
"Young man, in mathematics you don’t understand things. 
You just get used to them".

-John von Neumann

12.1 Introduction
	 Mathematics can be broadly classified into two categories: Continuous 
Mathematics − It is based upon the results concerning the set of real numbers 
which is uncountably infinite. It is characterized by the fact that between any two 
real numbers, there is always a set of uncountably infinite numbers. For example, a 
function in continuous mathematics can be plotted in a smooth curve without break.                                   
	 Discrete Mathematics − It involves distinct values which are either finite 
or countably infinite; i.e. between any two points, there are finite or countably 
infinite number of points. For example, if we have a finite set of objects, the 
function can be defined as a list of ordered pairs having these objects, and can 
be presented as a complete list of those pairs.

	 The mathematicians who lived in the latter part of the 19th and early in 
the 20th centuries developed a new branch of mathematics called discrete mathematics consisting of 
concepts  based on either finite or countably infinite sets like the set of natural numbers. These sets are 
called discrete sets and the beauty of such sets is that, one can find that a one-to-one correspondence 
can be defined from these sets onto the set of natural numbers. So, the elements of a discrete set can be 
arranged as a sequence. This special feature of discrete sets cannot be found in any uncountable set like 
the set of real numbers where the elements are distributed continuously throughout without any gap. 

	 Everyone is aware of the fact that the application of computers is playing an important role in 
every walk of our lives. Consequently the computer science has become partially a science of clear 
understanding and concise description of computable discrete sets. Also the modern programming 
languages are to be designed in such a way that they are suitable for descriptions in a concise manner. 
This compels the computer scientists to train themselves in learning to formulate algorithms based on 
the discrete sets. 

	 The main advantage of studying discrete mathematics is that its results serve as very good tools 
for improving the reasoning and problems solving capabilities. Some of the branches of discrete 
mathematics are combinatorics, mathematical logic, boolean algebra, graph theory, coding 
theory etc. Some of the topics of discrete mathematics namely permutations, combinations, and 
mathematical induction were already discussed in the previous year. In the present chapter, two 
topics namely binary operations and mathematical logic of discrete mathematics are discussed. 
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Symbols

∈ 	 -	 belongs to.
⋺	 -	 such that.
∀ 	 -	 for every.
⇒ 	 -	 implies.
∃ 	 -	 there exists

	 In general, the word ‘operation’ refers to the process of operating upon either a single or more 
number of elements at a time. For instance, finding the negative of an element in   involves a single 
element at a time. So it is called an unary operation. On the other hand the process of finding the sum 
of any two elements in   involves two elements at a time. This kind of operation is called a binary 
operation and in general an operation involving n elements is called an n-ary operation, n∈ . In 
this section a detailed discussion of the binary operations is presented. 

Learning Objectives

	 Upon completion of this chapter, students will be able to 
	 •	 define binary operation and examine various properties 
	 •	 define binary operation on Boolean matrices and verify various properties
	 •	 define binary operation on modular classes and examine various properties 
	 •	 identify simple and compound statements
	 •	 define logical connectives and construct truth tables
	 •	 identify tautology, contradiction, and contingency
	 •	 establish logical equivalence and apply duality principle

12.2 Binary Operations
12.2.1  Definitions
	 The basic arithmetic operations on   are addition (+ ), subtraction (- ), multiplication (× ), and 
division (÷). Eminent mathematicians of the latter part of 19thcentury and in 20thcentury like Abel, Cayley, 
Cauchy, and others, tried to generalize the properties satisfied by these usual arithmetic operations. To this 
end they developed new abstract algebraic structures through the axiomatic approach. This new branch 
of algebra dealing with these abstract algebraic structures is known as abstract algebra. 
	 To begin with, consider a simple example involving the basic usual arithmetic operations addition 
and multiplication of any two natural numbers.

m n+ ∈ ; m n× ∈ , ∀ ∈ =m n, { , , ,...} 1 2 3

Each of the above two operations yields the following observations:
	 (1)	 At a time exactly two elements of  are processed.
	 (2)	 The resulting element (outcome) is also an element of  .
	 Any such operation defined on a nonempty set is called a binary operation or a binary 
composition on the set in abstract algebra.
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Definition 12.1
	 Any operation * defined on a non-empty set S is called a binary operation on S if the following 
conditions are satisfied:
	 (i)	 The operation * must be defined for each and every ordered pair ( , )a b ∈ S S× .
	 (ii)	 It assigns a unique element a b∗ of S to every ordered pair ( , )a b ∈ S S× .

	 In other words, any binary operation * on S is a rule that assigns to each ordered pair of 
elements of S  a unique element of S . Also * can be regarded as a function (mapping) with input in 
the Cartesian product S S× and the output in S . 

∗ × →: S S S   ;  ∗ = ∗ ∈( , )a b a b S , where a b*  is an unique element.

	 A binary operation defined by   ∗ × →: S S S ;  ∗ = ∗ ∈( , )a b a b S demands that the output a b∗

must always lie the given set S and not in the complement of it. Then we say that ‘∗ is closed on S ’ or  

‘ S  is closed with respect to ∗ ’. This property is known as the closure property.

Definition 12.2

	 Any non-empty set on which one or more binary operations are defined is 
called an algebraic structure.
	 Another way of defining a binary operation ∗  on S  is as follows: 
∀ ∈ ∗a b S a b, ,  is unique and a b S∗ ∈ .

Note
	 It follows that every binary operation satisfies the closure property.
Note
	 The operation∗ is just a symbol which may be  + × −, , ,  ÷ matrix addition, matrix multiplication, 
etc. depending on the set on which it is defined.
	 For instance, though +  and ×  are binary on , - is not binary operation on . 
	 To verify this, consider ( , )3 4 ∈ ×  .

∗ = − = − = − ∉( , ) ( , )a b 3 4 3 4 1 

.
	 Hence - is not binary operation on  . So   is to be extended to   in order that - becomes 
binary operation on .  Thus   is closed with respect to + × −, , and . Thus ( , , , ) + × −  is an 
algebraic structure.

Observations
	 The binary operation depends on the set on which it is defined.
	 (a)	 The operation – which is not binary operation on   but it is binary on  .   The set   is 

extended to include negative numbers. We call the included set   .
	 (b)	 The operation ÷ on   is not binary operation on  .   For instance, for ( , )1 2 ∈ ×  ,  

÷ 1 2
1

2
,  ( ) = ∉ . Hence   has to be extended further into  .

	 (c)	 It is a known fact that the division by 0 is not defined in basic arithmetic. So ÷ is binary 
operation on the set  \{ }0 . Thus + × −, , are binary operation on   and ÷  is binary 
operation on \{ }0 .

	 Now the question is regarding the reasons for extending further   to  and then from to . 
Accordingly, a number system is needed where not only all the basic arithmetic operations  
+ − ×, , , ÷ but also to include the roots of the equations of the form “ x2 2 0− = ” and“ x2 1 0+ = ”. 

Fig. 12.1

a b

Sa b*
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So, in addition to the existing systems, the collection of irrational numbers and imaginary numbers 
(See Chapter 3) are to be adjoined. Consequently  and then  are obtained. The biggest number 
system properly includes all the other number systems, ,  , and as subsets. 

    

 \ 0{ }  \ 0{ }  \ 0{ }

+ Binary Binary Binary Binary Binary
Not  

Binary
Not  

Binary
Not  

Binary

-
Not 

Binary
Binary Binary Binary Binary

Not  
Binary

Not  
Binary

Not  
Binary

× Binary Binary Binary Binary Binary Binary Binary Binary

÷
Not 

Binary
Not 

Binary
Not 

Binary
Not Binary

Not 
Binary

Binary Binary Binary

Table12.1
Example12.1 
	 Examine the binary operation (closure property) of the following operations on the respective 
sets (if it is not, make it binary):  

		  (i)	 a b a ab b a b∗ = + − ∀ ∈3 5 2; , 
	 (ii)	 a b a

b
a b∗ =

−
−







 ∀ ≠ ∈

1

1
1, , 

Solution

	 (i)	 Since ×   is binary operation on   , ,a b a b ab∈ ⇒ × = ∈  and b b b× = ∈2

	 ... (1)

		  The fact that +  is binary operation on   and (1) ⇒ 3ab ab ab ab= + + ∈( ) 
 and 

5 2 2 2 2 2 2b b b b b b= + + + + ∈( ) 

.   	 .... (2)

	 	 Also a∈  and 3ab∈ implies a ab+ ∈3 
.  	 ... (3)

	 	 (2), (3), the closure property of - on  yield a b a ab b∗ = + − ∈( )3 5 2

. Since a b�

belongs to  , * is a binary operation on  .
	 (ii)	 In this problem a b∗ is in the quotient form. Since the division by 0 is undefined, the 

denominator b -1must be nonzero.
	 	 It is clear that b − =1 0  if b =1. As 1∈ , ∗  is not a binary operation on the whole of  . 

However it can be found that by omitting 1 from  , the output a b∗  exists   in  \{ }1 . 
Hence ∗ is a binary operation on \{ }1 .

12.2.2 Some more properties of a binary operation
Commutative property
	 Any binary operation ∗defined on a nonempty set S is said to satisfy the commutative  
property, if

a b b a a b S∗ = ∗ ∈∀ , .

Number 
System

Operation
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Associative property
	 Any binary operation∗defined on a nonempty set S is said to satisfy the associative property, if

a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , .

Existence of identity property
	 An element  e S∈ is said to be the Identity Element of  S under the binary operation∗ if for all 
a S∈ we have that  a e a∗ = and  e a a∗ = .

Existence of inverse property
	 If an identity element  e exists and if for every a S∈ , there exists b in S such that a b e∗ = and 
b a e∗ =  then b S∈ is said to be the Inverse Element of  a . In such instances, we write b a= −1 .

Note
	� a–1 is an element of S. It should be read as the inverse of a and not as 1

a
.

Note
	 (i) � The multiplicative identity is 1in  and it is the one and only one element with the property

n n n n⋅ = ⋅ = ∀ ∈1 1 ,  . 
	 (ii) � The multiplicative inverse of any element, say 2 in  is 1

2
and no other nonzero rational 

number x has the property that 2 2 1⋅ = ⋅ =x x .
Note
	 Whenever a mathematical statement involves ‘for every’ or ‘ for all’ , it has to be proved  for every 
pair or three elements. It is not easy to prove for every pair or three elements. But these types of definitions 
may be used to prove the negation of the statement. That is, negation of “for every” or “for all” is “there 
exists not”. So, produce one such pair or three elements to establish the negation of the statement. 
	 The questions of existence and uniqueness of identity and inverse are to be examined.  The 
following theorems prove these results in the more general form.

Theorem 12.1: (Uniqueness of Identity) 
	 In an algebraic structure the identity element (if exists) must be unique.

Proof
	 Let ( , )S ∗ be an algebraic structure. Assume that the identity element of S exists in S .
	 It is to be proved that the identity element is unique. Suppose that e1  and e2 be any two identity 
elements of S .
	 First treat e1 as the identity and e2 as an arbitrary element of S .
	 Then by the existence of identity property, e e e e e2 1 1 2 2∗ = ∗ = .	 ... (1)
	 Interchanging the role of e1 and e2 , e e e e e1 2 2 1 1∗ = ∗ = .   	 …(2)
	 From (1) and (2), e e1 2= . Hence the identity element is unique which completes the proof.

Theorem 12.2 (Uniqueness of Inverse) 
	 In an algebraic structure the inverse of an element (if exists) must be unique.

Proof
	 Let ( , )S ∗ be an algebraic structure and a S∈ . Assume that the inverse of a  exists in S .  It is to 

be proved that the inverse of a  is unique. The existence of inverse in S ensures the existence of the 

identity element e in S .
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	 Let a S∈ . It is to be proved that the inverse a (if exists) is unique. 
	 Suppose that a has two inverses, say, a1 , a2 .
	 Treating a1 as an inverse of a gives a a a a e∗ = ∗ =1 1 	 …(1)
	 Next treating a2  as the inverse of a gives a a a a e∗ = ∗ =2 2 	 …(2)

a a e a a a a a a e a a1 1 1 2 1 2 2 2= ∗ = ∗ ∗ = ∗ ∗ = ∗ =( ) ( )  (by (1) and (2)).
	 So, a a1 2= . Hence the inverse of a is unique which completes the proof.

Example 12.2
	 Verify the (i) closure property, (ii) commutative property, (iii) associative property (iv) existence 
of identity and (v) existence of inverse for the arithmetic operation + on  . 
Solution

	 (i)	 m n+ ∈ ,∀ ∈m n,  . Hence+ is a binary operation on  .
	 (ii)	 Alsom n n m m n+ = + ∀ ∈, , 

. So the commutative property is satisfied
	 (iii)	 ∀ ∈ + + = + +m n p m n p m n p, , , ( ) ( )

. Hence the associative property is satisfied.
	 (iv)	 m e e m m e+ = + = ⇒ = 0. Thus ∃ ∈0 ⋺ ( ) ( )m m m+ = + =0 0 . Hence the existence 

of identity is assured.
	 (v)	 m m m m m m m m+ = + = ⇒ = − ∀ ∈ ∃ − ∈' ' ' . ,0 Thus  

⋺
				  m m m m+ − = − + =( ) ( ) 0 . Hence, the existence of inverse property is also assured. Thus 

we see that the usual addition + on  satisfies all the above five properties.
				  Note that the additive identity is 0 and the additive inverse of any integer m is-m .
Example 12.3
	 Verify the (i) closure property, (ii) commutative property, (iii) associative property (iv) existence 
of identity and (v) existence of inverse for the arithmetic operation -  on  .

Solution
	 (i)	Though - is not binary on ; it is binary on  . To check the validity of any more properties 

satisfied by – on  , it is better to check them for some particular simple values. 

	 (ii)	Take m = 4 , n = 5  and  ( ) ( )m n− = − = −4 5 1and ( ) ( )n m− = − =5 4 1.     
				  Hence ( ) ( )m n n m− ≠ − . So the operation -  is not commutative on  .

	 (iii)	 In order to check the associative property, let us put m n= =4 5,  and p = 7  in both   

( )m n p- -  and  m n p- -( ) .

		
( ) ( ) ( )m n p− − = − − = − − =−4 5 7 1 7 8 	 …(1)

		
m n p− − = − − = + =( ) ( ) ( )4 5 7 4 2 6 .       	 …(2)

	 	 	From (1) and (2), it follows that m n p m n p( )– – –– ≠ ( ) .
	 	 	Hence – is not associative on  .
	 (iv)	 Identity does not exist (why?).
	 (v)	 Inverse does not exist (why?).
Example 12.4
	 Verify the (i) closure property, (ii) commutative property, (iii) associative property  
(iv) existence of identity and (v) existence of inverse for the arithmetic operation +  on  
 e= the set of all even integers.
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Solution
	 	Consider the set of all even integers 

 e k k= ∈{ } = − − −{ }2 6 4 2 0 2 4 6| ..., , , , , , , ,... .
	 Let us verify the properties satisfied by + on  e . 

	 (i)	 The sum of any two even integers is also an even integer. 
	 	 	Because x y x me, ∈ ⇒ = 2 and y n= 2 , m n, ∈ . 
	 	 	So x y m n m n e+ = + = +( ) ( )∈2 2 2 

. Hence + is a binary operation on e .
	 (ii)	 ∀ ∈x y e,  , ( ) ( ) ( ) ( ) ( )x y m n n m n m y x+ = + = + = + = +2 2 2 2 . 
	 	 	So + has commutative property. 
	 (iii)	 Similarly it can be seen that∀ ∈x y z e, ,  , ( ) ( )x y z x y z+ + = + + . 
	 	 	Hence the associative property is true. 	      

	 (iv)	 	Now take x k= 2 , then 2 2 2 0k e e k k e+ = + = ⇒ = .  
			  Thus∀ ∈ ∃ ∈x e e , 0 ⋺ x x x+ = + =0 0 .  	
	 	 	So, 0 is the identity element.

	 (v)	 	Taking x k= 2  and ′x  as its inverse, we have 2 0 2 2k x x k x k+ = = + ⇒ = −' ' ' . i.e., 
x x' = − .

 	 	 	Thus ∀ ∈ ∃ − ∈x xe e ,  ⋺ x x x x+ − = − + =( ) ( ) 0

			  Hence -x is the inverse of x eÎ .

Example 12.5

	 Verify the (i) closure property, (ii) commutative property, (iii) associative property  
(iv) existence of identity and (v) existence of inverse for the arithmetic operation +  on  
 o = the set of all odd integers.
Solution
	 Consider the set  o  of all odd integers  

 o k k= + ∈{ } = − − −{ }2 1 5 3 1 1 3 5: ..., , , , , , ,... . + is 
not a binary operation on o  because when x m y n x y m n= + = + + = + +2 1 2 1 2 2, , ( )  is even for 
all m and n. For instance, consider the two odd numbers 3 7, ∈ o . Their sum 3 7 10+ = is an even 
number. In general, if x, y∈ 0 , then x y+( )∉ 0 . Other properties need not be checked as it is not 
a binary operation.
Example 12.6
	 Verify (i) closure property (ii) commutative property, and (iii) associative   property of the 
following operation on the given set.
		  a b a a bb∗ = ∈( ) ∀; ,  (exponentiation property)
Solution
	 (i)	 It is true thata b a a bb∗ = ∈∈ ∀ ; , .  So ∗  is a binary operation on  . 
	 (ii)	 a b ab∗ =  and b a ba∗ = . Put, a = 2  and b = 3 . Then a b∗ = =2 83  but b a∗ = =3 92  
	 	 So a b∗  need not be equal tob a∗ . Hence ∗  does not have commutative property.
	 (iii)	 Next consider 

 
a b c a b ac bc∗ ∗ = ∗ =( ) ( ) ( ) . Take a b= =2 3, and c = 4 . 

		  Then a b c∗ ∗ = ∗ ∗ = =( ) ( )2 3 4 2 23 814

	 	 But a b c a c a a ab b c bc bc∗ ∗ = ( )∗ = ( ) = = =( ) ( ) 212

		  Hence a b c a b c∗ ∗( ) ≠ ∗( )∗ . So ∗ does not have associative property on  .
		  Note: This binary operation has no identity and no inverse. (Justify).
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Example 12.7

	 Verify   (i) closure property, (ii) commutative property, (iii) associative property,  
(iv) existence of identity, and (v) existence of inverse for following operation on the given set. 
	 m n m n mn m n∗ = + − ∈; , 

 m n m n mn m n∗ = + − ∈; , 

Solution
	 (i)	  The output m n mn+ -  is clearly an integer and hence∗  is a binary operation on  .

	 (ii)	 m n m n mn n m nm n m∗ = + − = + − = ∗ , ∀ ∈m n,  . So ∗  has commutative property.

	 (iii)	 Consider ( )m n p∗ ∗ = ( )m n mn p+ − ∗ = ( ) ( )m n mn p m n mn p+ − + − + −
					    =  m n p mn mp np mnp+ + − − − + � ... (1)
	 	 	Similarly m n p∗ ∗( ) = m n p np∗ + −( )  = m n p np m n p np+ + − − + −( ) ( )

						     =  m n p np mn mp mnp+ + − − − + 	 ... (2)
	 	 	From (1) and (2), we see that m n p m n p∗ ∗ = ∗ ∗( ) ( ) . Hence ∗   has associative property.

	 (iv)	 An integer e  is to be found such that 
				  m e e m m∗ = ∗ = , ∀ ∈m ⇒ + −m e m e = m

				  ⇒ −e m( )1 = 0 ⇒ e  =  0 or m =1. But m is an arbitrary integer and hence need not be 

equal to 1. So the only possibility is e = 0 . Also m∗0 = 0∗ =m m, ∀ ∈m  . Hence 0 is the 

identity element and hence the existence of identity is assured.

	 (v)	 An element ′∈m  is to be found such that m m∗ ′ = ′∗ = =m m e 0, ∀ ∈m  .

				  m m∗ ′ = 0 ⇒ + ′− ′m m m m = 0 ⇒ ′m = m
m -1

. When m=1, ′m  is not defined.

	 	 		When m m= ′2, m m= ′2,  is an integer. But except m=2, ′m need not be an integer for all values of 
m. Hence inverse does not exist in  .

12.2.3 Some binary operations on Boolean Matrices 
Definition 12.3

	 A Boolean Matrix is a real matrix whose entries are either 0 or 1. 

	 Note that the boolean entries 0 and 1 can be defined in several ways. In electrical switch to 
describe “on and off”, in graph theory, the “adjacency matrix” etc , the boolean entries 0 and 1 are 
used. We consider the same type of Boolean matrices in our discussion. 
	 The following two kinds of operations on the collection of all boolean matrices are defined. 
	 Let A aij=    and B bij=    be any two boolean matrices of the same type. Then their join∨ and 
meet∧ are defined as follows:

Definition 12.4: Join of A and B

			   A B∨ 	= 	 a b a b cij ij ij ij ij  ∨   = ∨  =  

			   where cij 	= 	
1 1 1

0 0 0

,

,

if either or

if both and

a b
a b

ij ij

ij ij

= =
= =




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Definition 12.5: Meet of A and B

	 A B∧ = a b a b cij ij ij ij ij  ∧   = ∧  =  where c
a b
a bij
ij ij

ij ij
=

= =
= =





1 1 1

0 0 0

,

, .

if both and

if either or

	 It is clear that a b a b∨( ) = { }max , ; a b a b∧( ) = { }min , , a b, ,∈{ }0 1 .

Example 12.8

	 Let  	A =










0 1

1 1
, B =











1 1

0 1
 be any two boolean matrices of the same type. Find A B∨  and 

A B∧  .
Solution

			   Then A B∨ 	= 	
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

1 1

1 1









 ∨









 =

∨ ∨
∨ ∨









 =











			   A B∧ 	= 	
0 1

1 1

1 1

0 1

0 1 1 1

1 0 1 1

0 1

0 1









 ∧









 =

∧ ∧
∧ ∧









 =











Properties satisfied by join and meet
	 Let 𝔹 be the set of all boolean matrices of the same type. We only state the properties of meet 
and join.

Closure property
	 A B, ∈𝔹, A B a b a bij ij ij ij∨ = ∨ = ∨ ∈[ ] [ ] [ ] 𝔹. (Because, a bij ij∨( )  is either 0 or 1 ∀i j, . ∨  is a 
binary operation on 𝔹.

Associative property
		  A B C∨ ∨( ) 	= A B C A B C, , , A B C A B C, , ,  𝔹. ∨  is associative.

Existence of identity property
	 ∀ ∈A 𝔹, ∃ the null matrix 0∈𝔹⋺ A A A∨ = ∨ =0 0 . The identity element for ∨  is the null 
matrix.

Existence of inverse property
	 	For any matrix A∈𝔹, it is impossible to find a matrix 
	 B∈  𝔹 ⋺ A B B A∨ = ∨ = 0 . So the inverse does not exist.
	 Similarly, it can be verified that the operation meet ∧  satisfies (i) closure property   

(ii) commutative property (iii) associative property (iv) the matrix  U =










1 1
1 1

 exists as the identity in 

𝔹 and (v) the existence of inverse is not assured.

12.2.4 Modular Arithmetic
	 Having discussed the properties of operations like basic usual arithmetic operations, matrix 
addition and multiplication, join and meet of boolean matrices, one more new operation called the 
Modular Arithmetic is discussed in this section. The modular arithmetic refers to the process of 
dividing some number a by a positive integer n  ( > 1), called modulus,  and then equating a  with the 
remainderb modulo n and it is written as a b n≡ (mod ) , read as ‘a is congruent to b modulo n ’.
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	 Here a b≡ (mod n ) means a b n k− = ⋅ for some integer k  and b  is the least  
non-negative integer when a  is divided by n.
	 For instance, 25 4 7 20 2 3 1 3≡ − ≡ − ≡(mod ), (mod ) (mod ) and 15 0 5≡ (mod ) , etc. Further the 
set of integers when divided by n ,  leaves the remainder 0 1 2 1, , , , n - . In the case of  5 , 

			   [ ]0 	 = 	
 , , , , , , , ,− − −{ }15 10 5 0 5 10 15

			   [ ]1 	 = 	 … − − − …{ }, , , , , , ,14 9 4 1 6 11  

			   [ ]2 	 = 	 { ], , , , , , ,… − − − …13 8 3 2 7 12  

			   [ ]3 	 = 	  … − − − …{ }, , , , , , ,12 7 2 3 8 13

			   [ ]4 	 = 	 … − − − …{ }, , , , , , , .11 6 1 4 9 14  

	 We write this as 
 5 0 1 2 3 4={ }[ ],[ ],[ ],[ ],[ ] .   In each class, any two numbers are congruent  

modulo 5.

Before 2007, modular arithmetic is used in 10-digit ISBN (International Standard Book Number) 
numbering system. For instance, the last digit is for parity check. It is from the set 
{ , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 X .  In ISBN number, 81-7808-755-3, the last digit 3 is obtained as

     1*8+2*1+3*7+4*8+5*0+6*8+7*7+8*5+9*5=8+2+21+32+0+48+49+40+45=245≡ 3 11(mod ) .
	 Alternatively, the weighted sum is calculated in the reverse manner
	 9*8+8*1+7*7+6*8+5*0+4*8+3*7+2*5+1*5=245 = 3 (mod 11).
	 In both ways, we get the same check number 3. 
After 2007, 13-digit ISBN numbering has been followed. The first 12 digits (from left to right) are 
multiplied by the weights 3,1,3,1,…. starting from right to left. Then the weighted sum is calculated. 
The higher multiple of 10 is taken. Then the difference is calculated. Then its additive inverse 
modulo 10 is the thirteenth digit.
	 For instance, consider the ISBN Number: 978-81-931995-6-5.Take 12 digits from left to right.

9 7 8 8 1 9 3 1 9 9 5 6
1 3 1 3 1 3 1 3 1 3 1 3
9 21 8 24 1 27 3 3 9 27 5 18

The total of last row is 155. The nearest (higher) integer in multiples of 10 is 160. The difference 
160-155=5. The additive inverse modulo 10 is 5 which is 13-th digit in the ISBN number.

	 Two new operations namely addition modulo n n( )+  and multiplication modulo n n( )×  are 
defined on the set  n of all non-negative integers less than n under modulo arithmetic.

Definition 12.6

	 (i)	The addition modulo n is defined as follows.
		  Let a b n, ∈ . Then 
		  a bn+ = the remainder of a b+ on division by n .
	 (ii)	 The multiplication modulo n is defined as follows. 
		  Let a b n, ∈ . Then 
		  a bn× =the remainder of a b×  on division by n
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Example 12.9 
	 Verify   (i) closure property, (ii) commutative property, (iii) associative property,  
(iv) existence of identity, and (v) existence of inverse for the operation +5

on  5  using table 
corresponding to addition modulo 5.
Solution
	 It is known that 5 0 1 2 3 4={ }[ ], ], ], ], ] [  [  [  [ . The table corresponding to addition modulo 5 is as 
follows: We take reminders { , , , , }0 1 2 3 4  to represent the classes {[ ],[ ],[ ],[ ],[ ]}0 1 2 3 4 .

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table12.2
	 (i)	 Since each box in the table is filled by exactly one element of   5 , the output a b+5  is 

unique and hence +5  is a binary operation.

	 (ii)	 The entries are symmetrically placed with respect to the main diagonal. So+5  has 
commutative property.

	 (iii)	 The table cannot be used directly for the verification of the associative property. So it is to 
be verified as usual. 

	        For instance, 2 3 4 0 4 45 5 5+ + = + =( )  (mod 5) 

	       and 2 3 4 2 2 4 55 5 5+ +( ) = + = ( )mod . 

	       Hence 2 3 4 2 3 45 5 5 5+( ) + = + +( ) . 

	 	 Proceeding like this one can verify this for all possible triples and ultimately it can be shown 
that +5  is associative. 

	 (iv)	 The row headed by 0 and the column headed by 0 are identical. Hence the identity element 
is 0.

	 (v)	 The existence of inverse is guaranteed provided the identity 0 exists in each row and each 
column. From Table12.2, it is clear that this property is true in this case. The method of 
finding the inverse of any one of the elements of  5 , say 2 is outlined below.

	 	 First find the position of the identity element 0 in the III row headed by 2. Move horizontally 
along the III row and after reaching 0, move vertically above 0 in the IV column, because 0 
is in the III row and IV column. The element reached at the topmost position of IV column 
is 3. This element 3 is nothing but the inverse of 2, because, 2 3 0 55+ = (mod ) . In this way, 
the inverse of each and every element of   5  can be obtained. Note that the inverse of 0 is 
0,that of 1 is 4,  that of 2 is 3,  that of 3 is 2 , and, that of  4 is 1.

Example 12.10
	 Verify (i) closure property, (ii) commutative property, (iii) associative property,  
(iv) existence of identity, and (v) existence of inverse for the operation ×11  on a subset A ={ , , , , }1 3 4 5 9

of the set of remainders { , , , , , , , , , , }0 1 2 3 4 5 6 7 8 9 10 .
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Solution
	 The table for the operation 1́1  is as follows.

×11 1 3 4 5 9
1 1 3 4 5 9
3 3 9 1 4 5
4 4 1 5 9 3
5 5 4 9 3 1
9 9 5 3 1 4

Table12.3
	 Following the same kind of procedure as explained in the previous example, a brief outline of the 
process of verification of the properties of  ×11  on A is given below.

	 (i)	 Since each box has an unique element of A, ×11  is a binary operation on A.

	 (ii)	 The entries are symmetrical about the main diagonal. Hence ×11  has commutative property.

       (iii)	 As usual, the associative property can be seen to be true.

	 (iv)	 The entries of both the row and column headed by the element 1 are identical. Hence 1 is the 
identity element.

	 (v)	 Since the identity 1 exists in each row and each column, the existence of inverse property                      
is assured for ×11 . The inverse of 1 is 1, that of 3 is 4, that of  4 is 3, 5 is 9 , and, that of  9 is 5.

	 EXERCISE 12.1
	 1.	 Determine whether ∗ is a binary operation on the sets given below.

			   (i)	 a b a b∗ = . on  	(ii) a b a b A∗ = ( ) = { }min , , , , ,on 1 2 3 4 5

			   (iii)	 a b a b∗ =( )  is binary on .

	 2.	 On  , define ∗  by m n m n m nn m∗( )= + ∀ ∈: ,  . Is ∗  binary on  ?

	 3.	 Let ∗  be defined on by ( )a b a b ab∗ = + + − 7 . Is ∗  binary on ? If so, find 3 7

15
∗
−





 .

	 4.	 Let A a b a b= + ∈{ : , }5  . Check whether the usual multiplication is a binary operation on

A .

	 5.	 	 (i)	 Define an operation∗on  as follows: a b a b a b∗ =
+






 ∈

2
; ,  . Examine the closure, 

commutative, and associative properties satisfied by ∗  on ℚ.

	 	 	 (ii)	 Define an operation∗on  as follows: a b a b a b∗ =
+






 ∈

2
; ,  . Examine the  existence 

of identity and the existence of inverse  for the operation ∗  on ℚ.
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	 6.	 Fill in the following table so that the binary operation ∗on A a b c={ , , } is commutative.

∗ a b c

a b

b c b a

c a c

	 7.	 Consider the binary operation ∗  defined on the set A a b c d={ , , , }  by the following table:

∗ a b c d

a a c b d

b d a b c

c c d a a

d d b a c

	 	 	Is it commutative and associative?

	 8.	 Let A =
















1 0 1 0

0 1 0 1

1 0 0 1

, B =
















0 1 0 1

1 0 1 0

1 0 0 1

, C =
















1 1 0 1

0 1 1 0

1 1 1 1

 be any three boolean matrices 

of the same type. Find (i) A B∨  (ii) A B∧  (iii) A B C∨( )∧   (iv) A B C∧( )∨ .

	 9.		  (i)	 Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗  be the matrix multiplication. Determine 

whetherM is closed under ∗ .  If so, examine the commutative and associative properties 

satisfied by ∗  on M .

			   (ii)	 Let M
x x
x x

x R=








 ∈ −









: { }0  and let ∗  be the matrix multiplication. Determine 

whetherM is closed under ∗ .   If so, examine the existence of identity, existence of 

inverse properties for the operation ∗  on M .

	 10.		  (i)	 Let A be  \ 1{ } . Define ∗  on A  by x y x y xy∗ = + − . Is ∗  binary on A ? If so, 

examine the commutative and associative properties satisfied by ∗  on A .

			   (ii)	 Let A be 
 \ 1{ } . Define ∗  on A  by x y x y xy∗ = + − . Is ∗  binary on A ? 

If so, examine the existence of identity, existence of inverse properties for the operation
∗  on A .
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12.3 Mathematical Logic
	 George Boole was a self-taught English Mathematician, Philosopher and 
Logician. His results on Boolean Algebra involving the binary numbers play an 
important role in various fields, particularly more in computer applications. He 
introduced the idea of Symbolic Logic and contributed a lot of results to the fast 
development of Mathematical Logic. 
	 The reputed Greek philosopher Aristotle (384-322BC(BCE)) wrote the first book 
on logic. The famous German philosopher and mathematician Gottfried Leibnitz of 
17thcentury framed the idea of using symbols in Logic. Later this idea was realized 
by George Boole and Augustus de Morgan in 19th century. George Boole established 
the fact that logic is very much related to mathematics by linking logic, symbols, and 
algebra together. Mathematical Logic was developed in the late 19thand early 20thcenturies. 
	 In 1930 the researchers noticed (Neumann’s statement in his death bed: 0 and 1 are going to 
rule the world) that the binary numbers 0 and 1 could be used to analyze electrical circuits and thus 
used to design electronic computers. Today digital computers and electronic circuits are designed 
to implement this binary arithmetic. We study Mathematical Logic as the language and deductive 
system of Mathematics and Computer Science.
	 Generally Logic is the study of valid reasoning. But mathematical logic allows us to represent 
knowledge in a precise mathematical way and it also allows us to make valid inferences using a set of 
precise rules. It is regarded as a powerful tool for computer science because it is mainly used to verify 
the correctness of programs.

12.3.1 Statement and its truth value
	 The simplest part of Mathematical Logic is the Propositional Logic and its building blocks 
are statements or propositions. Mostly communication needs the use of language through which we 
impart our ideas. They are in the form of sentences. 
	 There are various types of sentences like
	 (1)	Declarative (Assertive type)

	 (2)	 Imperative (A command or a request type)

	 (3)	Exclamatory (Emotions, excitement type)

	 (4)	 Interrogative (Question type)

	 (5)	Open type

Definition 12.7
	 Any declarative sentence is called a statement or a proposition which is either true or false 
but not both.
	 Any imperative sentence such as exclamatory, command and any interrogative sentence 
cannot be a proposition.
	 The truth value of a statement refers to the truth or the falsity of that particular statement.  
The truth value of a true statement is true and it is denoted by T or 1. The truth value of a false 
statement is false and it is denoted by F or 0.
	 An open sentence is a sentence whose truth can vary according to some conditions, which are 
not stated in the sentence.  For instance, (i) x× =7 35  is an open sentence whose truth value 
depends on value of x . That is, if x = 5 , it is true and if x � 5, it is false. (ii) He is a bad person. 
This is an open sentence. Opinion varies from individual to individual.

George Boole 
(1815-1864)
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Example 12.11
	 Identify the valid statements from the following sentences.
Solution:
	 (1)	Mount Everest is the highest mountain of the world.
	 (2)	 3 4 8+ = .
	 (3)	 7 5 10+ > .
	 (4)	Give me that book.
	 (5)	 ( )10 7− =x .
	 (6)	How beautiful this flower is!
	 (7)	Where are you going?
	 (8)	Wish you all success.
	 (9)	This is the beginning of the end.
	 The truth value of the sentences (1) and (3) are T, while that of (2) is F. Hence they are statements. 

The sentence (5) is true for x = 3  and false for x � 3 and hence it may be true or false but not 
both. So it is also a statement.

	 The sentences (4), (6), (7), (8) are not statements, because (4) is a command, (6) is an exclamatory, 
(7) is a question while (8) is a sentence expressing one’s wishes and (9) is a paradox.

12.3.2 Compound Statements, Logical Connectives, and Truth Tables  

Definition 12.8: (Simple and Compound Statements) 

	 Any sentence which cannot be split further into two or more statements is called an atomic 
statement or a simple statement. If a statement is the combination of two or more simple 
statements, then it is called a compound statement or a molecular statement. Hence it is clear 
that any statement can be either a simple statement or a compound statement.

Example for simple statements
	 The sentences (1), (2), (3) given in example 12.11 are simple statements.

Example for Compond statements
	 Consider the statement, 	“1 is not a prime number and Ooty is in Kerala”. 
Note that the above statement is actually a combination of the following two simple statements:
	 p : 1 is not a prime number.

	 q : Ooty is in Kerala. 
	 Hence the given statement is not a simple statement. It is a compound statement.
	 From the above discussions, it follows that any simple statement takes the value either T or F . 
So it can be treated as a variable and this variable is known as statement variable or propositional 
variable. The propositional variables are usually denoted by p, q, r , .... 

Definition 12.9 : (Logical Connectives) 

	 To connect two or more simple sentences, we use the words or a group of words such as 
“and”, “or”, “if-then”, “if and only if”, and “not”. These connecting words are known as logical 
connectives.
	 In order to construct a compound statement from simple statements, some connectives are 
used. Some basic logical connectives are negation (not), conjunction (and) and disjunction(or).
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Definition 12.10
	 A statement formula is an expression involving one or more statements connected by some 
logical connectives. 

Definition 12.11: (Truth Table) 
	 A table showing the relationship between truth values of simple statements and the truth values 
of compound statements formed by using these simple statements is called truth table. 

Definition12.12

	 (i)	Let p be a simple statement. Then the negation of p  is a statement whose truth value is 
opposite to that of p . It is denoted by ¬p, read as not p .The truth value of ¬p is  T , if p
is F , otherwise it is F .

	 (ii)	Let p and q be any two simple statements. The conjunction of p and q is obtained by 
connecting p and q by the word and. It is denoted by p q∧ , read as ‘ p  conjunction q ’ 
or ‘ p  hat q ’. The truth value of p q∧  is T , whenever both p and q are T and it is F
otherwise.

	 (iii)	The disjunction of any two simple statements p and q is the compound statement obtained 
by connecting p and q by the word ‘or’. It is denoted by p q∨ , read as ‘ p  disjunction q
’ or ‘ p cup q ’.The truth value of p q∨ is F , whenever both p and q are F and it is T
otherwise.

Logical Connectives and their Truth Tables
(1) Truth Table for NOT [¬] (Negation)

Truth Table for ¬ p
p ¬ p

T F
F T
Table 12.4

(2) Truth table for AND [∧∧ ] (Conjunction)
Truth Table for p qÙ

p q p q∧∧
T T T
T F F
F T F
F F F

Table 12.5
(3) The truth tables for OR [∨∨ ] (Disjunction)

Truth Table for p q∨∨

p q p q∨∨
T T T
T F T
F T T
F F F

Table 12.6
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Example 12.12
	 Write the statements in words corresponding to ¬ p, p q∧ , p q∨ and q∨¬p, where p  is ‘It is 
cold’ and q is ‘It is raining.’ 
Solution
	 (1)	¬p	 :	 It is not cold. 
	 (2)	 p q∧ 	 :	 It is cold and raining.
	 (3)	 p q∨ 	 :	 It is cold or raining.
	 (4)	 q∨¬p	 :	 It is raining or it is not cold
	 Observe that the statement formula  p has only 1 variable p and its truth table has 2 21= ( )  
rows. Each of the statement formulae p q∧  and p q∨  has two variables p and q . The truth table 
corresponding to each of them has 4= ( )22  rows. In general, it follows that if a statement formula 
involves n  variables, then its truth table will contain 2n rows.

Example 12.13
	 How many rows are needed for following statement formulae?
		  (i)	 p t p s∨¬ ∧ ∨¬( ) 	 (ii)	 p q r s t v∧( )∨ ¬ ∨¬( )( ) ∧ ¬ ∧( )
Solution
	 (i)	 p t p s∨¬( ) ∧ ∨¬( ) contains 3 variables p s, ,and t . Hence the corresponding truth table will 

contain 2 83 =  rows. 
	 (ii)	 ( ) ( ) ( )p q r s t v∧ ∨ ¬ ∨¬ ∧ ¬ ∧( )  contains 6 variables p q r s t, , , , , and v . Hence the 

corresponding truth table will contain 2 646 =  rows.

Conditional Statement

Definition 12.13
	 The conditional statement of any two statements p and q is the statement, “If p , then q ” and 
it is denoted by p q→ . Here p is called the hypothesis or antecedent and q is called the 
conclusion or consequence. p q→ is false only if p is true and q is false. Otherwise it is true.

Truth table for p q→ 

p q p q→→
T T T
T F F
F T T
F F T

Table 12.7
Example 12.14
	 Consider p q→ : If today is Monday, then 4 + 4 = 8.
	 Here the component statements p and q are given by, 
	 p: Today is Monday; q: 4 + 4 = 8. 
	 The truth value of p q→  is T because the conclusion q is T. 
	 An important point is that p q→  should not be treated by actually considering the meanings of 
p and q in English. Also it is not necessary that p should be related to q at all.
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Consequences
	 From the conditional statement p q→ , three more conditional statements are derived. They are 
listed below.
	 (i)	 Converse statement q p→ .
	 (ii)	 Inverse statement ¬ →¬p q .
	 (iii)	 Contrapositive statement ¬ →¬q p .

Example 12.15
	 Write down the (i) conditional statement (ii) converse statement (iii) inverse statement, and  
(iv) contrapositive statement  for the two statements p and q given below.

	 p : The number of primes is infinite.			  q: Ooty is in Kerala.

Solution
	 Then the four types of conditional statements corresponding to p  and q are respectively listed 
below.
	 (i)	 p q→ : (conditional statement) “If the number of primes is infinite then Ooty is in Kerala”. 

	 (ii)	 q p→  : (converse statement) “If Ooty is in Kerala then the number of primes is infinite” 

	 (iii)	 ¬ →¬p q  (inverse statement) “If the number of primes is not infinite then Ooty is not in 

Kerala”.

	 (iv)	 ¬ →¬q p  (contrapositive statement) “If Ooty is not in Kerala then the number of primes is 
not infinite”.

Bi-conditional Statement

Definition 12.14
	 The bi-conditional statement of any two statements p  and q is the statement “ p  if and only 
if q ” and is denoted by p q↔ . Its truth value is T , whenever both p  and q have the same truth 
values, otherwise it is false.

Truth table for p q«

p q p q«

T T T
T F F
F T F
F F T

Table 12.8

Exclusive OR (EOR)[∨∨ ]
Definition 12.15

	 Let p  and q  be any two statements. Then p EOR q is such a compound statement that its 
truth value is decided by either p  or q but not both. It is denoted by p ⊽ q . The truth value of  
p ⊽ q is T whenever either p  or q is T, otherwise it is F. The truth table of p ⊽ q is given below.
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Truth Table for p p q∨∨(( )) q 

p q p p q∨∨(( )) q
T T F
T F T
F T T

F F F

Table 12.9
Example 12.16
	 Construct the truth table for p q p q∨( ) ∧ ∨¬( ) .

p q ¬ q r : p q∨∨(( )) s: p q∨∨¬¬(( )) r Ù s

T T F F T F

T F T T F F

F T F T F F

F F T F T F
Table 12.10

	 Also the above result can be proved without using truth tables. This proof will be provided after 
studying the logical equivalence. 

12.3.3 Tautology, Contradiction, and Contingency

Definition 12.16

	 A statement is said to be a tautology if its truth value is always T irrespective of the truth 
values of its component statements. It is denoted by 𝕋.

Definition 12.17

	 A statement is said to be a contradiction if its truth value is always F irrespective of the truth 
values of its component statements. It is denoted by 𝔽.

Definition 12.18

	 A statement which is neither a tautology nor a contradiction is called contingency

Observations 

	 1.	For a tautology, all the entries in the column corresponding to the statement formula will 
contain T. 

	 2.	For a contradiction, all the entries in the column corresponding to the statement formula will 
contain F.        

	 3.	The negation of a tautology is a contradiction and the negation of a contradiction is a tautology.

	 4.	The disjunction of a statement with its negation is a tautology and the conjunction of a 
statement with its negation is a contradiction. That is p p∨¬  is a tautology and p p∧¬  is a 
contradiction. This can be easily seen by constructing their truth tables as given below.	
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Example for tautology

    p ¬p p p∨∨¬¬

T F T

F T T

Table 12.11

	 Since the last column of   p p∨¬ contains only T,   p p∨¬ is a tautology.

Example for contradiction

p ¬ p p∧∧ ¬p

T F F

F T F

Table 12.12
	 Since the last column contains only F, p p∧¬  is a contradiction.

Note
	 All the entries in the last column of Table 12.10 are F and hence p q p q∨( ) ∧ ∨¬( ) is a 
contradiction.

Example for contingency

p q p q↔↔ ¬ q p q→→¬¬¬ q ¬ ¬¬ →→¬¬( )p q¬ q) ( )p q↔↔  ∧∧  ¬ ¬¬ →→¬¬( )p q¬ q)

T T T F F T T
T F F T T F F
F T F F T F F
F F T T T F F

Table 12.13
	 In the above truth table, the entries in the last column are a combination of T and F. The given 
statement is neither a tautology nor a contradiction. It is a contingency.

12.3.4  Duality

Definition 12.19

	 The dual of a statement formula is obtained by replacing ∨  by ∧∧ , ∧∧  by ∨ , T by F  
F by  T . A dual is obtained by replacing 𝕋 (tautology) by 𝔽 (contradiction), and, 𝔽 by 𝕋. 

Remarks
	 (1)	 The symbol ¬  is not changed while finding the dual.
	 (2)	 Dual of a dual is the statement itself.
	 (3)	 The special statements 𝕋 (tautology) and 𝔽 (contradiction) are duals of each other.
	 (4)	 T is changed to F  and vice-versa.  
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Principle of Duality
	 If a compound statement S1 contains only ¬ , ∧ , and ∨  and statement S2  arises from S1 by 
replacing ∧  by ∨ , and, ∨  by ∧  then S1 is a tautology if and only if S2 is a contradiction.
For example
	 (i)	The dual of ( ) ( )p q r s∨ ∧ ∧ ∨𝔽 is ( ) ( )p q r s∧ ∨ ∨ ∧𝕋.
	 (ii)	The dual of p ∧ [¬ q p q∨ ∧ ∨( )  ¬ r ] is p∨  [¬ q p q∧ ∨ ∧( ) ¬ r ].

12.3.5 Logical Equivalence

Definition 12.20
	 Any two compound statements A and B are said to be logically equivalent or simply equivalent 
if the columns corresponding to A and B in the truth table have identical truth values. The logical 
equivalence of the statements A  and B is denoted by A B≡ or A B⇔ .

	 From the definition, it is clear that, if A  and B are logically equivalent, then A BÛ  must be 
a tautology.

Some Laws of Equivalence
1. Idempotent Laws
	 (i) p p p∨ ≡ 	 (ii) p p p∧ ≡ .
Proof

p p p p∨∨ p p∧∧

T T T T

F F F F

Table 12.14

	 In the above truth table   for both p , p p∨  and p p∧  have the same truth values. Hence 
p p p∨ ≡ and p p p∧ ≡ .

2. Commutative Laws
	 (i) p q q p∨ ≡ ∨   		 (ii) p q q p∧ ≡ ∧ .

Proof (i)
p q p q∨∨ q p∨∨

T T T T
T F T T
F T T T
F F F F

Table 12.15
	 The columns corresponding to p q∨  and q p∨  are identical. Hence p q q p∨ ≡ ∨ . 
	 Similarly (ii) p q q p∧ ≡ ∧  can be proved.

3. Associative Laws
	 (i) p q r p q r∨ ∨( ) ≡ ∨( )∨ 	 (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .
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Proof
	 The truth table required for proving the associative law is given below.

p q r p q∨∨ q r∨∨ p q r∨∨(( )) ∨∨ p q r∨∨ ∨∨(( ))

T T T T T T T

T T F T T T T

T F T T T T T

T F F T F T T

F T T T T T T

F T F T T T T

F F T F T T T

F F F F F F F

Table 12.16
	 The columns corresponding to p q r∨( )∨  and p q r∨ ∨( )  are identical.

	 Hence p q r p q r∨ ∨( ) ≡ ∨( )∨ . 

	 Similarly, (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧  can be proved.

4. Distributive Laws
	 (i) p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( ) 	 (ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

Proof (i)
p q r q r∧∧ p q r∨∨ ∧∧( ) p q∨∨ p r∨∨ ( ) ( )p q p r∨∨ ∧∧ ∨∨
T T T T T T T T
T T F F T T T T
T F T F T T T T
T F F F T T T T
F T T T T T T T
F T F F F T F F
F F T F F F T F
F F F F F F F F

Table 12.17

	 The columns corresponding to p q r∨ ∧( )  and ( ) ( )p q p r∨ ∧ ∨  are identical. Hence
p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( ) . 

	 Similarly (ii) p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )  can be proved.

5. Identity Laws
	 (i) p∨ 𝕋≡𝕋 and p∨ 𝔽≡ p 	 (ii) p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

p 𝕋 𝔽 p∨∨𝕋 p∨∨𝔽
T T F T T

F T F T F

Table12.18

12th_Maths_Vol 2_EM_CH 12_Discrete Mathematics.indd   245 16-12-2021   12:34:13



246XII - Mathematics

	 (i)	The entries in the columns corresponding to p∨ 𝕋 and 𝕋 are identical and hence they are 
equivalent.  The entries in the columns corresponding to p∨ 𝔽 and p are identical and hence 
they are equivalent.

Dually 
	 (ii)	 p ∧𝕋≡ p  and p ∧ 𝔽≡𝔽 can be proved.
6. Complement Laws
	 (i) p p∨¬ ≡ 𝕋 and p p∧¬ ≡ 𝔽	 (ii) ¬𝕋 ≡  𝔽 and ¬𝔽 ≡  𝕋
Proof

p ¬p 𝕋 ¬𝕋 𝔽 ¬𝔽 p p∨∨¬¬ p p∧∧¬¬

T F T F F T T F
F T T F F T T F

Table 12.19

	 (i)	 The entries in the columns corresponding to p p∨¬ and 𝕋 are identical and hence they are 
equivalent.  The entries in the columns corresponding to p p∧¬  and 𝔽 are identical and 
hence they are equivalent.

	 (ii)	 The entries in the columns corresponding to ¬𝕋 and 𝔽 are identical and hence they are 
equivalent. The entries in the columns corresponding to ¬𝔽 and 𝕋 are identical and hence 
they are equivalent.

7. Involution Law or Double Negation Law

	 ¬(¬ p) ≡  p
Proof

p ¬ p ¬(¬ p)

T F T

F T F

Table 12.20

	 The entries in the columns corresponding to ¬ ¬( )p  and p  are identical and hence they are 
equivalent.  
8. de Morgan’s Laws

	 (i) ¬ ∧( )p q º  ¬ ∨¬p q 	 (ii) ¬ ∨( ) ≡ ¬ ∧¬p q p q

Proof of (i)
p q ¬p ¬q p q∧∧ ¬¬ ∧∧(( ))p q ¬¬ ∨∨¬¬p q

T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

Table 12.21
	 The entries in the columns corresponding to ¬ ∧( )p q  and ¬ ∨¬p q  are identical and hence they 
are equivalent. Therefore ¬ ∧( )p q  º  ¬ ∨¬p q .  Dually (ii) ¬ ∨( ) ≡ ¬ ∧¬p q p q  can be proved.
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9. Absorption Laws 
	 (i) p p q p∨ ∧ ≡( ) 	 (ii) p p q p∧ ∨ ≡( )

p q p q∧∧ p q∨∨ p p q∨∨ ∧∧(( )) p p q∧∧ ∨∨(( ))

T T T T T T

T F F T T T

F T F T F F

F F F F F F

Table 12.22

	 (i)	The entries in the columns corresponding to p p q∨ ∧( ) and p are identical and hence they 
are equivalent.

	 (ii)	The entries in the columns corresponding to p p q∧ ∨( ) and p are identical and hence they 
are equivalent.

Example 12.17
	 Establish the equivalence property: p q p q→ ≡¬ ∨
Solution

p q ¬p p → q ¬¬ ∨∨p q

T T F T T

T F F F F

F T T T T

F F T T T

Table 12.23

	 The entries in the columns corresponding to p q→  and ¬ ∨p q are identical and hence they are 
equivalent.

Example 12.18
	 Establish the equivalence property connecting the bi-conditional with conditional:
	 p q p q q p↔ ≡ → ∧ →( ) ( )

Solution
p q p q→→ q p→→ p q↔↔ ( ) ( )p q q p→→ ∧∧ →→

T T T T T T

T F F T F F

F T T F F F

F F T T T T

Table 12.24

	 The entries in the columns corresponding to p q↔ and ( ) ( )p q q p→ ∧ → are identical and 
hence they are equivalent.
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Example 12.19
	 Using the equivalence property, show that p q p q p q↔ ≡ ∧ ∨ ¬ ∧¬( ) ( ) .
Solution
	 It can be obtained by using examples 12.15 and 12.16 that 
		  p q↔ 	≡ 	( ) ( )¬ ∨ ∧ ¬ ∨p q q p 	 ... (1)

			  ≡ 	( ) ( )¬ ∨ ∧ ∨¬p q p q  (by Commutative Law)	 ... (2)

			  ≡ 	( ( )) ( ( ))¬ ∧ ∨¬ ∨ ∧ ∨¬p p q q p q (by Distributive Law)

			  ≡ 	( ) ( ) ( ) ( )¬ ∧ ∨ ¬ ∧¬ ∨ ∧ ∨ ∧¬p p p q q p q q  (by Distributive Law)

			  ≡ 	𝔽∨ ¬ ∧¬ ∨ ∧ ∨( ) ( )p q q p 𝔽; (by Complement Law)

			  ≡ 	( ) ( )¬ ∧¬ ∨ ∧p q q p ; (by Identity Law)

			  ≡ 	( ) ( )p q p q∧ ∨ ¬ ∧¬ ; (by Commutative Law)

	 Finally (1) becomes p q« 	º 	( ) ( )p q p q∧ ∨ ¬ ∧¬ .

EXERCISE 12.2
	 1.	 Let p  : Jupiter is a planet  and q 	: India is an island be any two simple statements. Give 

verbal sentence describing each of the following statements.

		  (i)	¬p	 (ii) p q∧¬ 	 (iii) ¬ ∨p q 	 (iv) p q→¬ 	 (v) p q↔ 	

	 2.	 Write each of the following sentences in symbolic form using statement variables p and q .

		  (i)	19 is not a prime number and all the angles of a triangle are equal.
	 	 (ii)	19 is a prime number or all the angles of a triangle are not equal
	 	 (iii)	19 is a prime number and all the angles of a triangle are equal
	 	 (iv)	19 is not a prime number

	 3.	 Determine the truth value of each of the following statements

		  (i)	If 6 2 5+ = , then the milk is white.
	 	 (ii)	China is in Europe or 3  is an integer
	 	 (iii)	It is not true that 5 5 9+ =  or Earth is a planet
	 	 (iv)	11 is a prime number and all the sides of a rectangle are equal

	 4.	 Which one of the following sentences is a proposition?

		  (i)	 4 7 12+ = 	 (ii) What are you doing?	 (iii) 3 81n n≤ ∈, 

	 	 (iv)	Peacock is our national bird	 (v) How tall this mountain is!

	 5.	 Write the converse, inverse, and contrapositive of each of the following implication.

		  (i)	If x  and y  are numbers such that x y= , then x y2 2=
	 	 (ii)	If a quadrilateral is a square then it is a rectangle

	 6.	 Construct the truth table for the following statements.

		  (i)	¬ ∧¬p q 	 (ii) ¬ ∧¬( )p q 	 (iii) ( )p q q∨ ∨¬ 	 (iv) ( ) ( )¬ → ∧ ↔p r p q
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	 7.	 Verify whether the following compound propositions are tautologies or contradictions or 
contingency

		  (i)	 ( ) ( )p q p q∧ ∧¬ ∨ 	 (ii) ( )p q p q∨ ∧¬( )→
		  (iii)	 ( ) ( )p q p q→ ↔ ¬ → 	 (iv) ( ) ( ) ( )p q q r p r→ ∧ →( )→ →

	 8.	 Show that (i) ¬ ∧ ≡¬ ∨¬( )p q p q      (ii) ¬ → ≡ ∧¬( )p q p q .

	 9.	 Prove that   q p p q→ ≡¬ →¬

	 10.	 Show that p q® and q p® are not equivalent

	 11.	 Show that ¬ ↔ ≡ ↔¬( )p q p q

	 12.	 Check whether the statement p q p® ®( )  is a tautology or a contradiction without using 

the truth table.

	 13.	 Using truth table check whether the statements¬ ∨ ∨ ¬ ∧( ) ( )p q p q  and ¬p are logically equivalent.

	 14.	 Prove p q r p q r→ →( )≡ ∧ →( )  without using truth table.

	 15.	 Prove that p q r p q r→ ¬ ∨ ¬ ∨ ¬ ∨≡( ) ( ) using truth table.

EXERCISE 12.3

Choose the correct or the most suitable answer from the given four alternatives.

	 1.	A binary operation on a set S is a function from
	 	(1) S S® 	 (2) S S S×( )→ 	 (3) S S S→ ×( )	 (4) S S S S×( )→ ×( )

	 2.	Subtraction is not a binary operation in
	 	(1)  	 (2)  	 (3)  	 (4) 

	 3.	Which one of the following is a binary operation on  ?
	 	(1) Subtraction	 (2) Multiplication	 (3) Division	 (4) All the above
	 4.	In the set   of real numbers ‘* ’ is defined as follows. Which one of the following is not a 

binary operation on ?
	 	(1) a b∗ =min ( )a b× 	 (2) a b∗ =  max ( , )a b
	 	(3) a b a∗ = 		  (4) a b ab∗ =

	 5.	The operation *defined by a b ab
∗ =

7
 is not a binary operation on

	 	(1) + 	 (2)  	 (3)  	 (4) 

	 6.	In the set   define a b a b ab = + + . For what value of y, 3 5 7 y( )= ?

	 	(1) y =
2

3
	 (2) y=−2

3
	 (3) y=−3

2
	 (4) y = 4

	 7.	If a b a b∗ = +2 2  on the real numbers then *  is
	 	(1) commutative but not associative	 (2) associative but not commutative
	 	(3) both commutative and associative	 (4) neither commutative nor associative

12th_Maths_Vol 2_EM_CH 12_Discrete Mathematics.indd   249 16-12-2021   12:34:29



250XII - Mathematics

	 8. 	Which one of the following statements has the truth valueT ?
	 	(1) sin x is an even function.
	 	(2) Every square matrix is non-singular
	 	(3) The product of complex number and its conjugate is purely imaginary

		 (4) 5 is an irrational number

	 9. 	Which one of the following statements has truth valueF ?
	 	(1) Chennai is in India or 2  is an integer

	 	(2) Chennai is in India or 2  is an irrational number

	 	(3) Chennai is in China or 2  is an integer

	 	(4) Chennai is in China or 2  is an irrational number

	 10.	If a compound statement involves 3 simple statements, then the number of rows in the truth 
table is

	 	(1) 9 	 (2) 8 	 (3) 6 	 (4) 3

	 11.	Which one is the inverse of the statement ( ) ( )p q p q∨ → ∧ ?

	 	(1) ( ) ( )p q p q∧ → ∨ 	 (2) ¬ ∨ → ∧( ) ( )p q p q

	 	(3) ( ) ( )¬ ∨¬ → ¬ ∧¬p q p q 	 (4) ( ) ( )¬ ∧¬ → ¬ ∨¬p q p q

	 12. 	Which one is the contrapositive of the statement ( )p q r∨ → ?
	 	(1) ¬ → ¬ ∧¬r p q( ) 	 (2) ¬ → ∨r p q( )

	 	(3) r p q→ ∧( ) 		  (4) p q r→ ∨( )

	 13.	The truth table for ( )p q q∧ ∨¬ is given below

p q ( ) ( )p q ¬q∧ ∨

T T (a)

T F (b)

F T (c)

F F (d)

Which one of the following is true?
			  (a)	 (b)	 (c)	 (d)

	 	(1)	 T	 T	 T	 T

		 (2)	 T	 F 	 T	 T

	 	(3)	 T	 T	 F	 T

		 (4)	 T	 F 	 F	 F

	 14.	In the last column of the truth table for ¬ ∨¬( )p q  the number of final outcomes of the truth 
value ' 'F  are

	 	(1) 1	 (2) 2	 (3) 3	 (4) 4
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	 15.	Which one of the following is incorrect? For any two propositions p and q , we have
	 	(1) ¬ ¬ ∨ ≡¬ ∧¬( )p q p q 	 (2) ¬ ¬ ∧ ≡¬ ∨¬( )p q p q
	 	(3) ¬ ¬ ∨ ≡¬ ∨¬( )p q p q 	 (4) ¬ ¬ ¬ ≡( )p p

	 16.	
p q p q p∧ →¬( )

T T (a)

T F (b)

F T (c)

F F (d)

	 	Which one of the following is correct for the truth value of   p q p∧( )→¬ ¬ p?

			  (a)	 (b)	 (c)	 (d)

	 	(1)	 T	 T	 T	 T
		 (2)	 F	 T	 T	 T
	 	(3)	 F	 F	 T	 T
		 (4)	 T	 T	 T	 F
	 17.	The dual of ¬ ¬ ∨ ∨ ∨ ∧¬( ) [ ( )]p q p p r  is

	 	(1)  ¬ ¬ ∧ ∧ ∨ ∧¬( ) [ ( )]p q p p r 	 (2) ( ) [ ( )]p q p p r∧ ∧ ∧ ∨¬

	 	(3)  ¬ ¬ ∧ ∧ ∧ ∧( ) [ ( )]p q p p r 	 (4) ¬ ¬ ∧ ∧ ∧ ∨¬( ) [ ( )]p q p p r

	 18. 	The proposition p p q∧ ¬ ∨( )  is
	 	(1) a tautology	 	 (2) a contradiction
	 	(3) logically equivalent to p qÙ 	 (4) logically equivalent to p qÚ

	 19. 	Determine the truth value of each of the following statements:
		 (a) 4 2 5+ = and 6 3 9+ = 	 (b) 3 2 5+ =  and 6 1 7+ =
		 (c) 4 5 9+ = and1 2 4+ = 	 (d) 3 2 5+ =  and 4 7 11+ =

			  (a)	 (b)	 (c)	 (d)

	 	(1)	 F	 T	 F	 T

		 (2)	 T	 F	 T	 F

	 	(3)	 T 	 T	 F	 F

		 (4)	 F	 F	 T	 T

	 20.	Which one of the following is not true?
	 	(1) Negation of a negation of a statement is the statement itself.
	 	(2) If the last column of the truth table contains only T then it is a tautology.
	 	(3) If the last column of its truth table contains only F then it is a contradiction
	 	(4) If p and q are any two statements then p q« is a tautology.
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SUMMARY
	 (1)	  A binary operation*  on a non-empty set S  is a rule, which associates to each ordered pair 

( , )a b  of elements a b,  in S  an unique element a b*  in S .
	 (2)	 Commutative property: Any binary operation *defined on a nonempty set S is said to satisfy 

the commutative property, if a b b a a b S∗ = ∗ ∈∀, , .
	 (3)	 Associative property: Any binary operation*defined on a nonempty set S is said to satisfy 

the associative property, if a b c a b c a b c S∗ ∗ = ∗ ∗ ∈∀( ) ( ) , , , .
	 (4)	 Existence of identity property:  An element e SÎ is said to be the Identity Element of  S under 

the binary operation *  if for all  a SÎ we have that  a e a∗ = and  e a a∗ = .
	 (5)	 Existence of inverse property: If an identity element  e exists and if for every a SÎ , there 

exists b  in S  such that a b e∗ = and b a e∗ =  then b SÎ said to be the Inverse Element of  a . 
In such instance, we write b a= −1 .

	 (6)	 Uniqueness of Identity:  In an algebraic structure the identity element (if exists) must be 
unique.

	 (7)	 Uniqueness of Inverse: In an algebraic structure the inverse of an element (if exists) must be 
unique.

	 (8)	 A Boolean Matrix is a real matrix whose entries are either 0 or 1.

	 (9)	 Modular arithmetic: Let n be a positive integer greater than 1  called the modulus. We say 
that two integers a and b are congruent modulo n if b − a is divisible by n.  In other words 
a b≡ (mod n) means a b n k− = ⋅ for some integer k and b  is the least non-negative integer 
reminder when a  is divided by n. ( )0 1≤ ≤ −b n

	(10)	 Mathematical logic is a study of reasoning through mathematical symbols.
	(11)	 Let p be a simple statement. Then the negation of p  is a statement whose truth value is 

opposite to that of p . It is denoted by p, read as not p .The truth value of  p  is T , if p is 
F , otherwise it is F .

	(12)	 Let p  and q  be any two simple statements. The conjunction of p  and q  is obtained by 
connecting p  and q  by the word and. It is denoted by p q∧ , read as ‘ p   conjunction q ’ or 
‘ p  hat q ’. The truth value of p q∧  is T , whenever both p  and q  are T  and it is F  otherwise.

	(13)	 The disjunction of any two simple statements p and q is the compound statement obtained by 
connecting p and q by the word ‘or’. It is denoted by p q∨ , read as‘ p  disjunction q ’ or ‘ p
cup q ’.The truth value of p q∨  is F , whenever both p and q are F and it is T otherwise.

	(14)	 The conditional statement of any two statements p  and q  is the statement, ‘If p , then q ’ 
and it is denoted by p q→ . The statement p q→  has a truth value F when q has the truth 
value F and p has the truth value T; otherwise it has the truth value T.

	(15)	 The bi-conditional statement of any two statements p  and q is the statement ‘ p  if and only 
if q ’ and is denoted by p q↔  The statement p q↔  has the truth value T whenever both p and 
q have identical truth values; otherwise has the truth value F.

	(16)	 A statement is said to be a tautology if its truth value is always T irrespective of the truth 
values of its component statements. It is denoted by 𝕋.

12th_Maths_Vol 2_EM_CH 12_Discrete Mathematics.indd   252 16-12-2021   12:34:42



Discrete Mathematics253

	(17)	 A statement is said to be a contradiction if its truth value is always F irrespective of the truth 
values of its component statements. It is denoted by 𝔽.

	(18)	 A statement which is neither a tautology nor a contradiction is called contingency.

(19)	   Any two compound statements A and B are said to be logically equivalent or simply equivalent 
if the columns corresponding to A  and B  in the truth table have identical truth values. The 
logical equivalence of the statements A  and B is denoted by A B≡  or A B⇔ .  Further note 
that if A  and B are logically equivalent, then A B↔  must be a tautology.

	(20)	 Some laws of equivalence:
		 Idempotent Laws:	 (i)	 p p p∨ ≡ (ii) p p p∧ ≡ .

		 Commutative Laws:	 (i)	 p q q p∨ ≡ ∨   (ii) p q q p∧ ≡ ∧ .

		 Associative Laws:	 (i)	 p q r p q r∨ ∨( ) ≡ ∨( )∨ (ii) p q r p q r∧ ∧( ) ≡ ∧( ) ∧ .

		 Distributive Laws:  	 (i)	 p q r p q p r∨ ∧ ≡ ∨ ∧ ∨( ) ( ) ( ) 	

					   (ii)	 p q r p q p r∧ ∨ ≡ ∧ ∨ ∧( ) ( ) ( )

		 Identity Laws:          	 (i)	 p∨ 𝕋 ≡𝕋 and p∨ 𝔽≡ p

					   (ii)	 p ∧𝕋≡ p and p ∧ 𝔽≡𝔽

		 Complement Laws :  	 (i)	 p p∨¬ ≡𝕋 and p p∧¬ ≡ 𝔽

					   (ii)	 ¬ 𝕋 ≡  𝔽  and ¬ 𝔽≡  𝕋 

		 Involution Law or Double Negation Law: ¬(¬p) p

		 de Morgan’s Laws: 	 (i)	 ¬ ∧ ≡ ¬ ∨¬( )p q p q  (ii) ¬ ∨ ≡ ¬ ∨¬( )p q p q

		 Absorption Laws:      	 (i)	 p p q p∨ ∧ ≡( )    (ii)  p p q p∧ ∨ ≡( )
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