ICSE 2024 EXAMINATION

CHEMISTRY

SAMPLE PAPER - 7

Time allowed: Two hours

Max. Marks: 80

Answers to this Paper must be written on the paper provided separately. You will not be allowed to write during the first 15 minutes. This time is to be spent in reading the question paper. The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B. The intended marks for questions or parts of questions are given in brackets [].

	CONTRACTOR OF THE PROPERTY OF	CTION A tions from this Section.)	
Question 1 : Choose one cor	rect answer to the questi	ons from the given option:	1: [15]
(i) This metal is a liquid at	room temperature.		*
(a) Potassium	(b) Zinc	(c) Gold	(d) Mercury
(ii) Hydroxide of this metal	is soluble in sodium hydr	oxide solution.	
(a) Magnesium	(b) Lead	(c) Silver	(d) Copper
(iii) In the periodic table alk	ili metals are placed in the	e group	
(a) 1	(b) 11	(c) 17	(d) 18
(iv) Hydrogen chloride gas b	eing highly soluble in wat	ter is dried by :	
(a) Anhydrous calcium	chloride	(b) Phosphorous pents	oxide
(c) Quick lime		(d) Concentrated sulphi	ric scid
(v) The brown ring test is u	sed for detection of:		
(a) CO ₃ ²	(b) NO ₃ -	(c) SO ₃ ² -	(d) CI
(vi) When dilute sulphuric ac	eid reacts with iron sulphic	de, the gas evolved is	
(a) Hydrogen sulphide	(b) Sulphur dioxide	(e) Sulphur trioxide	(d) Vapour of sulphuric acid
(vii) The functional group pre	ment in acetic acid is:		
(a) Ketonic C = O	(b) Hydroxyl -OH	(c) Aldehydic -CHO	(d) Carboxyl -COOH
(viii) The unsaturated hydroca	rbons undergo:	9.7	
(a) A substitution reacti	on	(b) An oxidation reaction	DII.
(c) An addition reaction		(d) None of these	
(ix) The number of C-H bon	ds in ethane molecule are		
(a) Four	(b) Six	(c) Bight	(d) Ten
(z) Which of the following	property does not match v	vith elements of the halogen	family?
(a) They have seven ele	ectrons in their valence sh	elL	
(b) They are highly read	ctive chemically.		
(c) They are metallic in	nature.		
(d) They are distance in	n their molecular form.		

(:\ A1-			and Blade and		-141-411	
numbe	ment with the atomic nu	imber 19 will n	nost nkery comor	ne enemicany	with the element who	ose atom
(a) 17		11	(c) 18		(d) 20	
	vapour density of a comp			la is	(u) 20	
(a) C		C ₂ Br ₄	(c) C ₂ Br ₆	16 15	(d) C ₂ Br ₈	
	o main metals in Bronze		(c) C ₂ D ₁₆		(a) C ₂ D ₁₈	
		Copper and lead	(c) Conne	r and nickel	(d) Copper and tin	
	rticles present in strong	The second secon		and moker	(a) copper una un	
		mainly ions		nd molecules	(d) only atoms	
man and the second second	m of the Fountain Expen			id includates	(a) only along	
7	Cl turns blue litmus red	inicire is to pro		denser than air		
	Cl is highly soluble in wa	iter		imes in moist a		
- 7	10 4 -7		1 -7			
Question 2	1 1 1 1 6 11					
(1) (a) Co	py and complete the follo		14		Antonio antonio all'	[
	Name of the process	Catalyst	Temperature	Equation for	the reaction	
	Haber's Process					
(b) Ho	w is Ammonia separated	from unreacted	Nitrogen and Hye	drogen?		
(ii) Match	the salts given in column	I with their me	ethod of prepara	tion given in C	olumn II.	[:
	Column I		Column 1	п		
	(a) Pb(NO ₃) ₂ from Pb	0 1	Simple displacer			
		100	Titration	ALCALL.		
	(b) MgCl ₂ from Mg	10-25		- 11		
	(c) FeCl ₃ from Fe		Neutralization			
	(d) NaNO ₃ from NaO	60.4	Precipitation			
	(e) ZnCO ₃ from ZnSO)4 5.	Combination			
(iii) Compl	ete the following by choo	sing correct ans	wers from the br	acket:		[:
(a) M	etals are good	(oxidizing	agents / reducing	agents) because	they are electron	
(a	cceptors / donors).					
(b) El	ectrovalent compounds ha	ave	(high / low) n	nelting points.		
(c) H	gher the pH value of a s	olution, the mor	e	(acidic / alkalin	e) it is.	
(d)	(AgCl / PbC	Cl ₂), a white pre	cipitate is soluble	in excess NH	OH.	
	onversion of ethene to eth					
	y the following:		77 27			[:
	ne tendency of an atom to	attract electron	s to itself when	combined in a c	ompound.	
	substance that conducts e					
	ne catalyst used in the con					
(d) Th	ne type of reactions alken	es undergo.				
(e) A	alloy of lead and tin the	at is used in ele	ctrical circuits.			
(v) (a) Giv	e the structural formulae	of each of the	following			Į.
1.	2-methyl propane	2. Ethanoic aci	id 3. Butan	- 2- ol		
	quation for the reaction was follows:			ough bromine d	issolved in carbon te	trachlori
		4	$\xrightarrow{\text{Br}_2/\text{CCl}_4} \overset{\text{CH}_2\text{Br}}{\longrightarrow} $			
		A —	→ CH _a Br			

- 1. Draw the structure of A.
- 2. State your observation during this reaction.

Section B (Attempt any four questions.)				
Question 3				
(i) (a) Name the product formed at the anode during the electrolysis of electrodes.	f acidified water using platinum [2]			
(b) Name the metallic ions that should be present in the electrolyte when electroplated with silver.				
(ii) Write the products and balance the equation.	[2]			
(a) $NH_3 + Cl_2 \longrightarrow$ (b) $CuO + NH_3 \longrightarrow$				
(iii) Arrange the following as per the instruction given in the brackets:	[3]			
(a) He, Ar, Ne (Increasing order of the number of electron shells)				
(b) Na, Li, K (increasing Ionisation Energy)				
(c) F, Cl, Br (Increasing electronegativity)				
(iv) Complete the following by selecting the correct option from the choices give				
(a) The metal which does not react with water or dilute H ₂ SO ₄ but re (Al/Cu/Zn/Fe)	eacts with concentrated H ₂ SO ₄ is			
(b) The metal whose oxide, which is amphoteric, is reduced to metal by ca	rbon reduction			
	(Fe/Mg/Pb/Al)			
(c) The divalent metal whose oxide is reduced to metal by electrolysis of it	s fused salt is			
	(Al/Na/Mg/K)			
Question 4				
(i) (a) Name the process by which impure ore of aluminium gets purified by alkali.	[2]			
(b) Write the equation for the formation of aluminium at the cathode during	the electrolysis of alumina.			
(ii) (a) If 6 litres of hydrogen and 4 litres of chlorine are mixed and exploded formed, find the volume of the residual gas.	and if water is added to the gases			
(b) If the empirical formula of a compound is CH and it has a vapour densit	y of 13, find the molecular formula			
of the compound.	[2]			
(iii) Answer the following questions pertaining to laboratory preparation of Hydro	ogen chloride: [3]			
(a) Write an equation for the laboratory preparation of Hydrogen Chloride.				
(b) Name the drying agent used.				
(c) Name the method of collecting Hydrogen chloride gas.				
(iv) Explain the following:	[3]			
(a) Direct absorption of HCl gas in water is not preferred.				
(b) All glass apparatus is used in the laboratory preparation of HNO ₃ .				
(c) NaCl has a high melting point.				
Question 5				
(i) (a) Name the drying agent used for drying ammonia.	[2]			
(b) Why should the apparatus for the collection of ammonia gas be perfectly	y dry?			
(ii) Identify the cations in each of the following case:	[2]			
(a) NaOH solution when added to the Solution (A) gives a reddish brown p	precipitate.			

- (b) NH₄OH solution when added to the Solution (B) gives white precipitate which does not dissolve in excess of NH₄OH.
- (iii) Write a balanced chemical equation for each of the following:

[3]

- (a) Burning of ethane in plentiful supply of air.
- (b) Action of water on Calcium carbide.
- (c) Heating of Ethanol at 170°C in the presence of conc. Sulphuric acid.
- (iv) State one relevant observation for each of the following reactions:

[3]

- (a) Addition of ethyl alcohol to acetic acid in the presence of concentrated sulphuric acid.
- (b) Action of dilute Hydrochloric acid on iron (II) sulphide.
- (c) Action of Sodium hydroxide solution on ferrous sulphate solution.

Question 6

- (i) (a) If 150 cc of gas A contains X molecules, how many molecules of gas B will be present in 75 cc of B? [2] The gases A and B are under the same conditions of temperature and pressure.
 - (b) Name the law on which the above problem is based.
- (ii) What volume of oxygen is required to burn completely 90 dm³ of butane under similar conditions of temperature and pressure?

$$2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$$
 [2]

- (iii) Solution A is a sodium hydroxide solution. Solution B is a weak acid. Solution C is dilute sulphuric acid. Which solution will [3]
 - (a) liberate sulphur dioxide from sodium sulphite.
 - (b) give a white precipitate with zinc sulphate solution.
 - (c) contain solute molecules and ions?
- (iv) Mention the property of conc. H₂SO₄ exhibited in each of the following reactions with:

- (a) sugar
- (b) metallic chloride
- (c) non-metal such as carbon.

Ouestion 7

(i) A compound gave a following data:

[2]

[3]

C = 57.82%, O = 38.58% and the rest hydrogen. Its relative molecular mass is 166.

Find its empirical formula and molecular formula.

$$[C = 12, O = 16, H = 1]$$

(ii) (a) Name a gaseous hydrocarbon commonly used for welding purposes.

[2]

- (b) What is the number of C-H bonds in ethane molecule?
- (iii) Copy

y and complete the following table related to electrolysis.	[3]

S. No.	Name of Electrolyte	Name of Cathode	Name of Anode	Product at Cathode	Product at Anode	
1.	CuSO ₄ (aq.)	Copper	Copper			
2.	PbBr ₂ (molten)	Platinum	Platinum			

(iv) Refer to the flow chart diagram below and give balanced equations with conditions, if any, for the following conversions A to D. [3]

Ouestion 8

- (i) Draw an electron dot diagram to show the formation of each of the following compounds:
- [2]

- (a) Methane
- (b) Magnesium chloride

$$[H = 1, C = 6, Mg = 12, Cl = 17]$$

(ii) Answer the following questions:

[2]

- (a) How will you distinguish between Ammonium hydroxide and Sodium hydroxide using copper sulphate solution?
- (b) How will you distinguish between dilute hydrochloric acid and dilute sulphuric acid using lead nitrate solution?
- (iii) Identify the substance underlined, in each of the following cases:

[3]

- (a) Cation that does not form a precipitate with ammonium hydroxide but forms one with sodium hydroxide.
- (b) The electrolyte used for electroplating an article with silver.
- (c) The particles present in a liquid such as kerosene, that is a non-electrolyte.
- (iv) In Period 3 of the Periodic Table, element B is placed to the left of element A. [3]

On the basis of this information, choose the correct word from the brackets to complete the following statements:

- (a) The element B would have (lower/higher) metallic character than A.
- (b) The element A would probably have (lesser/higher) electron affinity than B.
- (c) The element A would have (greater/smaller) atomic size than B.

SOLUTION

Time allowed: Two hours

Max. Marks: 80

Answers to this Paper must be written on the paper provided separately.

You will not be allowed to write during the first 15 minutes.

This time is to be spent in reading the question paper.

The time given at the head of this Paper is the time allowed for writing the answers.

Section A is compulsory. Attempt any four questions from Section B. The intended marks for questions or parts of questions are given in brackets $[\]$.

		SECT (Attempt all question	ΓΙΟΝ ons fro				
Ques	tion 1 : Choose one corre	ct answer to the questio	ns fro	om the given options :			[15]
(i)	This metal is a liquid at ro	oom temperature.					
	(a) Potassium	(b) Zinc	(c)	Gold	(d)	Mercury	
(ii)	Hydroxide of this metal is	soluble in sodium hydro:	xide s	olution.			
	(a) Magnesium	(b) Lead	(c)	Silver	(d)	Copper	
(iii)	In the periodic table alkali	metals are placed in the	group				
	(a) 1	(b) 11	(c)	17	(d)	18	
(iv)	Hydrogen chloride gas bei	ng highly soluble in wate	r is d	ried by :			
	(a) Anhydrous calcium ch	nloride	(b)	Phosphorous penta oxid	de		
	(c) Quick lime		(d)	Concentrated sulphuric	acid	I	
(v)	The brown ring test is use	d for detection of:					
	(a) CO_3^{2-}	(b) NO_3^-	(c)	SO_3^{2-}	(d)	Cl ⁻	
(vi)	When dilute sulphuric acid	l reacts with iron sulphide	e, the	gas evolved is			
	(a) Hydrogen sulphide	(b) Sulphur dioxide	(c)	Sulphur trioxide	(d)	Vapour of sulphuric	acid
(vii)	The functional group prese	ent in acetic acid is:					
	(a) Ketonic $C = O$	(b) Hydroxyl –OH	(c)	Aldehydic -CHO	(d)	Carboxyl –COOH	
(viii)	The unsaturated hydrocarb	ons undergo:					
	(a) A substitution reaction	1	(b)	An oxidation reaction			
	(c) An addition reaction		(d)	None of these			
(ix)	The number of C-H bonds	in ethane molecule are:					
	(a) Four	(b) Six	(c)	Eight	(d)	Ten	
(x)	Which of the following pro	operty does not match wi	th ele	ments of the halogen far	milyʻ	?	
	(a) They have seven elect	trons in their valence shelf	11.				
	(b) They are highly reacti	ive chemically.					
	(c) They are metallic in r	nature.					
	(d) They are diatomic in	their molecular form.					

	element with the atomic nuber is:	number 19 will m	ost likely comb	oine ch	nemically	with the elemen	it whose	e atomic
(a)		11	(c) 18			(d) 20		
* 1	ne vapour density of a com		` ′	ula is		(4) = 0		
	•	C_2Br_4	(c) C_2Br_e			(d) C_2Br_8		
	two main metals in Bronz	- '	(3) 32 6	3		(4) -2 8		
		Copper and lead	(c) Coppe	er and	nickel	(d) Copper a	nd tin	
	particles present in strong							
		mainly ions	(c) ions a	and mo	olecules	(d) only aton	ns	
(xv) The	aim of the Fountain Expe	eriment is to prov	e that:					
(a)	HCl turns blue litmus red		(b) HCl i	is dens	er than	air		
(c)	HCl is highly soluble in w	vater	(d) HCl f	fumes i	in moist	air		
		A	NSWERS					
(i) (d)	(ii) (b) (iii) (a) (i	iv) (d) (v) (1	(vi) (a)	(v	vii) (d)	(viii) (c)		
(ix) (b)	(x) (c) (xi) (a) (x	cii) (c) (xiii) (d	d) (xiv) (b)	(x	(c)			
0 4:	2							
Question		avvina tabla						[5]
(1) (a) (Copy and complete the foll		Т	Г.			٦	[5]
	Name of the process	Catalyst	Temperature	Eq	quation i	for the reaction	4	
	Haber's Process							
(b) I	How is Ammonia separated	I from unreacted N	Nitrogen and Hy	ydrogei	n?			
Ans. (a)	Name of the process	Catalyst	Temperatu	re	Equa	tion for the reac	tion	
		Ferric oxide			$N_2 + 3$	Н,		
	*** 1	(Fe ₂ O ₃)			_	-		
	Haber's Process	containing 1%	$450^{\circ}\text{C} - 500^{\circ}$	C	←	- MO) at 450°C - 500°C 00 Atms - 900 Atms	\Rightarrow	
		K ₂ O and 3% Al ₂ O ₃				$2NH_3 + 22400$	cals.	
4.								
(b)	The mixture of gases is su The ammonia gas on sudo	•		_	_		-	
	-33 °C, whereas that of N_2			nyuroge	cii and i	nuogen (Boning	роші от	1 11113 18
	The recovery of ammonia			ı (discı	ussed ab	ove) or by absorp	otion of	water.
(ii) Mate	ch the salts given in colum							[5]
	Column I		Column	II]		
	(a) Pb(NO ₃) ₂ from P	bO 1.	Simple displace					
	(b) MgCl ₂ from Mg		Titration					
	(c) FeCl ₃ from Fe		Neutralization					
	(d) NaNO ₃ from NaO							
			Precipitation					
	(e) ZnCO ₃ from ZnS	O_4 3.	Combination					
Ans. (a)	Pb(NO ₃) ₂ from PbO	2.	Titration					
(b)	MgCl ₂ from Mg	1.	Simple displace	ement				
	FeCl ₃ from Fe	5.	Combination					
	NaNO ₃ from NaOH	3.	Neutralisation					
	ZnCO ₃ from ZnSO ₄	4.	Precipitation					
,	J 4		-					

(iii)	Cor	mplete the following by choosing correct answers from the bracket: [5]
	(a)	Metals are good (oxidizing agents / reducing agents) because they are electron (acceptors / donors).
	(b)	Electrovalent compounds have (high / low) melting points.
	(c)	Higher the pH value of a solution, the more (acidic / alkaline) it is.
	(d)	(AgCl / PbCl ₂), a white precipitate is soluble in excess NH ₄ OH.
	(e)	Conversion of ethene to ethane is an example of (hydration / hydrogenation).
Ans.		1. Reducing agents 2. Donors (b) High (c) Alkaline (d) AgCl (e) Hydrogenation
(iv)	Ide	ntify the following:
	(a)	The tendency of an atom to attract electrons to itself when combined in a compound.
	(b)	A substance that conducts electricity in molten or aqueous state.
	(c)	The catalyst used in the conversion of ethyne to ethane.
	(d)	The type of reactions alkenes undergo.
	(e)	An alloy of lead and tin that is used in electrical circuits.

Ans. (a) Electronegativity

(b) Electrolyte

(c) Nickel

(d) Addition reaction

- (e) Fusible alloy (solder)
- (v) (a) Give the structural formulae of each of the following

[5]

- 1. 2-methyl propane
- 2. Ethanoic acid
- 3. Butan -2- ol
- (b) Equation for the reaction when **compound A** is bubbled through bromine dissolved in carbon tetrachloride is as follows:

$$\begin{array}{c} A \xrightarrow{Br_2/CCl_4} & CH_2Br \\ \hline & CH_2Br \end{array}$$

- 1. Draw the structure of A.
- 2. State your observation during this reaction.

2-methyl propane

(b) 1.
$$H - C - H$$

 \parallel
 $H - C - H$

2. The bromine solution in carbon tetrachloride gets decolorised.

Section B

(Attempt any four questions.)

Question 3

- (i) (a) Name the product formed at the anode during the electrolysis of acidified water using platinum
 - (b) Name the metallic ions that should be present in the electrolyte when an article made of copper is to be electroplated with silver.
- **Ans.** (a) Oxygen gas
- (b) Silver ions

(ii)	Write the products and balance the equation. (a) $NH_3 + Cl_2 \longrightarrow$	[2]
	(b) $CuO + NH_3 \longrightarrow$	
	(a) He, Ar, Ne (Increasing order of the number of electron shells)	[3]
	(b) Na, Li, K (increasing Ionisation Energy)(c) F, Cl, Br (Increasing electronegativity)	
Ans.	(a) He, Ne, Ar (increasing number of electron shells)	
	(b) K, Na, Li (increasing ionisation energy)	
	(c) Br, Cl, F (increasing electronegativity)	
(iv)	Complete the following by selecting the correct option from the choices given:	[3]
	(a) The metal which does not react with water or dilute H_2SO_4 but reacts with concentrated H_2SO_4 (Al/Cu/Zn/Fe)	is
	(b) The metal whose oxide, which is amphoteric, is reduced to metal by carbon reduction	
	(Fe/Mg/Pb/	Al)
	(c) The divalent metal whose oxide is reduced to metal by electrolysis of its fused salt is	
	(Al/Na/Mg	/K)
Ans.	(a) Cu (Copper) (b) Pb (Lead) (c) Mg (Magnesium)	
Ques	tion 4	
-	(a) Name the process by which impure ore of aluminium gets purified by using concentrated solution of	an [2]
	(b) Write the equation for the formation of aluminium at the cathode during the electrolysis of alumina.	
Ans.	(a) Baeyer's process	
	(b) $Al^{3+} + 3e^- \longrightarrow Al$	
(ii)	(a) If 6 litres of hydrogen and 4 litres of chlorine are mixed and exploded and if water is added to the gas formed, find the volume of the residual gas.	ses
	(b) If the empirical formula of a compound is CH and it has a vapour density of 13, find the molecular form of the compound.	ula [2]
Ans.	(a) $H_2(g)$ + $Cl_2(g)$ \longrightarrow 2 $HCl(g)$ 1 vol 1 vol 2 vol 4 lt 4 lt 8 lt	
	As 8 lt of HCl formed will dissolve in water, volume of residual hydrogen gas is $(61t - 41t) = 21t$.	
	(b) Empirical formula weight of $CH = 12 + 1 = 13$ Vapour density of $CH = 13$	
	\therefore Molecular weight of compound of CH = 2 × vapour density = 2 × 13 = 26	
	Now, $n = \frac{\text{molecular weight}}{\text{empirical formula weight}} = \frac{26}{13} = 2$	
	Thus, molecular formula = $n \times \text{empirical formula} = 2[\text{CH}] = \text{C}_2\text{H}_2$.	
(iii)	Answer the following questions pertaining to laboratory preparation of Hydrogen chloride:	[3]

(a) Write an equation for the laboratory preparation of Hydrogen Chloride.

(c) Name the method of collecting Hydrogen chloride gas.

(b) Name the drying agent used.

Ans. (a) NaCl + H_2SO_4 (Conc.) $\xrightarrow{< 200^{\circ}C}$ NaHSO₄ + HCl (g)

- (b) Conc. H₂SO₄
- (c) Bring a glass rod dipped in ammonia solution near the mouth of the gas jar. Formation of dense white fumes around the glass rod confirms that gas jar is completely filled with the HCl gas.

$$NH_3 + HCl \rightarrow NH_4Cl$$

(iv) Explain the following:

[3]

- (a) Direct absorption of HCl gas in water is not preferred.
- (b) All glass apparatus is used in the laboratory preparation of HNO₃.
- (c) NaCl has a high melting point.
- **Ans.** (a) It is because, the reverse rise in level of water in the delivery tube which is known as back suction. Due to back suction the water enters hot flask and breaks it.
 - (b) The glass apparatus is purposely used because HNO₃ vapours are highly corrosive in nature and corrodes cork, rubber, etc., if used as stopper.
 - (c) NaCl is a electrovalent (ionic) compound. Its cations and anions are held very strongly due to strong electrostatic forces. Thus, a large amount of heat energy is required to snap the electrostatic bonds, before the ions could actually start interchanging their positions. Due to this large requirement of heat energy, NaCl has high melting and boiling points.

Question 5

(i) (a) Name the drying agent used for drying ammonia.

[2]

- (b) Why should the apparatus for the collection of ammonia gas be perfectly dry?
- **Ans.** (a) Quicklime (CaO) is used as drying agent.
 - (b) Ammonia gas is extremely soluble in water. Thus, if the apparatus is not dry, the gas will dissolve in moisture.
- (ii) Identify the cations in each of the following case :

[2]

- (a) NaOH solution when added to the Solution (A) gives a reddish brown precipitate.
- (b) NH₄OH solution when added to the Solution (B) gives white precipitate which does not dissolve in excess of NH₄OH.

Ans. (a) Ferric (Fe $^{3+}$) ion.

(b) Plumbous (Pb²⁺) ion.

(iii) Write a balanced chemical equation for each of the following:

[3]

[3]

- (a) Burning of ethane in plentiful supply of air.
- (b) Action of water on Calcium carbide.
- (c) Heating of Ethanol at 170°C in the presence of conc. Sulphuric acid.

Ans. (a) $2C_2H_6 + 7O_2 \longrightarrow 4CO_2 + 6H_2O_2$

(b) $CaC_2 + 2H_2O \longrightarrow Ca(OH)_2 + C_2H_2$

(c) $C_2H_5OH + H_2SO_4(conc) \xrightarrow{170^{\circ}C} C_2H_4(g) + H_2SO_4.H_2O$

(iv) State **one** relevant observation for each of the following reactions:

(a) Addition of ethyl alcohol to acetic acid in the presence of concentrated sulphuric acid.

- (b) Action of dilute Hydrochloric acid on iron (II) sulphide.
- (c) Action of Sodium hydroxide solution on ferrous sulphate solution.

Ans. (a) On warming the mixture gives fruity smell.

- (b) A foul smelling gas like rotten eggs is given off.
- (c) A dirty green precipitate is formed which is insoluble in excess of sodium hydroxide solution.

Question 6

- (i) (a) If 150 cc of gas A contains X molecules, how many molecules of gas B will be present in 75 cc of B? [2] The gases A and B are under the same conditions of temperature and pressure.
 - (b) Name the law on which the above problem is based.

Ans. (a) 150 cc of gas A contains X molecules

Thus, from Avogadro's law,

150 cc of gas B also contains X molecules

So, 75 cc of gas B contains $\frac{X}{2}$ molecules.

- (b) Avogadro's law
- (ii) What volume of oxygen is required to burn completely 90 dm³ of butane under similar conditions of temperature and pressure?

$$2C_4H_{10} + 13O_2 \longrightarrow 8CO_2 + 10H_2O$$
 [2]

Ans.
$$2C_4H_{10}$$
 + $13O_2$ \longrightarrow $8CO_2$ + $10H_2O$ 2Vols. 13 Vols. 8 Vols. Nil

(By Gay Lussac's law)

1 Vol
$$\frac{13}{2}$$
 Vols.

90 dm³ $\frac{13}{2}$ × 90 dm³ = **585 dm³**.

- (iii) Solution A is a sodium hydroxide solution. Solution B is a weak acid. Solution C is dilute sulphuric acid. Which solution will [3]
 - (a) liberate sulphur dioxide from sodium sulphite.
 - (b) give a white precipitate with zinc sulphate solution.
 - (c) contain solute molecules and ions?

Ans. (a) Solution C(dil sulphuric acid) will liberate sulphur dioxide from sodium sulphite.

- (b) Solution A(sodium hydroxide) will give white precipitate with Zinc sulphate solution.
- (c) Solution B(weak acid) will contain both ions and molecules.
- [3] (iv) Mention the property of conc. H₂SO₄ exhibited in each of the following reactions with:
 - (a) sugar
- (b) metallic chloride
- (c) non-metal such as carbon.

Ans. (a) Dehydration of organic compound

- (b) As a non-volatile acid
- (c) Oxidising property.

Question 7

A

(i) A compound gave a following data:

[2]

C = 57.82%, O = 38.58% and the rest hydrogen. Its relative molecular mass is 166.

Find its empirical formula and molecular formula.

$$[C = 12, O = 16, H = 1]$$

ns.	Element	Percentage weight	Atomic weight	Relative number of moles	Simple ratio of atoms
	C	57.82	12	57.82 ÷ 12 = 4.82	$4.82 \div 2.41 = 2$
	C	37.82	12	37.82 - 12 - 4.82	or, $2 \times 2 = 4$
	0	38.58	16	$38.58 \div 16 = 2.41$	$2.41 \div 2.41 = 1$
	0	36.36	10	$38.38 \div 10 = 2.41$	or, $2 \times 1 = 2$
	Н	100 - (57.82 + 38.58)	1	$3.60 \div 1 = 3.60$	$3.60 \div 2.41 \approx 1.5$
	11	= 100 - 96.40 = 3.60	1	3.00 · 1 - 3.00	or, $2 \times 1.5 = 3$

Thus, empirical formula of compound = $C_4H_3O_2$

So, empirical formula weight of $C_4H_3O_2 = 4 \times 12 + 3 \times 1 + 2 \times 16 = 48 + 3 + 32 = 83$

Now,
$$n = \frac{\text{Molecular mass}}{\text{Empirical formula mass}} = \frac{166}{83} = 2$$

Thus, Molecular formula = $2 \times \text{Empirical formula} = 2 (C_4H_3O_2) = C_8H_6O_4$.

- (ii) (a) Name a gaseous hydrocarbon commonly used for welding purposes.
 - (b) What is the number of C-H bonds in ethane molecule?

Ans. (a) Acetylene gas

- (b) Six
- (iii) Copy and complete the following table related to electrolysis.

S. No.	Name of Electrolyte	Name of Cathode			Product at Anode
1.	CuSO ₄ (aq.)	Copper	Copper		
2.	PbBr ₂ (molten)	Platinum	Platinum		

[2]

[3]

[2]

Ans.

S. N	No.	Name of Electrolyte	Name of Cathode	Name of Anode	Product at Cathode	Product at Anode
1.		CuSO ₄ (aq.)	Copper	Copper	Copper deposits	Copper dissolves
2	•	PbBr ₂ (molten)	Platinum	Platinum	Lead deposits given out	Bromine vapour

(iv) Refer to the flow chart diagram below and give balanced equations with conditions, if any, for the following conversions A to D. [3]

Ans. A. $2\text{NaCl} + \text{H}_2\text{SO}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{HCl}$

B. Fe + 2HCl
$$\xrightarrow{heat}$$
 FeCl₂ + H₂

C.
$$NH_3 + HC1 \rightarrow NH_4C1$$

D.
$$Pb(NO_3)_2(aq) + 2HCl \rightarrow PbCl_2(s) + 2HNO_3$$

Question 8

- (i) Draw an electron dot diagram to show the formation of each of the following compounds:
 - (a) Methane
 - (b) Magnesium chloride

$$[H = 1, C = 6, Mg = 12, Cl = 17]$$

Ans. (a) Methane (H)

Magnesium chloride

- (ii) Answer the following questions:
 - (a) How will you distinguish between Ammonium hydroxide and Sodium hydroxide using copper sulphate solution?
 - (b) How will you distinguish between dilute hydrochloric acid and dilute sulphuric acid using lead nitrate solution?
- **Ans.** (a) Sodium hydroxide forms a pale blue precipitate which is insoluble in excess of sodium hydroxide.

 Ammonium hydroxide forms a pale blue precipitate which dissolves in excess of ammonium hydroxide to form deep blue coloration.
 - (b) Hydrochloric acid forms a white precipitate with lead nitrate solution. This precipitate dissolves on warming the reaction mixture so as to form clear solution. Sulphuric acid forms a white precipitate with lead nitrate solution. This precipitate does not dissolve on warming the reaction mixture.
- (iii) Identify the substance underlined, in each of the following cases :

[3]

[2]

- (a) Cation that does not form a precipitate with ammonium hydroxide but forms one with sodium hydroxide.
- (b) The <u>electrolyte</u> used for electroplating an article with silver.
- (c) The particles present in a liquid such as kerosene, that is a non-electrolyte.
- Ans. (a) Magnesium ions
 - (b) Sodium argentocyanide solution
 - (c) Alkanes molecules
- (iv) In Period 3 of the Periodic Table, element B is placed to the left of element A.

[3]

On the basis of this information, choose the correct word from the brackets to complete the following statements:

- (a) The element B would have (lower/higher) metallic character than A.
- (b) The element A would probably have (lesser/higher) electron affinity than B.
- (c) The element A would have (greater/smaller) atomic size than B.

Ans. (a) higher

(b) higher

(c) smaller

V V V