
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Table	12.17

	 The	 columns	 corresponding	 to	 p q r∨ ∧( )  and ( ) ( )p q p r∨ ∧ ∨  are identical. Hence
p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( ) . 

	 Similarly	(ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( ) 	can	be	proved.

5. Identity Laws
 (i) p∨ 𝕋≡𝕋 and p∨ 𝔽≡ p  (ii) p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

p 𝕋 𝔽 p∨∨𝕋 p∨∨𝔽
T T F T T

F T F T F

Table12.18
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	 (i)	The	entries	in	the	columns	corresponding	to	 p∨ 𝕋 and 𝕋 are identical and hence they are 
equivalent.		The	entries	in	the	columns	corresponding	to	 p∨ 𝔽 and p are identical and hence 
they	are	equivalent.

Dually	
 (ii) p ∧𝕋≡ p  and p ∧ 𝔽≡𝔽	can	be	proved.
6. Complement Laws
 (i) p p∨¬ ≡ 𝕋 and p p∧¬ ≡ 𝔽 (ii) ¬𝕋 ≡  𝔽 and ¬𝔽 ≡  𝕋
Proof

p ¬p 𝕋 ¬𝕋 𝔽 ¬𝔽 p p∨∨¬¬ p p∧∧¬¬

T F T F F T T F
F T T F F T T F

Table	12.19

	 (i)	 The	entries	in	the	columns	corresponding	to	 p p∨¬ and 𝕋 are identical and hence they are 
equivalent.		The	entries	in	the	columns	corresponding	to	 p p∧¬  and 𝔽 are identical and 
hence	they	are	equivalent.

	 (ii)	 The	entries	 in	 the	columns	corresponding	 to	¬𝕋 and 𝔽 are identical and hence they are 
equivalent.	The	entries	in	the	columns	corresponding	to	¬𝔽 and 𝕋 are identical and hence 
they	are	equivalent.

7. Involution Law or Double Negation Law

 ¬(¬ p) ≡  p
Proof

p ¬ p ¬(¬ p)

T F T

F T F

Table	12.20

	 The	entries	 in	 the	columns	corresponding	 to	 ¬ ¬( )p  and p  are identical and hence they are 
equivalent.		
8. de Morgan’s Laws

 (i) ¬ ∧( )p q º  ¬ ∨¬p q  (ii) ¬ ∨( ) ≡ ¬ ∧¬p q p q

Proof of (i)
p q ¬p ¬q p q∧∧ ¬¬ ∧∧(( ))p q ¬¬ ∨∨¬¬p q

T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Table	12.21
	 The	entries	in	the	columns	corresponding	to	¬ ∧( )p q  and ¬ ∨¬p q  are identical and hence they 
are	equivalent.	Therefore	¬ ∧( )p q  º  ¬ ∨¬p q .		Dually	(ii)	¬ ∨( ) ≡ ¬ ∧¬p q p q 	can	be	proved.
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9. Absorption Laws 
 (i) p p q p∨ ∧ ≡( )  (ii) p p q p∧ ∨ ≡( )

p q p q∧∧ p q∨∨ p p q∨∨ ∧∧(( )) p p q∧∧ ∨∨(( ))

T T T T T T

T F F T T T

F T F T F F

F F F F F F

Table	12.22

	 (i)	The	entries	in	the	columns	corresponding	to	 p p q∨ ∧( ) and p are identical and hence they 
are	equivalent.

	 (ii)	The	entries	in	the	columns	corresponding	to	 p p q∧ ∨( ) and p are identical and hence they 
are	equivalent.

Example 12.17
 Establish	the	equivalence	property: p q p q→ ≡¬ ∨
Solution

p q ¬p p → q ¬¬ ∨∨p q

T T F T T

T F F F F

F T T T T

F F T T T

Table	12.23

	 The	entries	in	the	columns	corresponding	to	 p q→  and ¬ ∨p q are identical and hence they are 
equivalent.

Example 12.18
	 Establish	the	equivalence	property	connecting	the	bi-conditional	with	conditional:
 p q p q q p↔ ≡ → ∧ →( ) ( )

Solution
p q p q→→ q p→→ p q↔↔ ( ) ( )p q q p→→ ∧∧ →→

T T T T T T

T F F T F F

F T T F F F

F F T T T T

Table	12.24

	 The	 entries	 in	 the	 columns	 corresponding	 to	 p q↔ and ( ) ( )p q q p→ ∧ → are identical and 
hence	they	are	equivalent.
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Example 12.19
 Using	the	equivalence	property,	show	that	 p q p q p q↔ ≡ ∧ ∨ ¬ ∧¬( ) ( ) .
Solution
 It	can	be	obtained	by	using	examples	12.15	and	12.16	that	
  p q↔  ≡  ( ) ( )¬ ∨ ∧ ¬ ∨p q q p 	 ...	(1)

   ≡  ( ) ( )¬ ∨ ∧ ∨¬p q p q 	(by	Commutative	Law)	 ...	(2)

   ≡  ( ( )) ( ( ))¬ ∧ ∨¬ ∨ ∧ ∨¬p p q q p q (by	Distributive	Law)

   ≡  ( ) ( ) ( ) ( )¬ ∧ ∨ ¬ ∧¬ ∨ ∧ ∨ ∧¬p p p q q p q q 	(by	Distributive	Law)

   ≡  𝔽∨ ¬ ∧¬ ∨ ∧ ∨( ) ( )p q q p 𝔽;	(by	Complement	Law)

   ≡  ( ) ( )¬ ∧¬ ∨ ∧p q q p ;	(by	Identity	Law)

   ≡  ( ) ( )p q p q∧ ∨ ¬ ∧¬ ;	(by	Commutative	Law)

	 Finally	(1)	becomes	 p q«  º  ( ) ( )p q p q∧ ∨ ¬ ∧¬ .

EXERCISE 12.2
 1. Let p 	:	Jupiter	is	a	planet		and	 q 	:	 India	 is	 an	 island	be	 any	 two	 simple	 statements.	Give	

verbal	sentence	describing	each	of	the	following	statements.

  (i) ¬p (ii) p q∧¬  (iii) ¬ ∨p q 	 (iv)	 p q→¬ 	 (v)	 p q↔  

 2.	 Write	each	of	the	following	sentences	in	symbolic	form	using	statement	variables	 p and q .

  (i)	19	is	not	a	prime	number	and	all	the	angles	of	a	triangle	are	equal.
	 	 (ii)	19	is	a	prime	number	or	all	the	angles	of	a	triangle	are	not	equal
	 	 (iii)	19	is	a	prime	number	and	all	the	angles	of	a	triangle	are	equal
	 	 (iv)	19	is	not	a	prime	number

 3.	 Determine	the	truth	value	of	each	of	the	following	statements

  (i)	If	6 2 5+ = ,	then	the	milk	is	white.
	 	 (ii)	China	is	in	Europe	or	 3 	is	an	integer
	 	 (iii)	It	is	not	true	that	5 5 9+ = 	or	Earth	is	a	planet
	 	 (iv)	11	is	a	prime	number	and	all	the	sides	of	a	rectangle	are	equal

 4.	 Which	one	of	the	following	sentences	is	a	proposition?

  (i) 4 7 12+ = 	 (ii)	What	are	you	doing?	 (iii)	3 81n n≤ ∈, 

	 	 (iv)	Peacock	is	our	national	bird	 (v)	How	tall	this	mountain	is!

 5.	 Write	the	converse,	inverse,	and	contrapositive	of	each	of	the	following	implication.

  (i)	If	 x  and y 	are	numbers	such	that	 x y= ,	then	 x y2 2=
	 	 (ii)	If	a	quadrilateral	is	a	square	then	it	is	a	rectangle

 6.	 Construct	the	truth	table	for	the	following	statements.

  (i) ¬ ∧¬p q  (ii) ¬ ∧¬( )p q  (iii) ( )p q q∨ ∨¬ 	 (iv)	 ( ) ( )¬ → ∧ ↔p r p q
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 7.	 Verify	whether	 the	 following	compound	propositions	are	 tautologies	or	contradictions	or	
contingency

  (i) ( ) ( )p q p q∧ ∧¬ ∨  (ii) ( )p q p q∨ ∧¬( )→
  (iii) ( ) ( )p q p q→ ↔ ¬ → 	 (iv)	 ( ) ( ) ( )p q q r p r→ ∧ →( )→ →

 8.	 Show	that	(i)	¬ ∧ ≡¬ ∨¬( )p q p q     (ii) ¬ → ≡ ∧¬( )p q p q .

 9.	 Prove	that		 q p p q→ ≡¬ →¬

 10.	 Show	that	 p q® and q p® are	not	equivalent

 11.	 Show	that	¬ ↔ ≡ ↔¬( )p q p q

 12.	 Check	whether	the	statement	 p q p® ®( ) 	is	a	tautology	or	a	contradiction	without	using	

the	truth	table.

 13.	 Using	truth	table	check	whether	the	statements¬ ∨ ∨ ¬ ∧( ) ( )p q p q  and ¬p are	logically	equivalent.

 14.	 Prove p q r p q r→ →( )≡ ∧ →( ) 	without using	truth	table.

 15.	 Prove	that	 p q r p q r→ ¬ ∨ ¬ ∨ ¬ ∨≡( ) ( ) using	truth	table.

EXERCISE 12.3

Choose the correct or the most suitable answer from the given four alternatives.

 1.	A	binary	operation	on	a	set	 S is	a	function	from
	 	(1)	 S S®  (2) S S S×( )→  (3)	 S S S→ ×( ) (4) S S S S×( )→ ×( )

 2.	Subtraction	is	not	a	binary	operation	in
	 	(1)	  (2)  	 (3)	  (4) 

 3.	Which	one	of	the	following	is	a	binary	operation	on	 ?
	 	(1)	Subtraction	 (2)	Multiplication	 (3)	Division	 (4)	All	the	above
 4.	In	 the	set	  	of	real	numbers	‘* ’	 is	defined	as	follows.	Which	one	of	 the	following	is	not	a	

binary	operation	on ?
	 	(1)	 a b∗ =min ( )a b×  (2) a b∗ = 	max ( , )a b
	 	(3)	 a b a∗ =   (4) a b ab∗ =

 5.	The	operation	*defined	by	 a b ab
∗ =

7
	is	not	a	binary	operation	on

	 	(1)	+  (2)  	 (3)	  (4) 

 6.	In	the	set	 	define a b a b ab = + + .	For	what	value	of	y,	3 5 7 y( )= ?

	 	(1)	 y =
2

3
 (2) y=−2

3
	 (3)	 y=−3

2
 (4) y = 4

 7.	If	 a b a b∗ = +2 2 	on	the	real	numbers	then	*  is
	 	(1)	commutative	but	not	associative	 (2)	associative	but	not	commutative
	 	(3)	both	commutative	and	associative	 (4)	neither	commutative	nor	associative
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 8.		Which	one	of	the	following	statements	has	the	truth	valueT ?
	 	(1)	 sin x is	an	even	function.
	 	(2)	Every	square	matrix	is	non-singular
	 	(3)	The	product	of	complex	number	and	its	conjugate	is	purely	imaginary

  (4) 5 is	an	irrational	number

 9.		Which	one	of	the	following	statements	has	truth	valueF ?
	 	(1)	Chennai	is	in	India	or	 2 	is	an	integer

	 	(2)	Chennai	is	in	India	or	 2 	is	an	irrational	number

	 	(3)	Chennai	is	in	China	or	 2 	is	an	integer

	 	(4)	Chennai	is	in	China	or	 2 	is	an	irrational	number

 10.	If	a	compound	statement	involves	3	simple	statements,	 then	the	number	of	rows	in	the	truth	
table is

	 	(1)	9  (2) 8 	 (3)	 6  (4) 3

 11.	Which	one	is	the	inverse	of	the	statement	 ( ) ( )p q p q∨ → ∧ ?

	 	(1)	 ( ) ( )p q p q∧ → ∨  (2) ¬ ∨ → ∧( ) ( )p q p q

	 	(3)	 ( ) ( )¬ ∨¬ → ¬ ∧¬p q p q  (4) ( ) ( )¬ ∧¬ → ¬ ∨¬p q p q

 12.		Which	one	is	the	contrapositive	of	the	statement	 ( )p q r∨ → ?
	 	(1)	¬ → ¬ ∧¬r p q( )  (2) ¬ → ∨r p q( )

	 	(3)	 r p q→ ∧( )   (4) p q r→ ∨( )

 13.	The	truth	table	for ( )p q q∧ ∨¬ is	given	below

p q ( ) ( )p q ¬q∧ ∨

T T (a)

T F (b)

F T (c)

F F (d)

Which	one	of	the	following	is	true?
   (a) (b) (c) (d)

	 	(1)	 T T T T

  (2) T F  T T

	 	(3)	 T T F T

  (4) T F  F F

 14.	In	the	last	column	of	the	truth	table	for	¬ ∨¬( )p q 	the	number	of	final	outcomes	of	the	truth	
value	 ' 'F  are

	 	(1)	1	 (2)	2	 (3)	3	 (4)	4
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 15.	Which	one	of	the	following	is	incorrect?	For	any	two	propositions	 p and q ,	we	have
	 	(1)	¬ ¬ ∨ ≡¬ ∧¬( )p q p q  (2) ¬ ¬ ∧ ≡¬ ∨¬( )p q p q
	 	(3)	¬ ¬ ∨ ≡¬ ∨¬( )p q p q  (4) ¬ ¬ ¬ ≡( )p p

 16. 
p q p q p∧ →¬( )

T T (a)

T F (b)

F T (c)

F F (d)

	 	Which	one	of	the	following	is	correct	for	the	truth	value	of		 p q p∧( )→¬ ¬ p?

   (a) (b) (c) (d)

	 	(1)	 T T T T
  (2) F T T T
	 	(3)	 F F T T
  (4) T T T F
 17.	The	dual	of	¬ ¬ ∨ ∨ ∨ ∧¬( ) [ ( )]p q p p r  is

	 	(1)		¬ ¬ ∧ ∧ ∨ ∧¬( ) [ ( )]p q p p r  (2) ( ) [ ( )]p q p p r∧ ∧ ∧ ∨¬

	 	(3)		¬ ¬ ∧ ∧ ∧ ∧( ) [ ( )]p q p p r  (4) ¬ ¬ ∧ ∧ ∧ ∨¬( ) [ ( )]p q p p r

 18.		The	proposition	 p p q∧ ¬ ∨( )  is
	 	(1)	a	tautology	 	 (2)	a	contradiction
	 	(3)	logically	equivalent	to	 p qÙ 	 (4)	logically	equivalent	to	 p qÚ

 19.		Determine	the	truth	value	of	each	of	the	following	statements:
  (a) 4 2 5+ = and 6 3 9+ =  (b) 3 2 5+ =  and 6 1 7+ =
  (c) 4 5 9+ = and1 2 4+ =  (d) 3 2 5+ =  and 4 7 11+ =

   (a) (b) (c) (d)

	 	(1)	 F T F T

  (2) T F T F

	 	(3)	 T  T F F

  (4) F F T T

 20.	Which	one	of	the	following	is	not	true?
	 	(1)	Negation	of	a	negation	of	a	statement	is	the	statement	itself.
	 	(2)	If	the	last	column	of	the	truth	table	contains	only	T	then	it	is	a	tautology.
	 	(3)	If	the	last	column	of	its	truth	table	contains	only	F then it is a contradiction
	 	(4)	If	p and q are	any	two	statements	then	 p q« is	a	tautology.
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SUMMARY
	 (1)	 	A	binary operation* 	on	a	non-empty	set	 S 	is	a	rule,	which	associates	to	each	ordered	pair	

( , )a b 	of	elements	 a b,  in S 	an	unique	element	a b*  in S .
 (2) Commutative property: Any	binary	operation	*defined	on	a	nonempty	set	S is	said	to	satisfy	

the	commutative	property,	if a b b a a b S∗ = ∗ ∈∀, , .
	 (3)	 Associative property: Any	binary	operation*defined	on	a	nonempty	set	 S is	said	to	satisfy	

the	associative	property,	if a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , , .
 (4) Existence of identity property:  An	element	e SÎ is said to be the Identity Element of	 S under	

the	binary	operation	* 	if	for	all	 a SÎ we	have	that	 a e a∗ = and e a a∗ = .
 (5) Existence of inverse property: If	an	identity	element	 e exists	and	if	for	every	 a SÎ ,	there	

exists	b  in S 	such	that	 a b e∗ = and b a e∗ =  then b SÎ said to be the Inverse Element of	 a . 
In	such	instance,	we	write	b a= −1 .

	 (6)	 Uniqueness of Identity:  In	 an	 algebraic	 structure	 the	 identity	 element	 (if	 exists)	must	 be	
unique.

 (7) Uniqueness of Inverse: In	an	algebraic	structure	the	inverse	of	an	element	(if	exists)	must	be	
unique.

	 (8)	 A	Boolean Matrix is	a	real	matrix	whose	entries	are	either	0 or 1.

	 (9)	 Modular arithmetic: Let n be	a	positive	integer	greater	than	1		called	the	modulus.	We	say	
that	two	integers	a and b	are	congruent	modulo	n	if	b − a	is	divisible	by	n.		In	other	words	
a b≡ (mod n) means a b n k− = ⋅ for	some	integer	 k and b  is the least non-negative integer 
reminder when	a 	is	divided	by	n. ( )0 1≤ ≤ −b n

	(10)	 Mathematical	logic	is	a	study	of	reasoning	through	mathematical	symbols.
	(11)	 Let p be	 a	 simple	 statement.	Then	 the	negation	 of	 p 	 is	 a	 statement	whose	 truth	 value	 is	

opposite	to	that	of p .	It	is	denoted	by p,	read	as not p .The	truth	value	of	 p  is T , if p is 
F ,	otherwise	it	is	F .

	(12)	 Let	 p  and q 	be	any	 two	simple	statements.	The	conjunction of	 p  and q  is obtained by 
connecting	 p  and q 	by	the	word	and.	It	is	denoted	by	 p q∧ ,	read	as	‘ p 		conjunction	 q ’	or	
‘ p  hat q ’.	The	truth	value	of	 p q∧  is T ,	whenever	both	 p  and q  are T  and it is F 	otherwise.

	(13)	 The	disjunction	of	any	two	simple	statements	 p and q is	the	compound	statement	obtained	by	
connecting	 p and q by	the	word	‘or’.	It	is	denoted	by	 p q∨ ,	read	as‘ p 	disjunction	 q ’	or	‘ p
cup	 q ’.The	truth	value	of	 p q∨  is F ,	whenever	both	 p and q are F and it is T otherwise.

	(14)	 The	conditional statement of	any	two	statements	 p  and q 	is	the	statement,	‘If	 p ,	then	 q ’	
and it is denoted by p q→ . The statement p q→ 	has	a	truth	value	F	when	q	has	the	truth	
value	F and p	has	the	truth	value	T;	otherwise	it	has	the	truth	value	T.

	(15)	 The	bi-conditional statement of	any	two	statements	 p  and q is	the	statement	‘ p 	if	and	only	
if	q ’	and	is	denoted	by	 p q↔  The statement p q↔ 	has	the	truth	value	T	whenever	both	p and 
q	have	identical	truth	values;	otherwise	has	the	truth	value	F.

	(16)	 A	statement	 is	said	 to	be	a	 tautology if	 its	 truth	value	 is	always	 T irrespective	of	 the	 truth	
values	of	its	component	statements.	It	is	denoted	by	𝕋.
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	(17)	 A	statement	is	said	to	be	a	contradiction	if	its	truth	value	is	always	F irrespective	of	the	truth	
values	of	its	component	statements.	It	is	denoted	by	𝔽.

	(18)	 A	statement	which	is	neither	a	tautology	nor	a	contradiction	is	called	contingency.

(19)				Any	two	compound	statements	A and B are said to be logically equivalent or	simply	equivalent 
if	the	columns	corresponding	to	 A  and B 	in	the	truth	table	have	identical truth values. The 
logical	equivalence	of	the	statements	 A  and B is denoted by A B≡  or A B⇔ .		Further	note	
that	if	 A  and B are	logically	equivalent,	then	 A B↔ 	must	be	a	tautology.

 (20) Some laws of equivalence:
  Idempotent Laws: (i) p p p∨ ≡ (ii) p p p∧ ≡ .

  Commutative Laws: (i) p q q p∨ ≡ ∨   (ii) p q q p∧ ≡ ∧ .

  Associative Laws: (i) p q r p q r∨ ∨( ) ≡ ∨( )∨ (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .

  Distributive Laws:   (i) p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( )  

     (ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

  Identity Laws:           (i) p∨ 𝕋 ≡𝕋 and p∨ 𝔽≡ p

     (ii) p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

  Complement Laws :   (i) p p∨¬ ≡𝕋 and p p∧¬ ≡ 𝔽

     (ii) ¬ 𝕋 ≡  𝔽  and ¬ 𝔽≡  𝕋

  Involution Law or Double Negation Law: ¬(¬p) p

  de Morgan’s Laws:  (i) ¬ ∧ ≡ ¬ ∨¬( )p q p q  (ii) ¬ ∨ ≡ ¬ ∨¬( )p q p q

  Absorption Laws:       (i) p p q p∨ ∧ ≡( )    (ii)  p p q p∧ ∨ ≡( )
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