INTRODUCTION

- Cement is an extremely ground material having adhesive and cohesive properties which provide a binding medium for the discrete ingredients.
- The processes used for the manufacture of cement can be classified as dry and wet.
- In the wet process, the limestone brought from the quarries is first crushed to smaller fragments. Then, it is taken to a ball or tube mill where it is mixed with clay or shale as the case may be and ground to a fine consistency of slurry with addition of water. The slurry is stored in tanks under constant agitation and fed into huge firebrick lined rotary kilns.
- In the dry process the raw materials are ground, mixed and fed to the rotary kiln in the dry state.

CHEMICAL COMPOSITION

 The identification of the major complex compounds is largely based on R.H. Bogue's work and hence these are called Bogue's compounds.

Constituents	Percentage	Average
Lime (CaO)	60 to 67%	63
Silica (SiO ₂)	17 to 25%	20
Alumina (\overline{Al}_2O_3)	3 to 8%	6
Iron oxide (\overline{Fe}_2O_3)	0.5 to 6%	3
Magnesia (MgO)	0.1 to 4%	2
Sulphur Trioxide (SO ₃)	1 to 3%	1.5
Soda and Potash (Na ₂ O + K ₂ O)	0.5 to 1.3%	1

Bogue's Compounds

Name	Chemical formula	Percentage
Tricalcium Silicate (C ₃ S)	3CaO.SiO ₂	30-50
Dicalcium Silicate (C ₂ S)	2 CaO.SiO ₂	20-45
Tricalcium Aluminate (C ₃ A)	3CaO.Al ₂ O ₃	8-12
Tetracalcium Alumino Ferrite (C ₄ AF)	4 CaO.Al ₂ O ₃ .Fe ₂ O ₃	6-10

TYPE OF CEMENTS

- (i) Ordinary Portland Cement
- (ii) Rapid Hardening Cement IS: 8041-1990

- (iii) Extra Rapid Hardening Cement
- (iv) Low Heat Portland Cement IS: 12600-1989
- (v) Portland Slag Cement IS: 455-1989
- (vi) Portland Pozzolana Cement IS: 1489-1991(Part 1 and 2)
- (vii) Sulphate Resisting Portland Cement IS: 12330-1988
- (viii) White Portland Cement IS: 8042-1989
- (ix) Coloured Portland Cement IS: 8042-1989
- (x) Hydrophobic Cement IS: 8043-1991
- (xi) High Alumina Cement IS: 6452-1989
- (xii) Super Sulphated Cement IS: 6909-1990
- (xiii) Special Cements
 - (a) Masonry Cement
- (b) Air Entraining Cement
- (c) Expansive Cement
- (d) Oil Well Cement

FIELD TESTS FOR CEMENTS

- Colour: Grey colour with a light greenish shade.
- Physical Properties: Cement should feel smooth when touched between fingers.
- If hand is inserted in a bag or heap of cement, it should feel cool.
- If a small quantity of cement is thrown in a bucket of water, it should sink and should not float on the surface.
- Presence of lumps: Cement should be free from lumps.
- Permissible Limits for Impurities in Water

Impurity	Permissible Limits
Organic	200 mg/L
Inorganic	3000 mg/L
Sulphates (SO ₃)	400 mg/L
Chlorides (CI)	2000 mg/L for plain concrete work, 500 mg/L for reinforced concrete work
Suspended matter	2000 mg/L

LABORATORY TESTS FOR CEMENTS

- 1. Chemical Composition Test
 - Ratio of percentage of lime to percentage of silica, alumina and iron oxide known as Lime Saturation Factor (LSF), when calculated

by the formula
$$\frac{\text{CaO} - 0.7\text{SO}_3}{(28\text{SiO}_2 + 1.2\text{Al}_2\text{O}_3 + 0.65\text{Fe}_2\text{O}_3)}$$
 shall not be greater

than 1.02 and not less than 0.66.

- Ratio of percentage of alumina (Al₂O₃) to that of iron oxide (Fe₂O₃) shall not be less than 0.66
- · Weight of insoluble residue shall not be more than 4 per cent.
- Weight of Magnesia shall not be more than 6 per cent.
- Total loss on ignition shall not be more than 5 per cent.
- Total sulphur content calculated as sulphuric anhydride shall not be more than 2.5% when C₃A is 5% or less and shall not be more than 3% when C₃A is more than 5%

2. Normal Consistency Test

- The normal (standard) consistency of a cement paste is defined as that consistency which will permit a Vicat plunger having 10 mm diameter and 50 mm length to penetrate a depth of 33 to 35 mm from the top (or 5 to 7 mm from the bottom) of the mould.
- Vicat Apparatus: Vicat apparatus assembly consists of a plunger 300 gm in weight with a length of 50 mm and diameter of 10 mm and a mould which is 40 mm deep and 80 mm in diameter.

3. Initial Setting Time Test

 Initial setting time should not be less than 30 minutes for OPC and 60 minutes for low heat cement.

4. Final Setting Time Test

• The final setting time should not be more than 10 hours.

5. Soundness Test

- The soundness of cement is determined either by 'Le Chatelier's method' or by means of a 'Autoclave' test.
- No satisfactory test is available for deduction of soundness due to excess of calcium sulphate. But its content can be easily determined by chemical analysis.
 - Le Chatelier's Method
 - Autoclave Test

6. Strength Test

(a) Compressive Strength Test

- Three cubes are tested for compressive strength at 1 day, 3 day, 7 day and 28 day where the period of testing being reckoned from the completion of vibration.
- The compressive strength shall be the average of the strengths of the three cubes for each period respectively.
- The compressive strength of 33 grade OPC at 3 day, 7 day and 28 day is 16 MPa, 22 MPa and 33 MPa respectively.

(b) Tensile Strength Test

- Six briquettes are tested and average tensile strength is calculated.
- Load is applied steadily and uniformly, starting from zero and increasing at the rate of 0.7 N/mm² in 12 seconds.
- OPC should have a tensile strength of not less than 2 MPa and
 2.5 MPa after 3 and 7 days respectively.
- Generally tensile strength is 10-15% of compressive strength.

7. Fineness Test: There are three methods for testing fineness viz.

(a) Sieve Method

- 100 gm of cement sample is taken and air set lumps, if any, in the sample are broken with fingers.
- The sample is placed on a 90 micron sieve and continuously sieved for 15 minutes.
- The residue should not exceed the limits specified below:

8-19	Type of cement	%Residue by weight
(i)	Ordinary Portland cement	10
(ii)	Rapid hardening cement	5
(iii)	Portland pozzolana cement	5

(b) Air Permeability Method

 Fineness of cement is represented by specific surface i.e. total surface area in cm² per gram of cement.

(c) Wagner Turbidimeter Test

- The cement is dispersed uniformly in a rectangular glass tank filled with kerosene.
- Parallel light rays are passed through the solution which strike the sensitivity plate of a photoelectric cell.

8. Heat of Hydration Test

- The apparatus used to determine the heat of hydration of cement is known as calorimeter.
- The heat of hydration for low heat Portland cement should not be more than 66 and 75 cal/gm for 7 and 28 days respectively.

9. Specific Gravity Test

 The specific gravity of cement is obtained by using Le Chatelier's flask.